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«	Dichroism	»	(«	two	colors	»)	describes	the	dependence	of	the	absorption	
measured	with	two	orthogonal	polarization	states	of	the	incoming	light:		
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By	extension,	«	dichroism	»	also	includes	similar	dependence	phenomena,	such	as:		

•  Low	symmetry	crystals	show	a	trichroic	dependence	with	linear	light	
	
•  Magneto-chiral	dichroism	(MχD)	is	measured	with	unpolarized	light	
	
•  Magnetic	Linear	Dichroism	(MLD)	is	measured	by	changing	the	direction	of	

magnetic	field	and	keeping	the	linear	polarization	fixed																									…	
	

Dichroism	describes	an	angular	and	/or	polarization	behaviour	of	the	absorption	
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Linear	dichroism	(LD)	:	difference	measured	with	linearly	polarized	light	
	
Circular	dichroism	(CD)	:	difference	measured	with	left	/	right	circularly	polarized	light.	
	
Natural	dichroism	(ND)	:	time-reversal	symmetry	is	conserved	
	
Non-Reciprocal	(NR):		time-reversal	symmetry	is	not	conserved			
	
Magnetic	dichroism	(MD)	:	measured	in	(ferro,	ferri	or	antiferro)	magnetic	materials	

Dichroism	
	

Time	reversal	
symmetry	

Parity	
symmetry	

Natural	Linear	(NLD)	 +	 +	

Magnetic	Linear	(MLD)	 +	 +	

Non	Reciprocal	Linear	(NRLD)	 -	 -	

Natural	Circular	(NCD)	 +	 -	

Magnetic	Circular	(MCD)	 -	 +	

Magneto-optical	(MχD)	 -	 -	
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The	measurement	of	dichroism	is	often	challenging…	

…	but	provides	access	to	properties	that	cannot	be	measured	in	another	way			
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The	corresponding	«	sum	rules	»	relate	dichroism	to	a	ground	state	moment:	
	
Widely	applied	in	XMCD,	less	applied	in	other	types	of	dichroisms	
	
			
XMCD	:		average	value	of	<M>	the	local	magnetic	moment	of	the	absorber	
		
	



Problem : The parametrization in LFM  XMCD 
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XAS: Sum rules for circular dichroism orbital and spin moment

Lz

XMCD sum rules 

Expectation	value	of				
8	

<LZ>	=	⟨𝒊|𝑳↓𝒁  |𝒊⟩	

(Z	component	of	orbital	momentum	operator)	

Magnetic	field	B	is	set	along	the	Z	axis		

LZ 	

LZ 	



XAS: Sum rules for circular dichroism orbital and spin moment

Sz

XMCD sum rules 

9	

(+	<TZ>	=	⟨𝒊|𝑻↓𝒁  |𝒊⟩)	

<SZ>	=	⟨𝒊|𝑺↓𝒁  |𝒊⟩	
	

magnetic	dipole	operator	

Magnetic	field	B	is	set	along	the	Z	axis		

SZ 	

TZ 	
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The	corresponding	«	sum	rules	»	relate	dichroism	to	a	ground	state	moment:	
	
Widely	applied	in	XMCD,	less	applied	in	other	types	of	dichroisms	
	
			

XMCD	:		average	value	of	<M>	the	local	magnetic	moment	of	the	absorber	
		
XMLD	:	average	value	of	<M2>	
	
XNCD	:	mixture	between	states	with	different	parity	(orbital	pseudodeviator)	
	
XNLD	:	anisotropy	of	charge	distribution	(quadrupole	/	hexadecapole	moments)	
	

Dichroism is not straightforward to predict / calculate…

Let’s start with X-ray Natural Linear Dichroism (XNLD)



σ ω( ) = 4π 2α!ω f Ô i
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The	XAS	cross-section	
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Selection	rules	

The	expansion	of									and									in	real	spherical	harmonics	gives	:					r.!!ε r.u !!

)(rY)1(r. m
13

4m Ω−=ε π!!

For	example,	polarization	along	z,	wave	vector	along	x	:	
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Case	of	K-edge	(1s	initial	state):		

	

	

	dipole	component	and	polarization	along	z	:		

	 	the	only	non-zero	matrix	element	is	for		

	 	à	one	probes	the	pz	final	states	projected	onto	the	absorbing	atom	

	

	dipole	component	and	polarization	along	y	:		

	 	à	one	probes	the	py	final	states	projected	onto	the	absorbing	atom	

	

	If	pz	and	py	electron	density	are	different	:	one	can	measure	XNLD	

		

				 		àXNLD	is	due	to	anisotropy	in	charge	distribution	

ℓ i = 0 =mi

ℓ =1 m=	0	

!
ε.!r = y = c11r(Y1

1 +Y−1
1 )

1o =ℓ mo=	0	



Case	of	K-edge	(1s	initial	state):		

	

	quadrupole	component,	polarization	along	z,	wave	vector	along	x	:	

	 	one	probes	the	dxz	final	states	projected	onto	the	absorbing	atom	

k B 

e

z 
x

ℓ i = 0 =mi

quadrupole	component,	polarization	along	(x+y)/sqrt(2),		

	 	 	 	 	wave	vector	along	(x-y)/sqrt(2)	

	one	probes	the	dx2-y2	final	states	projected	onto	the	absorbing	atom	

If  the dxz and dx2-y2 electron densities are different, one can measure XNLD
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electric	dipole	1sàp	transitions		
	
No	XNLD		

electric	quadrupole	1sà3d	transitions		
	
XNLD	

Cr	K-edge	 Cr	K	pre-edge	

Dipole	versus	quadrupole	transitions	

Octahedral	Cr3+	ions	in	MgAl2O4	

Same	crystal	but	different	angular	dependence	

	k	

	ε	

[001] 
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( ) ( )if
if

EEiof +−= ∑ ωδωαπωσ !!
2

,

24

What	we	measure	:		

	

XAS	signal	from	the	crystal	(sum	over	atoms)	:		symmetry	of	the	material	(space	group)	

	

What	we	directly	calculate	with	an	atomic	code	:	

	

XAS	signal	from	one	atom	:	symmetry	of	the	atomic	site	(point	group	symmetry)	

	 	 	 	 									lower	than	crystal	symmetry	

		

	

One	absorbing	site	versus	whole	crystal	

How	to	make	connection	between	crystal	properties	and	site	properties	?		
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•  Fd-3m	space	group	(#227):		
	 	 	 	cubic	system	
	 	 	 	m-3m	point	group	

	
•  Cubic	unit	cell	contains	32	octahedral	sites	:		

	16	are	occupied,	with	Wyckoff	position		16c	

Our	example	for	today	:	spinel		MgAl2O4	

One	absorbing	site	versus	whole	crystal	

MgAl2O4 

Do we need to perform 16 calculations ?
Can we simplify the problem ? 



3 translations

4 equivalent sites by rotation  

3 x 4 = 12



	
•  Only	4	are	crystallographic	equivalent	(translations	do	not	matter	for	XAS)			

		

One	absorbing	site	versus	whole	crystal	

•  Fd-3m	space	group	(n°227):		
	 	 	 	cubic	system	
	 	 	 	m-3m	point	group	

	
•  Cubic	unit	cell	contains	32	octahedral	sites	:		

	16	are	occupied,	with	Wyckoff	position		16c		:	D3d	or	-3m	symmetry	
	

Our	example	for	today	:	spinel		MgAl2O4	



Symmetry elements in D3d point group 

Symmetry elements in Oh point group 

The C3 axis in D3d is one of the C3 axis in Oh
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€ 

σ cube =σ A +σ B +σC +σD

€ 

111[ ]

€ 

11 1[ ]

•  There	are	four	D3d	sites	crystallographic	equivalent,	with	their	respective	C3	axis	
along		

€ 

1 11[ ]

€ 

11 1 [ ] directions	

A,	B,	C	and	D	sites	are	not	«	equivalent»	for	XAS	:		
	

	A	priori	they	yield	different	cross-sections	!	

One	absorbing	site	versus	whole	crystal	

•  Fd-3m	space	group	(n°227):		
	 	 	 	cubic	system	
	 	 		

•  Cubic	unit	cell	

Our	example	for	today	:	spinel		MgAl2O4	
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1. Can we predict  the angular dependence based on the crystal structure ? 

2. Is there an analytical expression of the XAS cross-section :


for electric dipole transitions ? 
for electric quadrupole transitions ?


3. How does one calculate the spectrum for the whole crystal using a single atom model ?


Issues	related	to	XNLD	calculations	
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Expression of the angular dependence of XAS, RIXS etc…

Two formalisms can be used to describe the same physical property :

-  Cartesian Tensors (more natural)
-  Spherical Tensors (more physical)

Many physical properties can be described by a tensor : for example : 

electric dipole transition amplitude in XAS : tensor of rank 1 (= a vector) :
                           31 = 3 components

electric dipole transition intensity in XAS : tensor of rank 2 (= a matrix)
   32 = 9 components

A tensor of rank N is the generalized form :  3N  components 
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Expression of the angular dependence of XAS, RIXS etc…

Take a Cartesian tensor of rank 2 and apply a transformation : 	

its components will transform linearly into themselves

Now we limit ourselves to rotations



It is possible to make « special »  linear combinations from the 9 components 
and form « groups »  where they transform into themselves

One is invariant : a scalar (a 0th rank tensor) 

A group of 3 transform into themselves : a vector (a 1st rank tensor)

A group of 5 transform into themselves : a 2nd rank tensor

It is not possible to make smaller groups : we call them  irreducible tensors 
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Expression of the angular dependence of XAS, RIXS etc…

Ex : Spherical harmonics           are irreducible tensors	

By analogy, irreducible tensors are labeled : 



It is easy to rotate or multiply them. 

Yℓ
m

Tℓ
m

m = −ℓ,...,ℓ

rank
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XAS cross-section in Cartesian coordinates :  (1) electric dipole transitions

In Quanty (which uses Green function formalism) the electric dipole XAS cross-
section is calculated as the Imaginary part of the « conductivity tensor » σ : 

Absorption	=	-Im[ε.σ.ε]	
sxx sxy sxz

syx syy syz

szx szy szzω0	

Real	
Imaginary	=	XAS	

ε : polarization	

à	The	conductivity	tensor	is	calculated	once	
à	The	absorption	cross-section	can	then	very	easily	be	calculated	for	any	ε
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à The « conductivity tensor » σij = a Cartesian tensor of rank 2 (= a matrix):
 

XAS cross-section in Cartesian coordinates :  (1) electric dipole transitions

•  For linearly polarized x-rays, this conductivity tensor writes : 

with

i = x,y,z   ; j= x,y,z

sxx sxy sxz

syx syy syz

szx szy szz

 3 x 3 = 9 components



XAS cross-section in Cartesian coordinates :  (1) electric dipole transitions

sxx sxy sxz

syx syy syz

szx szy szz

Spectrum	measured	with		
x-polarized	light	:	ε =(100) (i=j=x)	

Slide from Maurits



XAS cross-section in Cartesian coordinates :  (1) electric dipole transitions

sxx sxy sxz

syx syy syz

szx szy szz

Spectrum	measured	with		
y-polarized	light	:	ε=(010)	(i=j=y)	

Slide from Maurits



sxx sxy sxz

syx syy syz

szx szy szz

Spectrum	measured	with		
z-polarized	light	:	ε = (001) (i=j=z)	

Slide from Maurits



sxx sxy sxz

syx syy syz

szx szy szz

But	the	conductivity	tensor	(σ)	is	a	TENSOR	

Spectrum	measured	with	ε =1/sqrt(2)	(011)	
i=y,z	;	j=y,z	

½		

½		½		

½		
Slide from Maurits
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XAS cross-section in Cartesian coordinates :  (1) electric dipole transitions

•  Simplification is possible by considering the symmetry group G of the sample 

For any operation S in G, 

à Spherical average : the case of a powder : 

The isotropic spectrum is the trace of the conductivity tensor in any (x,y,z) frame

𝜎(𝜀)=𝜎[𝑆(𝜀)]

σ is symmetrized (averaged over all S symmetry operations)



à	The	case	of	cubic	symmetry	

σxx = σyy= σzz

In the cubic (xyz) frame the conductivity tensor writes :

isotropic

Other components 
are zero



à	The	case	of	tetragonal	symmetry	 z axis

In the (xyz) tetragonal frame where z is the 
fourfold axis the conductivity tensor writes :

σxx = σyy≠ σzz

Other components 
are zero

dichroism
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Other (equivalent) expressions  from the literature for a dichroic crystal : 

A crystal with a high symmetry axis z : trigonal or tetragonal system

The conductivity tensor can be written in the principal axis

Analytical expression of  dipole cross-section for a trigonal or tetragonal crystal : 

2 fundamental spectra only are needed in order to know everything 

// means parallel to z (=σzz) 
┴ means perpendicular to z (=σxx, σyy)


At magic angle (54.7 ° between ε and z) : one measures the isotropic spectrum 



à	The	case	of	cubic	symmetry	+	magnetic	field	

w0

(    )
H=

4
4

4

I 0
0

0
-I
0

sxy sxz

syx syy syz

szx szy szz

sxx

Magnetic field along z



à	The	case	of	orthorhombic	symmetry	

In the (xyz) orthrhombic frame the conductivity tensor writes :

σxx ≠ σyy≠ σzz

Other components 
are zero



à	The	case	of	monoclinic	symmetry	

In the (xyz) monoclinic  frame the conductivity tensor writes :

σxx ≠ σyy≠ σzz

σxy  and σyx are 
non-zero



w0

(    )
H=

4
0

8

2 2
1

1
2
2

sxy sxz

syx syy syz

szx szy szz

sxx

à	The	case	of	triclinic	symmetry	

In the (xyz) triclinic  frame the conductivity tensor writes :

9 components 
are different
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à Conductivity tensor : a  Cartesian tensor of rank 4 : 
     more complicated than a matrix !
     3 x 3 x3 x 3 = 81 components

XAS cross-section in Cartesian coordinates :  (2) electric quadrupole transitions

For linearly polarized x-rays, the electric quadrupole XAS cross-section writes : 

with

à For a powder : 

= the isotropic quadrupole spectrum

Note that Quanty calculates only a 5x5 matrix (25 well-chosen wrt symmetry)  components
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Expressing the angular dependence with Cartesian tensors quickly becomes heavy : 


    for electric quadrupole transitions
    when symmetry is low



What about with spherical tensors ? 

C. Brouder,  « Angular dependence of x-ray absorption spectra », 
J. Phys. Condens. Matter 2 701 (1990)

Expressions for all symmetry groups (dipole and quadrupole operators) are given in : 
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à The symmetry of the crystal restricts the possible values of σ(2,m).

XAS cross-section in spherical coordinates :  (1) electric dipole transitions

For linearly polarized x-rays, the electric dipole XAS cross-section writes : 

with

isotropic anisotropic tensor components
= fundamental spectra 
= energy-dependent functionsangular coefficient
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Examples 

XAS cross-section in spherical coordinates :  (1) electric dipole transitions

Cubic 


isotropic :

Trigonal / Tetragonal  
 dichroism : 

z axis defined as high symmetry axis of the crystal 

similar to : 

Triclinic


trichroism
6 spectra to measure / calculate 

1 spectrum to measure / calculate

2 spectra to measure / calculate

= σxx= σyy=σzz
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XAS cross-section in spherical coordinates :  (2) electric quadrupole transitions

For linearly polarized x-rays, the electric quadrupole XAS cross-section writes : 

with

1 isotropic

5 +9 = 14 anisotropic tensor components

15 independent fundamental spectra (energy-dependent functions) in 
order to determine (= measure or calculate) σ for any (ε,k)
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Examples 

Cubic 


No XNLD 

Trigonal

dichroism

(xyz) frame : z axis defined as high symmetry axis of the crystal
   x and y are defined according Tables of Crystallography

Triclinic


15 spectra to measure / calculate 

 XNLD is not zero for a cubic crystal !
2 spectra to measure / calculate

4 spectra to measure / calculate

XAS cross-section in spherical coordinates :  (2) electric quadrupole transitions

spherical coordinates
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Coming back to our example : how to calculate XNLD in practice ? 

( ) ( ) ( )if
if

if
if

EEirrkfEEirf +−++−= ∑∑ ωδεωαπωδεωαπωσ !!!!
2

,

22

,

2 ...4

( ) ( )if
if

EEirrkIrf +−+= ∑ ωδεεωαπωσ !!

2

,

2 ..
2

.4

dipole quadrupole

One spectrum to calculate  :
any orientation of ε is	possible	

Two spectra to calculate : 
two independent sets of (ε,k)

Cubic 
crystal
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	k	
	ε	

[001]	

	k	

	ε	
[001]	

quadrupole Two spectra to calculate : 
two independent sets of (ε,k)
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Coming back to our example : how to calculate XNLD in practice ? 

( ) ( )if
if

EEirrkIrf +−+= ∑ ωδεεωαπωσ !!

2

,

2 ..
2

.4

dipole quadrupole

isotropic	
Dichroism : 2 fundamental spectra

One D3d site

Cubic 
crystal

Dichroism : 2 fundamental spectra

Trichroism : 4 fundamental spectra
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Coming back to our example : how to calculate XNLD in practice ? 

( ) ( )if
if

EEirrkIrf +−+= ∑ ωδεεωαπωσ !!

2

,

2 ..
2

.4

dipole quadrupole

isotropic	
dichroism : 2 fundamental spectra

One D3d site

Cubic 
crystal

dichroism : 2 fundamental spectra

trichroism : 4 fundamental spectra

Average over A, 
B, C and D  sites Average over A, 

B, C and D sites
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))3,4(702)0,4(7(
18
1)0,4(

)0,0()0,0(
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33

3

3

dd

d

d

D
Q

D
Q

cube
Q

D
Q

cube
Q

D
D

cube
D

σσσ

σσ

σσ

+−=

=

=

crystal site   

Be careful :

the fundamental spectra (tensor components)of the crystal are not necessarly 
the same as for a single site.

Here it can be shown that :  
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site  A         à     site    B

rotB=Rz(π/2)

site  A            à     site    C
rotC=Rz(3π/2)

σQ(ε,k) σQ(rotB
-1(ε), rotB

-1(k)) 
 

σD(ε) σD(rotB
-1(ε)) 

 

σQ(ε,k) σQ(rotC
-1(ε), rotC

-1(k)) 
 

σD(ε) σD(rotC
-1(ε)) 

 

site  A            à     site    D
rotD=Rz(π)

σQ(ε,k)
σD(ε) σD(rotD

-1(ε)) 
 σQ(rotD

-1(ε), rotD
-1(k)) 

 

D
D

C
D

B
D

A
D

cube
D σσσσσ +++=

D
Q

C
Q

B
Q

A
Q

cube
Q σσσσσ +++=
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Site B

Site C  	

1 calculation

Site A

Site D

Site A

Site D

Site B

Site C  	

2 calculations

For quadrupole XNLD, the number of calculations  to do has been reduced from :

16 (sites) x 15 (components) to 3 by symmetry considerations 

Conclusion : Always look first for symmetries ! 



55	

DFT calculations



56	

J. Phys. Condens. Matter 20, 455205 (2008) 
Phys. Rev. B 78, 195103 (2008) 
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Conclusion

•  Symmetry considerations and tensor expressions are very helpful :

-  to reduce the number of calculations / experiments needed
-  to know what angular dependence to expect

•  XNLD in XAS is well understood

•  XNLD in RIXS, XMLD, XNCD… are much more difficult


