This function creates a cluster out of all the atoms that are in a sphere of radius R around the central atom in a crystal lattice.
Syntax: FindAllAtomsInsideSphere(Crystal basis, Lattice parameters, position of central atom, R)
In this example, a cluster of a UO_2 crystal is created using the results of a DFT calculation. The central atom is chosen to be the Uranium ion at position (0,0,0). The radius of 5 Bohr radii is chosen to include the nearest neighbor oxygen atoms, hence forming a UO_8 cluster.
-- read the output of FPLO print("--Read FPLO output--\n") FPLOOut = FileReadDresdenFPLO("DFT/out.wan") -- from the DFT output we can create a tight binding Hamiltonian print("--Create the Tight Binding Hamiltonian--\n") print("Create the tight binding Hamiltonian for the crystal\n") TB = TightBindingDefFromDresdenFPLO(FPLOOut) print("Basis") print(TB.Atoms) print("Cell") print(TB.Cell) print("Define a cluster") NewCluster = FindAllAtomsInsideSphere(TB.Atoms,TB.Cell,{0,0,0},5) print("Quanty detected the following cluster:") print("Cluster") print(NewCluster)
--Read FPLO output--
--Create the Tight Binding Hamiltonian--
Create the tight binding Hamiltonian for the crystal
Basis
{ { U ,
{ 0 , 0 , 0 } ,
{ { 5f ,
{ f_{y^3-3x^2y} , f_{xyz} , f_{5z^2y-yr^2} , f_{5z^3-3zr^2} , f_{5z^2x-xr^2} , f_{x^2z-y^2z} , f_{x^3-3xy^2} } } } } ,
{ O ,
{ 2.5842004759287 , 2.5842004759287 , 2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ O ,
{ -2.5842004759287 , -2.5842004759287 , -2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } }
Cell
{ { 0 , 5.1684009518575 , 5.1684009518575 } ,
{ 5.1684009518575 , 0 , 5.1684009518575 } ,
{ 5.1684009518575 , 5.1684009518575 , 0 } }
Define a cluster
Quanty detected the following cluster:
Cluster
{ { O ,
{ 2.5842004759287 , -2.5842004759287 , -2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ O ,
{ -2.5842004759287 , 2.5842004759287 , -2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ O ,
{ -2.5842004759287 , -2.5842004759287 , 2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ U ,
{ 0 , 0 , 0 } ,
{ { 5f ,
{ f_{y^3-3x^2y} , f_{xyz} , f_{5z^2y-yr^2} , f_{5z^3-3zr^2} , f_{5z^2x-xr^2} , f_{x^2z-y^2z} , f_{x^3-3xy^2} } } } } ,
{ O ,
{ 2.5842004759287 , 2.5842004759287 , 2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ O ,
{ -2.5842004759287 , -2.5842004759287 , -2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ O ,
{ 2.5842004759287 , 2.5842004759287 , -2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ O ,
{ 2.5842004759287 , -2.5842004759287 , 2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } ,
{ O ,
{ -2.5842004759287 , 2.5842004759287 , 2.5842004759287 } ,
{ { 2p ,
{ p_y , p_z , p_x } } } } }