

Polarization and angular dependence in x-ray spectroscopies

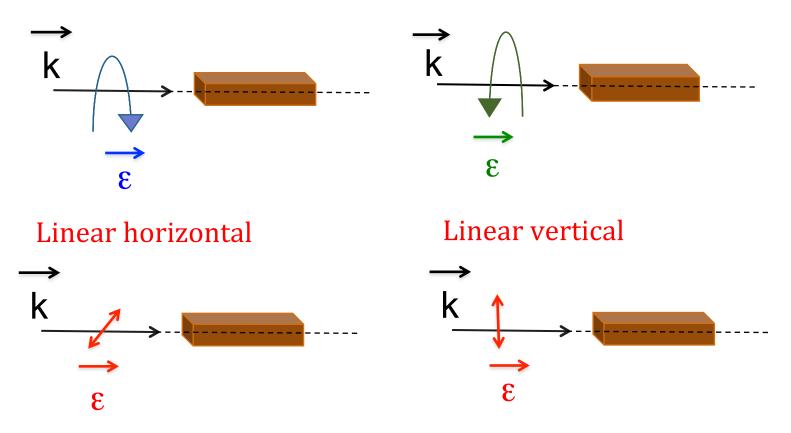
Amélie Juhin

Sorbonne Université-CNRS (Paris)

amelie.juhin@upmc.fr

« Dichroism » (« two colors ») describes the dependence of the absorption measured with two orthogonal polarization states of the incoming light:

Circular left



By extension, « dichroism » also includes similar dependence phenomena, such as:

- Low symmetry crystals show a trichroic dependence with linear light
- Magneto-chiral dichroism (M χ D) is measured with unpolarized light
- Magnetic Linear Dichroism (MLD) is measured by changing the direction of magnetic field and keeping the linear polarization fixed

Dichroism describes an angular and /or polarization behaviour of the absorption

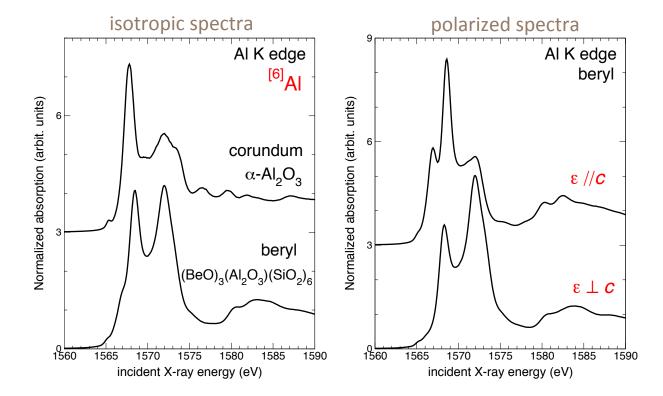
Linear dichroism (LD) : difference measured with linearly polarized light Circular dichroism (CD) : difference measured with left / right circularly polarized light. Natural dichroism (ND) : time-reversal symmetry is conserved Non-Reciprocal (NR): time-reversal symmetry is not conserved

Magnetic dichroism (MD) : measured in (ferro, ferri or antiferro) magnetic materials

Dichroism	Time reversal symmetry	Parity symmetry
Natural Linear (NLD)	+	+
Magnetic Linear (MLD)	+	+
Non Reciprocal Linear (NRLD)	-	-
Natural Circular (NCD)	+	-
Magnetic Circular (MCD)	-	+
Magneto-optical (M χ D)	-	-

The measurement of dichroism is often challenging...

... but provides access to properties that cannot be measured in another way



Average signature

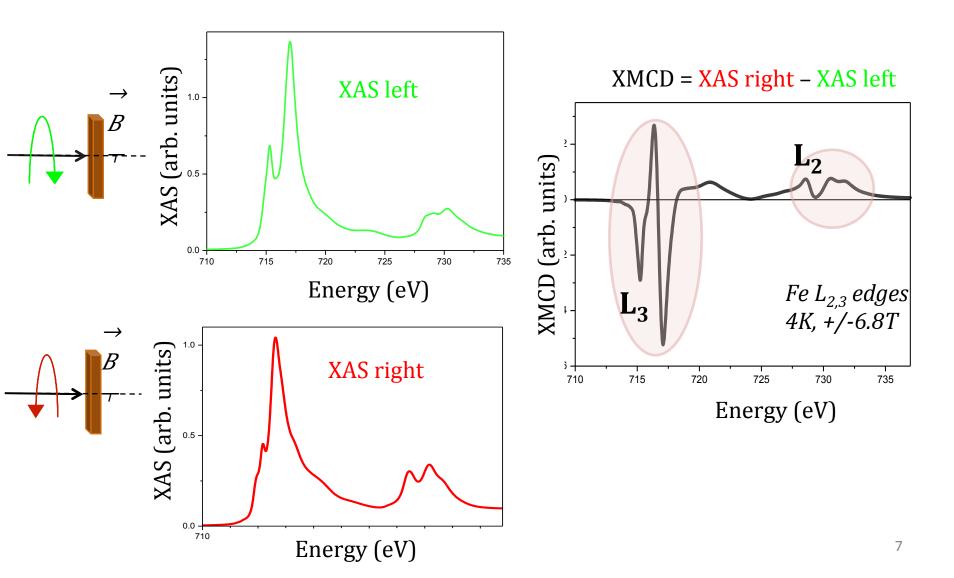
Access to polarization dependent states

The corresponding « sum rules » relate dichroism to a ground state moment: Widely applied in XMCD, less applied in other types of dichroisms

XMCD : average value of <M> the local magnetic moment of the absorber

XMCD

Can be measured in ferri / ferromagnetic materials (XMCD = 0 in antiferromagnets) XAS measured with circularly polarized x-rays on a sample magnetically polarized by external magnetic field



Magnetic field B is set along the Z axis

VOLUME 68, NUMBER 12

PHYSICAL REVIEW LETTERS

23 MARCH 1992

X-Ray Circular Dichroism as a Probe of Orbital Magnetization

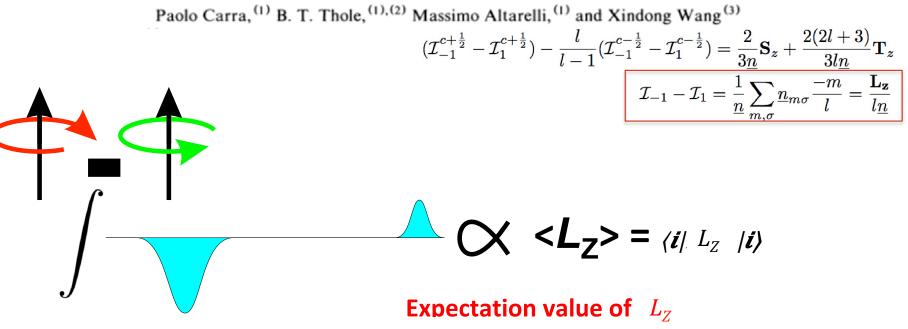
B. T. Thole, ⁽¹⁾ Paolo Carra, ⁽²⁾ F. Sette, ⁽²⁾ and G. van der Laan ⁽³⁾

VOLUME 70, NUMBER 5

PHYSICAL REVIEW LETTERS

1 FEBRUARY 1993

X-Ray Circular Dichroism and Local Magnetic Fields



(*Z* component of orbital momentum operator)

Magnetic field B is set along the Z axis

VOLUME 68, NUMBER 12

PHYSICAL REVIEW LETTERS

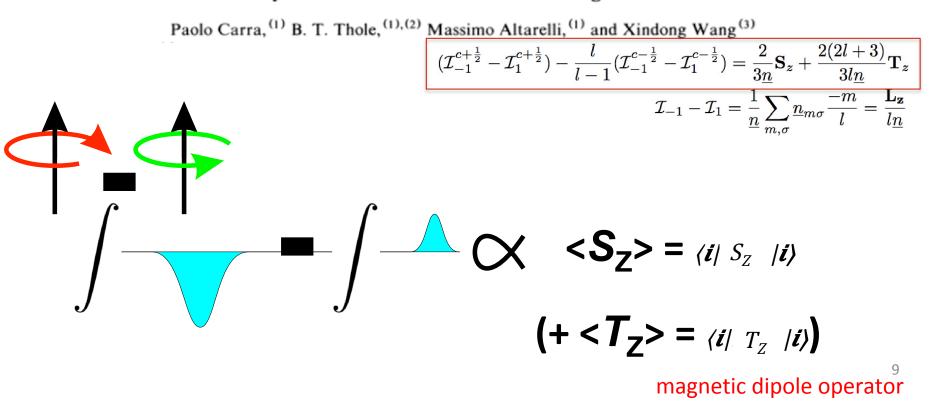
23 MARCH 1992

X-Ray Circular Dichroism as a Probe of Orbital Magnetization

B. T. Thole,⁽¹⁾ Paolo Carra,⁽²⁾ F. Sette,⁽²⁾ and G. van der Laan⁽³⁾ VOLUME 70, NUMBER 5 PHYSICAL REVIEW LETTERS

1 FEBRUARY 1993

X-Ray Circular Dichroism and Local Magnetic Fields



The corresponding « sum rules » relate dichroism to a ground state moment: Widely applied in XMCD, less applied in other types of dichroisms

XMCD : average value of <M> the local magnetic moment of the absorber XMLD : average value of <M²>

XNCD : mixture between states with different parity (orbital pseudodeviator) XNLD : anisotropy of charge distribution (quadrupole / hexadecapole moments)

Dichroism is not straightforward to predict / calculate...

Let's start with X-ray Natural Linear Dichroism (XNLD)

The XAS cross-section

$$\sigma(\omega) = 4\pi^2 \alpha \hbar \omega \sum_{f,i} \left| \left\langle f \left| \hat{O} \right| i \right\rangle \right|^2 \delta(\hbar \omega - E_f + E_i)$$

$$\hat{O} = \left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon} + i \frac{\hbar}{2} \boldsymbol{\sigma} \cdot \boldsymbol{k} \times \boldsymbol{\varepsilon} + \frac{i\omega\hbar}{4mc^2} \boldsymbol{\sigma} \cdot \boldsymbol{p} \times \boldsymbol{\varepsilon} \right) e^{i\boldsymbol{k}\cdot\boldsymbol{r}}$$

Photon polarization Photon wave vector

$$\left\langle f \left| \left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon} + i \frac{\hbar}{2} \boldsymbol{\sigma} \cdot \boldsymbol{k} \times \boldsymbol{\varepsilon} + \frac{i \omega \hbar}{4 m c^2} \boldsymbol{\sigma} \cdot \boldsymbol{p} \times \boldsymbol{\varepsilon} \right) e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \right| i \right\rangle$$

= $i \frac{m}{\hbar} \left(E_f - E_g \right) \left\langle f \left| o_{E1} + o_{E2} + o_{E3} + o_{M1} + o_{M2} + o_{SP} \dots \right| i \right\rangle$

Electric operators

Magnetic operators

Dipole spin position operator

$$o_{E1} = \boldsymbol{\varepsilon}.\boldsymbol{r}$$

$$o_{E2} = \frac{i}{2}\boldsymbol{\varepsilon}.\boldsymbol{r}\boldsymbol{k}.\boldsymbol{r}$$

$$o_{E3} = -\frac{1}{6}\boldsymbol{\varepsilon}.\boldsymbol{r}(\boldsymbol{k}.\boldsymbol{r})^2$$

$$o_{M1} = c_m \mathbf{k} \times \boldsymbol{\varepsilon}. \left(\mathbf{L} + 2\mathbf{S}\right)$$

$$o_{M2} = ic_m \mathbf{k} \times \boldsymbol{\varepsilon}. \left(\frac{2}{3}\mathbf{L} + 2\mathbf{S}\right) (\mathbf{k}. \mathbf{r})$$

Negligible for X-rays

Sizeable for K edge XMCD N. Bouldi, PRB 96 (2017)

 $o_{SP} = i\Omega \boldsymbol{\sigma}.\boldsymbol{\varepsilon} \times \boldsymbol{r}$

$$\left\langle f \left| \vec{\varepsilon}.\vec{r} \left(1 + \frac{i}{2}\vec{k}.\vec{r} - \frac{1}{6} \left(\vec{k}.\vec{r} \right)^2 \right) \right| i \right\rangle = \left\langle f \left| \vec{\varepsilon}.\vec{r} \right| i \right\rangle + i\frac{k}{2} \left\langle f \left| \vec{\varepsilon}.\vec{r}\vec{u}.\vec{r} \right| i \right\rangle - \frac{k^2}{6} \left\langle f \left| \vec{\varepsilon}.\vec{r} \left(\vec{u}.\vec{r} \right)^2 \right| i \right\rangle$$

$$\vec{u} = \frac{\vec{k}}{k}$$
 $k = \frac{1}{2} \alpha \hbar \omega$ Photon energy in
Rydberg
Fine structure constant $\cong \frac{1}{127}$

Selection rules

The expansion of $\vec{\epsilon}.\vec{r}$ and $\vec{u}.\vec{r}$ in real spherical harmonics gives :

$$\vec{\epsilon}.\vec{r} = (-1)^m \sqrt{\frac{4\pi}{3}} r Y_1^m(\Omega) \qquad \Omega = (\theta, \varphi)$$

For example, polarization along z, wave vector along x :

 $\vec{\varepsilon}.\vec{r} = z = r\cos\theta = \sqrt{\frac{4\pi}{3}}rY_1^0 = c_{10}rY_1^0 \qquad \longrightarrow \qquad \ell_o = 1 \qquad m_o = 0$ $\vec{\varepsilon}.\vec{r}\vec{u}.\vec{r} = zx = r^2\sin\theta\cos\theta\cos\varphi = c_{21}r^2(Y_2^{-1} - Y_2^1) \qquad \longrightarrow \qquad \ell_o = 2 \qquad m_o = +1 \text{ and } -1$

The transition matrix is :

Radial integral Gaunt coefficient

$$\left\langle f \left| o \right| i \right\rangle = c_{\ell_o m_o} \sum_{\ell,m} a_{\ell m}^f(E) \left(\int_{0}^{R} b_{\ell}(r,E) g_{\ell_i}(r) r^{2+\ell_o} dr \right) \left(\iint_{Sphere} Y_{\ell}^m(\Omega) Y_{\ell_o}^{m_o}(\Omega) Y_{\ell_i}^{m_i}(\Omega) d\Omega \right)$$

Non zero, only for some ℓ and $m \rightarrow$ gives the selection rules

Case of *K*-edge (1s initial state): $\ell_i = 0 = m_i$

dipole component and polarization along z : $\ell_0 = 1$ $m_o = 0$ the only non-zero matrix element is for $\ell = 1$ m = 0

 \rightarrow one probes the p_z final states projected onto the absorbing atom

dipole component and polarization along y : $\vec{\varepsilon} \cdot \vec{r} = y = c_{11}r(Y_1^1 + Y_{-1}^1)$

 \rightarrow one probes the p_v final states projected onto the absorbing atom

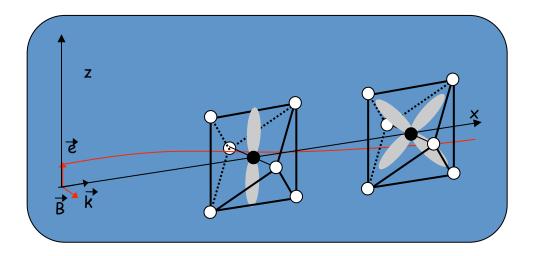
If p_z and p_v electron density are different : one can measure XNLD

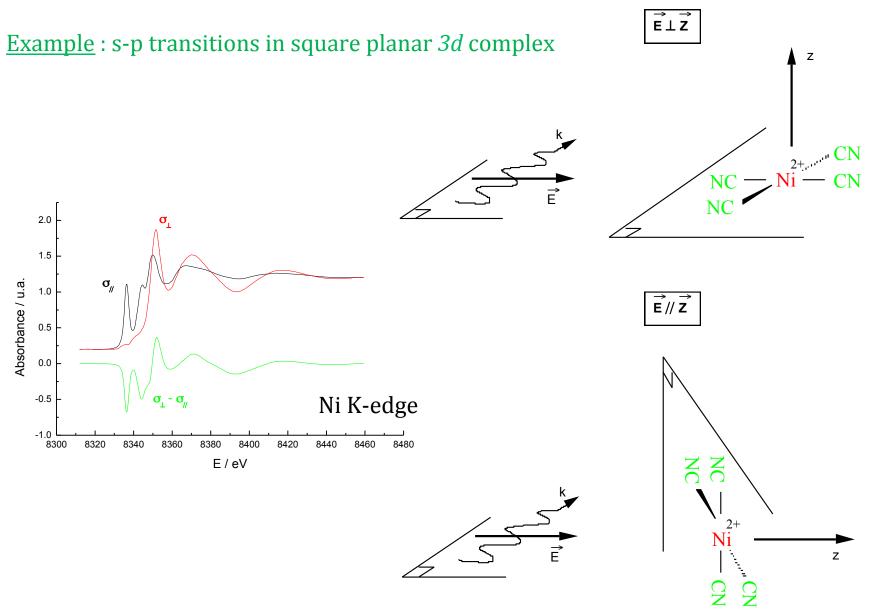
 \rightarrow XNLD is due to anisotropy in charge distribution

Case of *K*-edge (1s initial state): $\ell_i = 0 = m_i$

quadrupole component, polarization along z, wave vector along x : one probes the d_{xz} final states projected onto the absorbing atom

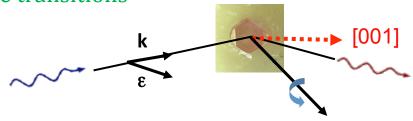
If the d_{xz} and d_{x2-y2} electron densities are different, one can measure XNLD

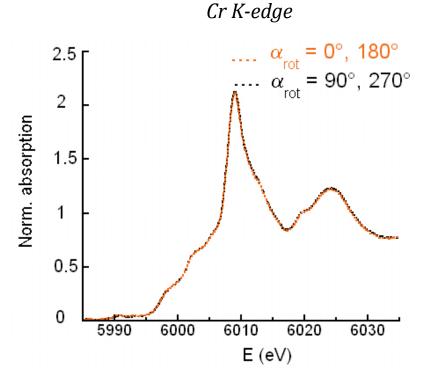




Dipole versus quadrupole transitions

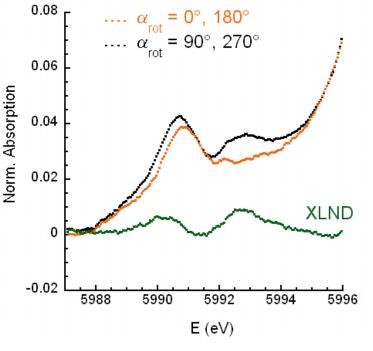
Octahedral Cr³⁺ ions in MgAl₂O₄





electric dipole $1s \rightarrow p$ transitions

Cr K pre-edge



electric quadrupole $1s \rightarrow 3d$ transitions

No XNLD

XNLD

Same crystal but different angular dependence

One absorbing site versus whole crystal

$$\sigma(\omega) = 4\pi^2 \alpha \hbar \omega \sum_{f,i} \left| \left\langle f | o | i \right\rangle \right|^2 \delta(\hbar \omega - E_f + E_i)$$

What we measure :

XAS signal from the crystal (sum over atoms) : symmetry of the material (space group)

What we directly calculate with an atomic code :

XAS signal from one atom : symmetry of the atomic site (point group symmetry) lower than crystal symmetry

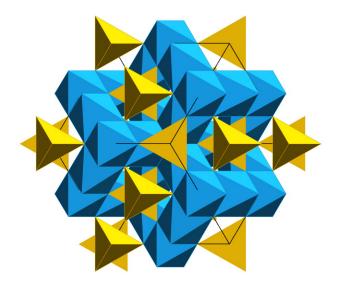
How to make connection between crystal properties and site properties ?

One absorbing site versus whole crystal

Our example for today : spinel MgAl₂O₄

- Fd-3m space group (#227): cubic system m-3m point group
- Cubic unit cell contains 32 octahedral sites : 16 are occupied, with Wyckoff position 16c

Do we need to perform 16 calculations ? Can we simplify the problem ?



Wyckoff Positions of Group 227 (Fd-3m) [origin choice 2]

Multiplicity	Wyckoff		Coordinates	
multiplicity	letter	symmetry	(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + 3 transla	tions
192	i	1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
96	h	2	$\begin{array}{l} (0,y,-y) \left(3/4,-y+1/4,-y+1/2\right) \left(1/4,y+1/2,y+3/4\right) & (1/2,-y+3/4,y+1/4) \\ (-y,0,y) \left(-y+1/2,3/4,-y+1/4\right) \left(y+3/4,1/4,y+1/2\right) & (y+1/4,1/2,-y+3/4) \\ (y,-y,0) \left(-y+1/4,-y+1/2,3/4\right) & (y+1/2,y+3/4,1/4) & (-y+3/4,y+1/4,1/2) \\ (0,-y,y) & (1/4,y+3/4,y+1/2) & (3/4,-y+1/2,-y+1/4) & (1/2,y+1/4,-y+3/4) \\ (y,0,-y) & (y+1/2,1/4,y+3/4) & (-y+1/4,3/4,-y+1/2) & (-y+3/4,1/2,y+1/4) \\ (-y,y,0) & (y+3/4,y+1/2,1/4) & (-y+1/2,-y+1/4,3/4) & (y+1/4,-y+3/4,1/2) \end{array}$	$3 \times 4 = 12$
96	g	m	$\begin{array}{llllllllllllllllllllllllllllllllllll$	5 X 4 - 12
48	f	2.m m	(x,1/8,1/8) (-x+3/4,1/8,5/8) (1/8,x,1/8) (5/8,-x+3/4,1/8) (1/8,1/8,x) (1/8,5/8,-x+3/4) (7/8,x+1/4,3/8) (7/8,-x,7/8) (x+3/4,3/8,3/8) (-x+1/2,7/8,3/8) (7/8,3/8,-x+1/2) (3/8,3/8,x+3/4)	
32	е	.3m	$\begin{array}{ccc} (x,x,x) & (-x+3/4,-x+1/4,x+1/2) \left(-x+1/4,x+1/2,-x+3/4\right) \left(x+1/2,-x+3/4,-x+1/4\right) \\ (x+3/4,x+1/4,-x+1/2) \left(-x,-x,-x\right) & (x+1/4,-x+1/2,x+3/4) \left(-x+1/2,x+3/4,x+1/4\right) \end{array}$	
<mark>16</mark>	d	3m	(1/2,1/2,1/2) (1/4,3/4,0) (3/4,0,1/4) (0,1/4,3/4)	
16	C	3m	(0,0,0) (3/4,1/4,1/2) (1/4,1/2,3/4) (1/2,3/4,1/4) 4 equivalent sites	by rotation
8	b	-43m	(3/8,3/8,3/8) (1/8,5/8,1/8)	-
8	а	-43m	(1/8,1/8,1/8) (7/8,3/8,3/8)	

= 12

One absorbing site versus whole crystal

Our example for today : spinel $MgAl_2O_4$

 Fd-3m space group (n°227): cubic system m-3m point group

- Cubic unit cell contains 32 octahedral sites : 16 are occupied, with Wyckoff position 16c : D_{3d} or -3m symmetry
- Only 4 are crystallographic equivalent (translations do not matter for XAS)

Symmetry elements in O_h point group

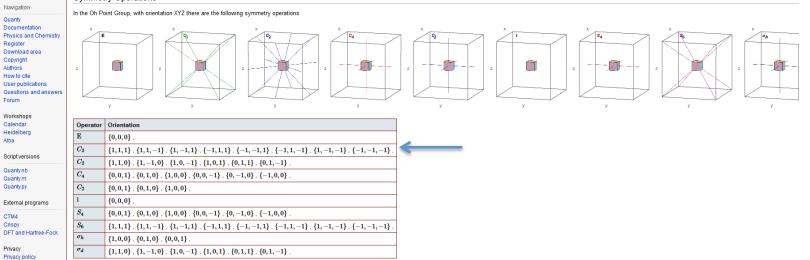
Table of Contents

Read Show pagesource History

Table of Con

Orientation XYZ Symmetry Operations

Article Talk



Navigation

Quanty

Authors

Forum

Alba

CTM4 Crispy

Alba

CTM4

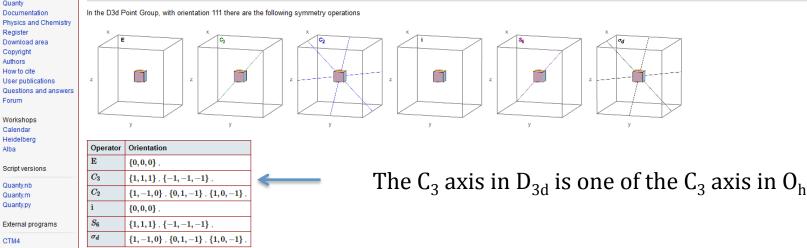
Symmetry elements in D_{3d} point group

Orientation 111

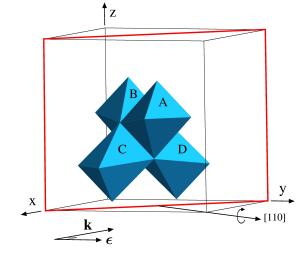
Article Talk

This orientation is non-standard, but related to the orientation of the Oh pointgroup, which normally would be orrientated with the C3 axes in the 111 direction. We only show one of the options of the D3d subgroups of the Oh group with orientation XYZ.

Symmetry Operations



One absorbing site versus whole crvstal



Our example for today : spinel MgAl₂O₄

- Fd-3m space group (n°227): cubic system
- Cubic unit cell
- There are four $\rm D_{3d}$ sites crystallographic equivalent, with their respective $\rm C_3$ axis along

 $\begin{bmatrix} 111 \end{bmatrix} \begin{bmatrix} \overline{1} & 11 \end{bmatrix} \begin{bmatrix} 1 & \overline{1} & 1 \end{bmatrix} \begin{bmatrix} 11 & \overline{1} \end{bmatrix}$ directions

A, B, C and D sites are not « equivalent» for XAS :

A priori they yield different cross-sections !

$$\sigma^{cube} = \sigma^A + \sigma^B + \sigma^C + \sigma^D$$

Issues related to XNLD calculations

1. Can we predict the angular dependence based on the crystal structure ?

2. Is there an analytical expression of the XAS cross-section :

for electric dipole transitions ? for electric quadrupole transitions ?

3. How does one calculate the spectrum for the whole crystal using a single atom model?

Expression of the angular dependence of XAS, RIXS etc...

Many physical properties can be described by a tensor : for example :

electric dipole transition amplitude in XAS : tensor of rank 1 (= a vector) : $3^1 = 3$ components

electric dipole transition intensity in XAS : tensor of rank 2 (= a matrix) $3^2 = 9$ components

A tensor of rank N is the generalized form : 3^{N} components

Two formalisms can be used to describe the same physical property :

- Cartesian Tensors (more natural)
- Spherical Tensors (more physical)

Expression of the angular dependence of XAS, RIXS etc...

Take a Cartesian tensor of rank 2 and apply a transformation :

its components will transform linearly into themselves

Now we limit ourselves to rotations

It is possible to make « special » linear combinations from the 9 components and form « groups » where they transform into themselves

One is invariant : a scalar (a 0th rank tensor)

A group of 3 transform into themselves : a vector (a 1st rank tensor)

A group of 5 transform into themselves : a 2nd rank tensor

It is not possible to make smaller groups : we call them *irreducible tensors*

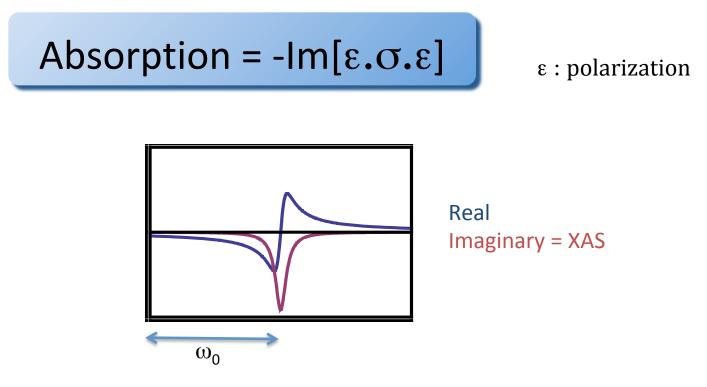
Expression of the angular dependence of XAS, RIXS etc...

Ex : Spherical harmonics Y_{ℓ}^{m} are irreducible tensors

By analogy, irreducible tensors are labeled :
$$T_{\ell}^{m}$$
 $m = -\ell, ..., \ell$
rank

It is easy to rotate or multiply them.

In Quanty (which uses Green function formalism) the **electric dipole** XAS cross-section is calculated as the Imaginary part of the « conductivity tensor » σ :



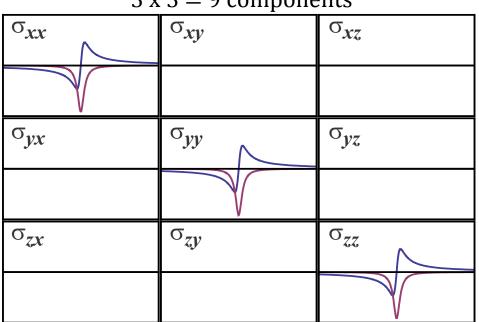
- \rightarrow The conductivity tensor is calculated once
- \rightarrow The absorption cross-section can then very easily be calculated for any ϵ

• For linearly polarized x-rays, this conductivity tensor writes :

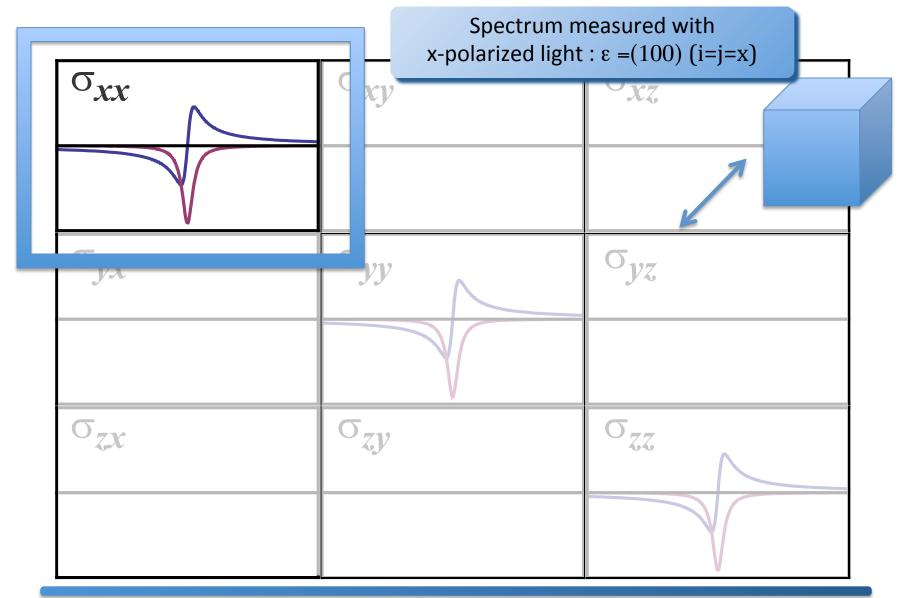
$$\sigma^{D}(\epsilon) = \sum_{ij} \epsilon_{i} \epsilon_{j} \sigma_{ij}, \quad \text{with}$$

$$\sigma_{ij} = 4\pi^{2} \alpha_{0} \hbar \omega \sum_{f} \langle i | \mathbf{r}_{i} | f \rangle \langle f | \mathbf{r}_{j} | i \rangle \delta(E_{f} - E_{i} - \hbar \omega). \qquad i = x, y, z \quad ; j = x, y, z$$

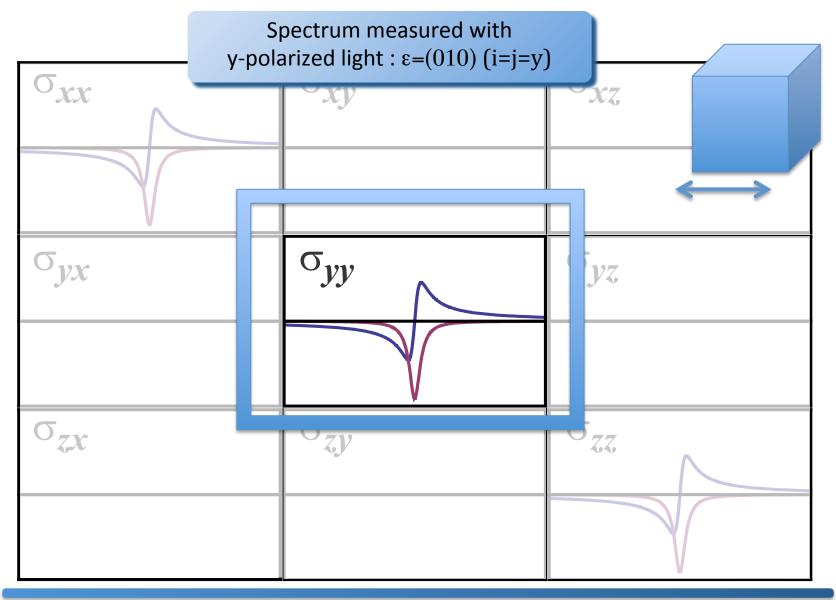
→ The « conductivity tensor » σ_{ij} = a Cartesian tensor of rank 2 (= a matrix):



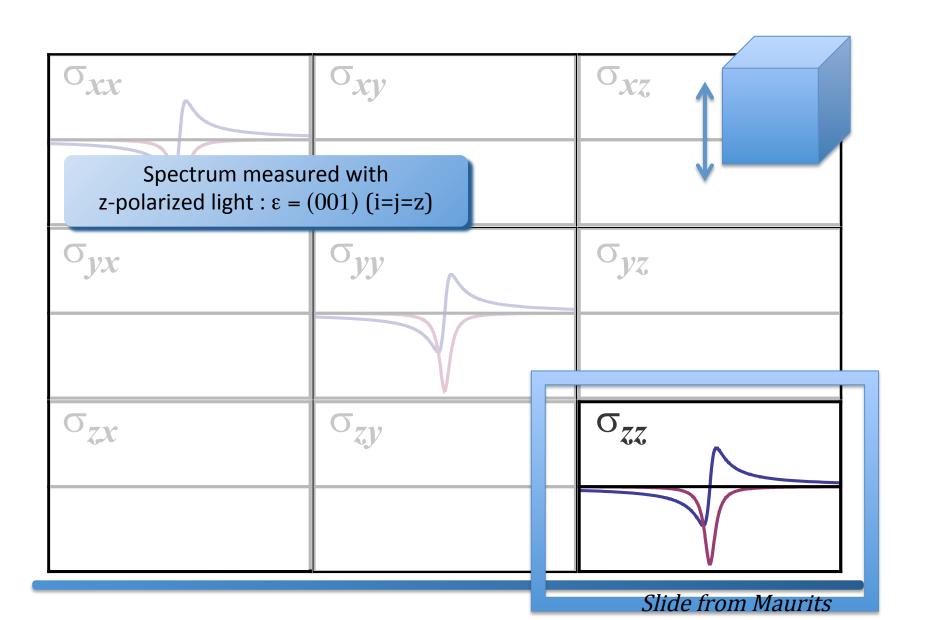
 $3 \ge 3 = 9$ components



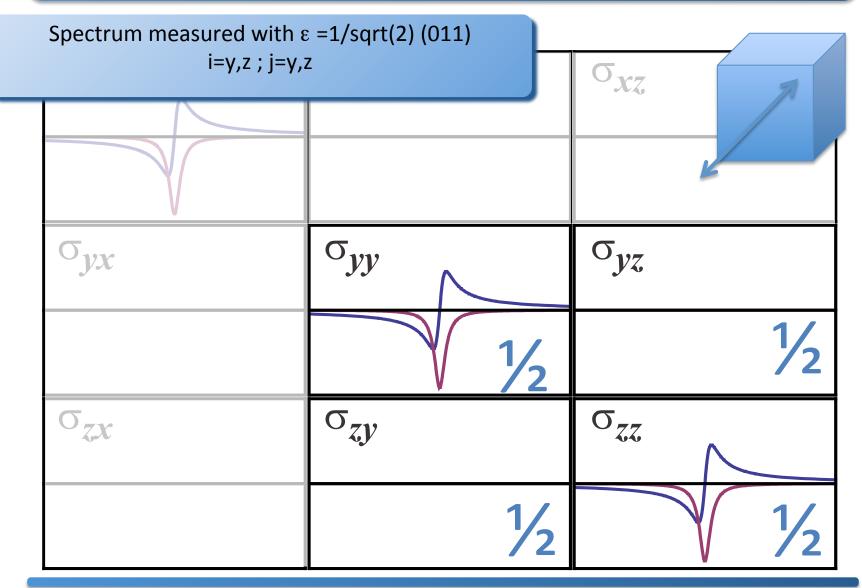
Slide from Maurits



Slide from Maurits



But the conductivity tensor (σ) is a TENSOR



Slide from Maurits

• Simplification is possible by considering the symmetry group G of the sample

For any operation S in G, $\sigma(\varepsilon) = \sigma[S(\varepsilon)]$

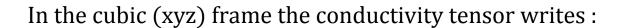
 σ is symmetrized (averaged over all S symmetry operations)

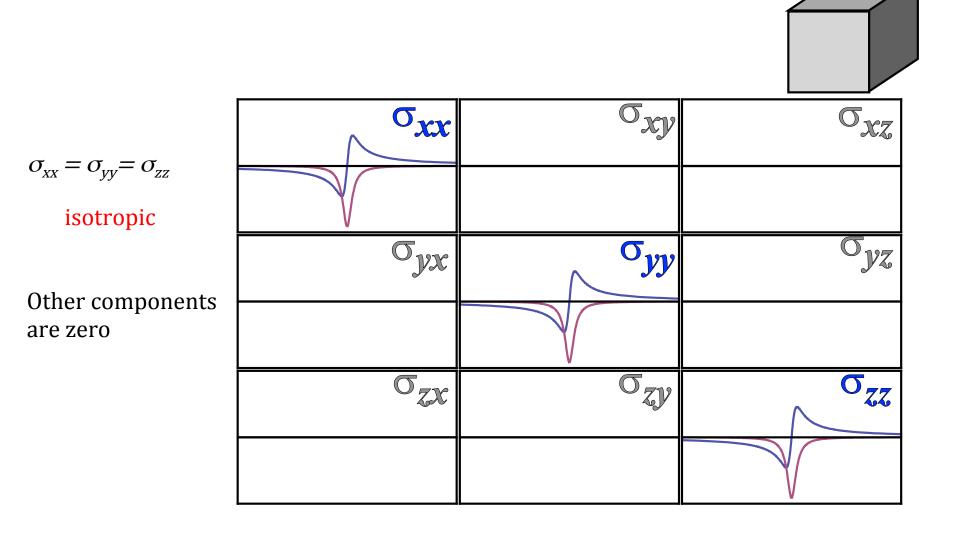
 \rightarrow Spherical average : the case of a powder :

$$\langle \sigma^D(\epsilon) \rangle = \frac{1}{3}(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}).$$

The isotropic spectrum is the trace of the conductivity tensor in any (x,y,z) frame

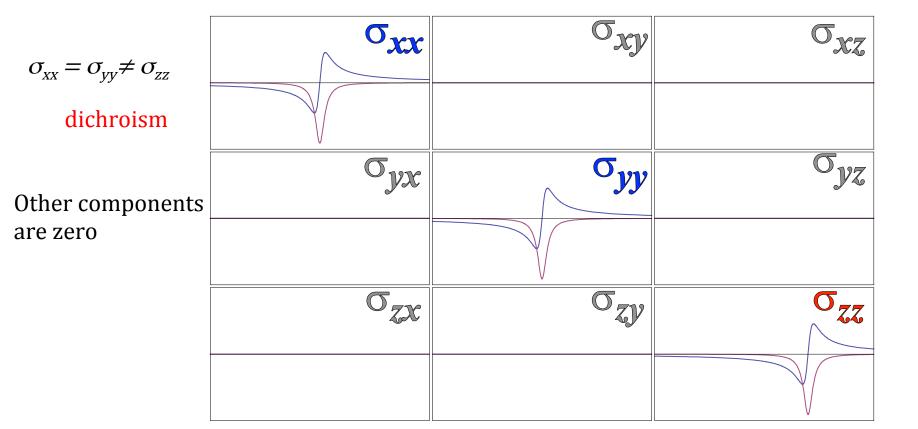
\rightarrow The case of cubic symmetry

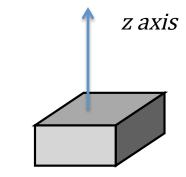




\rightarrow The case of tetragonal symmetry

In the (xyz) tetragonal frame where z is the fourfold axis the conductivity tensor writes :





Other (equivalent) expressions from the literature for a dichroic crystal :

A crystal with a high symmetry axis z : trigonal or tetragonal system

The conductivity tensor can be written in the principal axis

$$\sigma^{D}(\hat{\epsilon}) = {}^{t} \hat{\epsilon} \cdot \begin{pmatrix} \sigma_{\perp}^{D} & 0 & 0 \\ 0 & \sigma_{\perp}^{D} & 0 \\ 0 & 0 & \sigma_{\parallel}^{D} \end{pmatrix} \hat{\epsilon} \cdot // \text{ means parallel to } z \ (=\sigma_{zz}) \\ - \text{ means perpendicular to } z \ (=\sigma_{xx}, \sigma_{yy}) \end{pmatrix}$$

1

37

2 fundamental spectra only are needed in order to know everything

Analytical expression of dipole cross-section for a trigonal or tetragonal crystal :

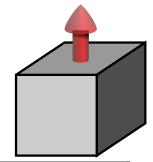
$$\sigma^{D}(\hat{\epsilon}) = \sigma_{\perp}^{D} \sin^{2}\theta + \sigma_{\parallel}^{D} \cos^{2}\theta.$$

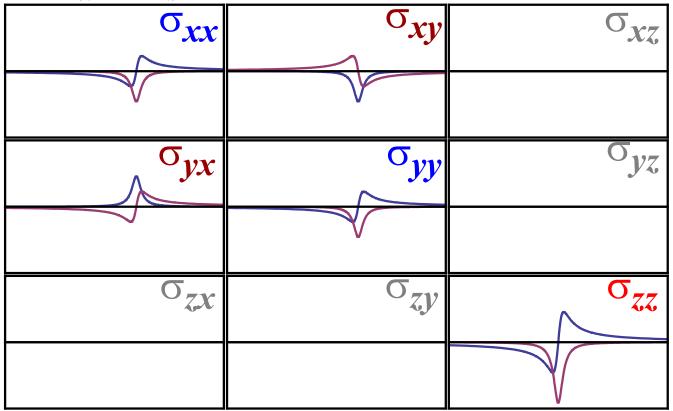
= $\sigma_{iso}^{D} + \frac{1}{3}\sigma_{dic}^{D'}(3\cos^{2}\theta' - 1),$
$$\hat{\epsilon} = \begin{pmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{pmatrix}$$

At magic angle (54.7 ° between ε and z) : one measures the isotropic spectrum

\rightarrow The case of cubic symmetry + magnetic field

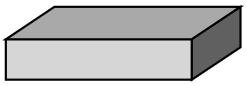
Magnetic field along z

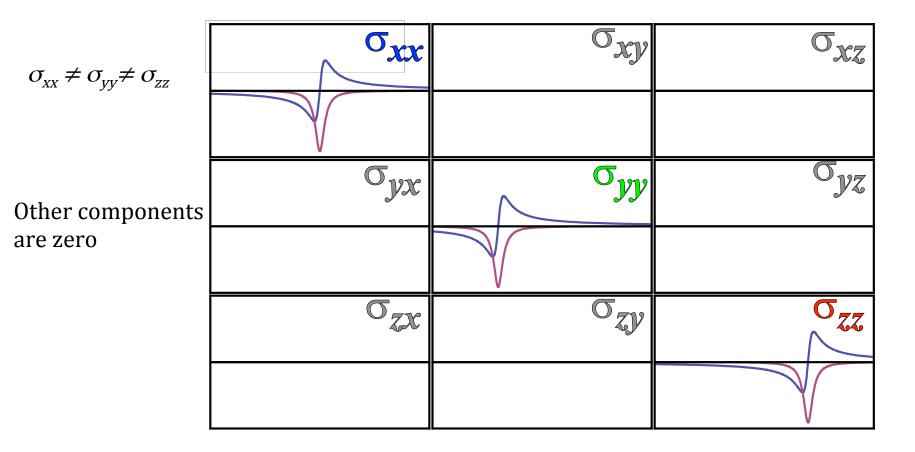




\rightarrow The case of orthorhombic symmetry

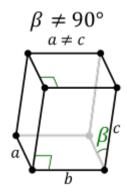
In the (xyz) orthrhombic frame the conductivity tensor writes :

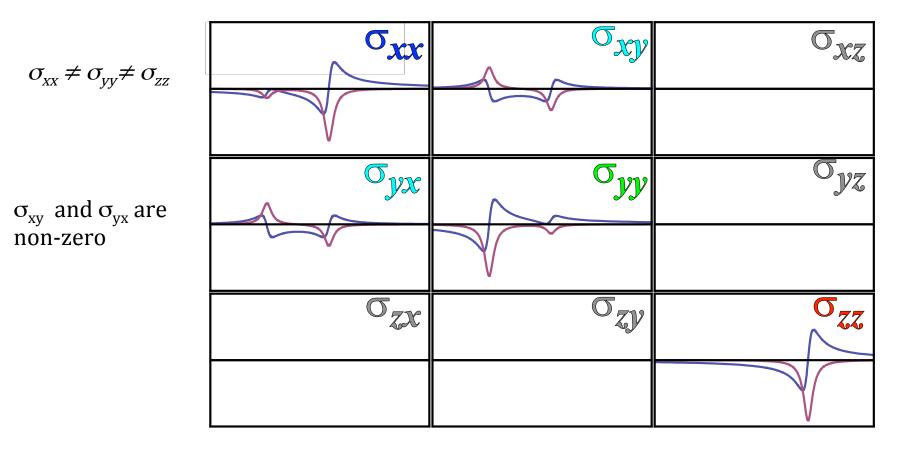




\rightarrow The case of monoclinic symmetry

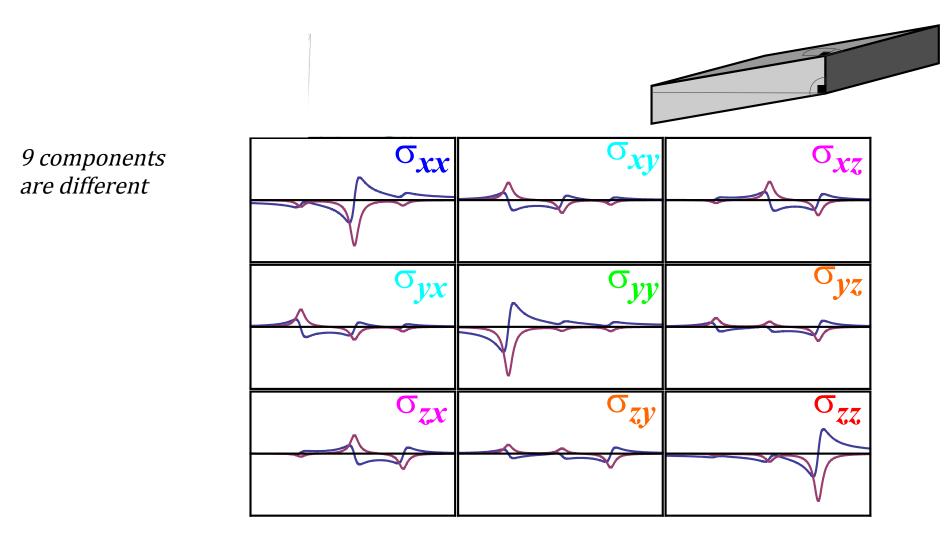
In the (xyz) monoclinic frame the conductivity tensor writes :





\rightarrow The case of triclinic symmetry

In the (xyz) triclinic frame the conductivity tensor writes :



XAS cross-section in Cartesian coordinates : (2) electric quadrupole transitions

For linearly polarized x-rays, the electric quadrupole XAS cross-section writes :

$$\sigma(\boldsymbol{\epsilon}, \mathbf{k}) = \sum_{ijlm} \boldsymbol{\epsilon}_i k_j \boldsymbol{\epsilon}_l k_m \sigma_{ijlm}, \quad \text{with}$$

$$\sigma_{ijlm} = \pi^2 \alpha_0 \hbar \omega \sum_f \langle i | \mathbf{r}_i \mathbf{r}_j | f \rangle \langle f | \mathbf{r}_l \mathbf{r}_m | i \rangle \delta(E_{\rm f} - E_{\rm i} - \hbar \omega),$$

→ Conductivity tensor : a Cartesian tensor of rank 4 : more complicated than a matrix ! 3 x 3 x3 x 3 = 81 components

Note that Quanty calculates only a 5x5 matrix (25 well-chosen wrt symmetry) components

 \rightarrow For a powder :

$$\langle \sigma(\boldsymbol{\epsilon}, \mathbf{k}) \rangle = \frac{k^2}{15} (\sigma_{xxxx} + \sigma_{yyyy} + \sigma_{zzzz} + 3\sigma_{xyxy} + 3\sigma_{xzxz} + 3\sigma_{yzyz} - \sigma_{xxyy} - \sigma_{xxzz} - \sigma_{yyzz}).$$

= the isotropic quadrupole spectrum

Expressing the angular dependence with Cartesian tensors quickly becomes heavy :

for electric quadrupole transitions when symmetry is low

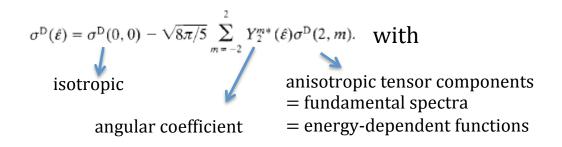
What about with spherical tensors?

Expressions for all symmetry groups (dipole and quadrupole operators) are given in :

C. Brouder, « Angular dependence of x-ray absorption spectra », J. Phys. Condens. Matter 2 701 (1990)

XAS cross-section in spherical coordinates : (1) electric dipole transitions

For linearly polarized x-rays, the electric dipole XAS cross-section writes :



 \rightarrow The symmetry of the crystal restricts the possible values of $\sigma(2,m)$.

Angular dependence	Point groups
Isotropy (i)	O _h (m3m), T _d (43m), O (432), T _h (m3), T (23)
Dichroism (ii)	$D_{sb}(\infty/mm), C_{sv}(\infty m), D_{6b}(6/mmm), D_{3b}(\overline{6}m2), C_{6v}$
	$(6mm), D_6(622), C_{6h}(6/m), C_{3h}(\overline{6}), C_6(6), D_{3d}(\overline{3}m), C_{3v}$
	$(3m), D_3(32), S_6(\overline{3}), C_3(3), D_{4h}(4/mmm), D_{2d}(\overline{4}2m),$
	C_{4v} (4mm), D_4 (422), C_{4h} (4/m), S_4 (4), C_4 (4)
Trichroism (iiia)	$D_2(222), C_{2v}(mm2), D_{2h}(mmm)$
Trichroism (iiib)	$C_2(2), C_s(m), C_{2h}(2/m)$
Trichroism (iiic)	$C_1(1), C_i(\overline{1})$

XAS cross-section in spherical coordinates : (1) electric dipole transitions

Examples

$$\hat{\boldsymbol{\varepsilon}} = \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix} \quad z \text{ axis defined as high symmetry axis of the crystal}$$

Cubic
$$\sigma^{D}(\hat{\epsilon}) = \sigma^{D}(0, 0).$$
isotropic : 1 spectrum to measure / calculate $= \sigma_{xx} = \sigma_{yy} = \sigma_{zz}$

Trigonal / Tetragonal

dichroism : 2 spectra to measure / calculate

$$\sigma^{\rm D}(\hat{\varepsilon}) = \sigma^{\rm D}(0,0) - (1/\sqrt{2})(3\cos^2\theta - 1)\sigma^{\rm D}(2,0)$$

similar to : $\sigma_{iso}^{D} + \frac{1}{3}\sigma_{dic}^{D'}(3\cos^2\theta' - 1)$

Triclinic

$$\sigma^{D}(\hat{\varepsilon}) = \sigma^{D}(0,0) - \sqrt{3}\sin^{2}\theta[\cos 2\varphi\sigma^{Dr}(2,2) + \sin 2\varphi\sigma^{Di}(2,2)] + 2\sqrt{3}\sin\theta\cos\theta[\cos\varphi\sigma^{Dr}(2,1) + \sin\varphi\sigma^{Di}(2,1)] - (1/\sqrt{2})(3\cos^{2}\theta - 1)\sigma^{D}(2,0)$$
trichroism
6 spectra to measure / calculate

XAS cross-section in spherical coordinates : (2) electric quadrupole transitions

For linearly polarized x-rays, the electric quadrupole XAS cross-section writes :

1 isotropic

$$\sigma^{Q}(\hat{\varepsilon}, \boldsymbol{k}) = \sigma^{Q}(0, 0) + \sum_{m} \left((-2/9)\sqrt{14\pi} [Y_{2}^{m*}(\hat{\varepsilon}) + Y_{2}^{m*}(\hat{k})] - 8\pi/(9\sqrt{5}) \right)$$

$$\times \sum_{\alpha\beta} (2\alpha 2\beta |2m) Y_{2}^{\alpha*}(\hat{\varepsilon}) Y_{2}^{\beta*}(\hat{k}) \sigma^{Q}(2, m) + \sum_{m} \left(16\pi/(3\sqrt{5}) \right)$$
with

$$\times \sum_{\alpha\beta} (2\alpha 2\beta |4m) Y_{2}^{\alpha*}(\hat{\varepsilon}) Y_{2}^{\beta*}(\hat{k}) \sigma^{Q}(4, m) + \sum_{m} \left(16\pi/(3\sqrt{5}) \right)$$

$$5 + 9 = 14 \text{ anisotropic tensor components}$$

15 independent fundamental spectra (energy-dependent functions) in order to determine (= measure or calculate) σ for any (ϵ ,k)

XAS cross-section in spherical coordinates : (2) electric quadrupole transitions

 $\hat{\varepsilon} = \begin{pmatrix} \sin\theta\cos\varphi\\ \sin\theta\sin\varphi\\ \cos\theta \end{pmatrix} \qquad \hat{k} = \begin{pmatrix} \cos\theta\cos\varphi\cos\psi - \sin\varphi\sin\psi\\ \cos\theta\sin\varphi\cos\psi + \cos\varphi\sin\psi\\ -\sin\theta\cos\psi \end{pmatrix}. \qquad \text{spherical coordinates}$ Examples

(xyz) frame : z axis defined as high symmetry axis of the crystal x and y are defined according Tables of Crystallography

Cubic

$$\sigma^{Q}(\hat{\varepsilon}, \hat{k}) = \sigma^{Q}(0, 0) + (1/\sqrt{14})[35\sin^{2}\theta\cos^{2}\theta\cos^{2}\psi + 5\sin^{2}\theta\sin^{2}\psi - 4$$

$$+ 5\sin^{2}\theta(\cos^{2}\theta\cos^{2}\psi\cos4\varphi - \sin^{2}\psi\cos4\varphi$$

$$- 2\cos\theta\sin\psi\cos\psi\sin4\varphi)]\sigma^{Q}(4, 0).$$

XNLD is not zero for a cubic crystal ! 2 spectra to measure / calculate

Trigonal

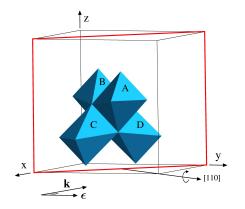
$$\begin{aligned} \sigma^{\rm Q}(\hat{\varepsilon}, \hat{k}) &= \sigma^{\rm Q}(0, 0) + \sqrt{5/14} (3\sin^2\theta\sin^2\psi - 1)\sigma^{\rm Q}(2, 0) \\ &+ 1/\sqrt{14} (35\sin^2\theta\cos^2\theta\cos^2\psi + 5\sin^2\theta\sin^2\psi - 4)\sigma^{\rm Q}(4, 0) \\ &- \sqrt{10}\sin\theta [(2\cos^2\theta\cos^2\psi - 1)\cos\theta\cos(3\varphi) \\ &- (3\cos^2\theta - 1)\sin\psi\cos\psi\sin(3\varphi)]\sigma^{\rm Qr}(4, 3). \end{aligned}$$

4 spectra to measure / calculate

Triclinic

15 spectra to measure / calculate

Coming back to our example : how to calculate XNLD in practice ?



$$\sigma(\omega) = 4\pi^2 \alpha \hbar \omega \sum_{f,i} \left| \left\langle f \left| \varepsilon . r + \frac{I}{2} \varepsilon . r k . r \right| i \right\rangle \right|^2 \delta(\hbar \omega - E_f + E_i) \right|^2$$

$$\sigma(\omega) = 4\pi^{2} \alpha \hbar \omega \sum_{f,i} \left| \left\langle f | \varepsilon . r | i \right\rangle \right|^{2} \delta\left(\hbar \omega - E_{f} + E_{i} \right) + \pi^{2} \alpha \hbar \omega \sum_{f,i} \left| \left\langle f | \varepsilon . r k . r | i \right\rangle \right|^{2} \delta\left(\hbar \omega - E_{f} + E_{i} \right)$$

dipole
quadrupole

Cubic crystal

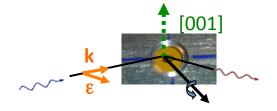
$$\sigma^{\mathsf{D}}(\hat{\varepsilon}) = \sigma^{\mathsf{D}}(0,0).$$

$$\sigma^{Q}(\hat{\varepsilon}, \hat{k}) = \sigma^{Q}(0, 0) + (1/\sqrt{14})[35\sin^{2}\theta\cos^{2}\theta\cos^{2}\psi + 5\sin^{2}\theta\sin^{2}\psi - 4$$
$$+ 5\sin^{2}\theta(\cos^{2}\theta\cos^{2}\psi\cos4\varphi - \sin^{2}\psi\cos4\varphi)$$
$$- 2\cos\theta\sin\psi\cos\psi\sin4\varphi)]\sigma^{Q}(4, 0).$$

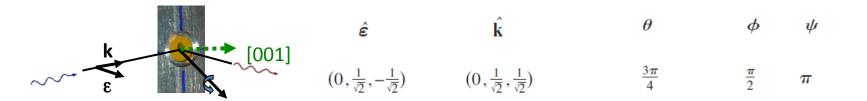
<u>One spectrum to calculate</u> : any orientation of ε is possible <u>Two spectra to calculate :</u> two independent sets of (ε,k)

quadrupole

<u>Two spectra to calculate :</u> two independent sets of (ε,k)

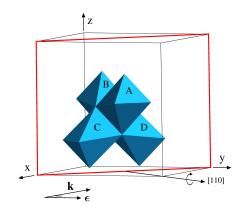


$$\sigma_{\rm cub}^{Q}(\alpha_{\rm rot} = 0^{\circ}) = \sigma_{0}^{Q} - \frac{4}{\sqrt{14}}\sigma_{\rm cub}^{Q}(4,0).$$



$$\sigma_{\rm cub}^{Q}(\alpha_{\rm rot} = 90^{\circ}) = \sigma_{0}^{Q} + \frac{7}{2\sqrt{14}}\sigma_{\rm cub}^{Q}(4,0).$$

Coming back to our example : how to calculate XNLD in practice ?



Cubic

crystal

$$\sigma(\omega) = 4\pi^2 \alpha \hbar \omega \sum_{f,i} \left| \left\langle f \left| \varepsilon.r + \frac{I}{2} \varepsilon.rk.r \right| i \right\rangle \right|^2 \delta(\hbar \omega - E_f + E_i) \right|$$

quadrupole

$$\sigma^{\mathsf{Q}}(\hat{\varepsilon}, \hat{k}) = \sigma^{\mathsf{Q}}(0, 0) + (1/\sqrt{14})[35\sin^2\theta\cos^2\theta\cos^2\psi + 5\sin^2\theta\sin^2\psi - 4$$
$$+ 5\sin^2\theta(\cos^2\theta\cos^2\psi\cos4\varphi - \sin^2\psi\cos4\varphi)$$
$$- 2\cos\theta\sin\psi\cos\psi\sin4\varphi)]\sigma^{\mathsf{Q}}(4, 0).$$

<u>isotropic</u>

dipole

 $\sigma^{\mathsf{D}}(\hat{\varepsilon}) = \sigma^{\mathsf{D}}(0, 0).$

Dichroism : 2 fundamental spectra

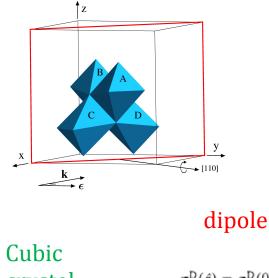
One D_{3d} site $\sigma^{D}(\hat{\epsilon}) = \sigma^{D}(0,0) - (1/\sqrt{2})(3\cos^{2}\theta - 1)\sigma^{D}(2,0)$

<u>Dichroism : 2 fundamental spectra</u>

$$\begin{split} \sigma^{\rm Q}(\hat{\varepsilon}, \hat{k}) &= \sigma^{\rm Q}(0, 0) + \sqrt{5/14} (3\sin^2\theta\sin^2\psi - 1)\sigma^{\rm Q}(2, 0) \\ &+ 1/\sqrt{14} (35\sin^2\theta\cos^2\theta\cos^2\psi + 5\sin^2\theta\sin^2\psi - 4)\sigma^{\rm Q}(4, 0) \\ &- \sqrt{10}\sin\theta [(2\cos^2\theta\cos^2\psi - 1)\cos\theta\cos(3\varphi) \\ &- (3\cos^2\theta - 1)\sin\psi\cos\psi\sin(3\varphi)]\sigma^{\rm Qr}(4, 3). \end{split}$$

Trichroism : 4 fundamental spectra 50

Coming back to our example : how to calculate XNLD in practice ?



$$\sigma(\omega) = 4\pi^2 \alpha \hbar \omega \sum_{f,i} \left| \left\langle f \left| \varepsilon.r + \frac{I}{2} \varepsilon.rk.r \right| i \right\rangle \right|^2 \delta(\hbar \omega - E_f + E_i) \right|^2$$

quadrupole

 $\sigma^{\rm Q}(\hat{\varepsilon}, \hat{k}) = \sigma^{\rm Q}(0, 0) + (1/\sqrt{14})[35\sin^2\theta\cos^2\theta\cos^2\psi + 5\sin^2\theta\sin^2\psi - 4$ + $5\sin^2\theta(\cos^2\theta\cos^2\psi\cos4\phi - \sin^2\psi\cos4\phi)$

 $-2\cos\theta\sin\psi\cos\psi\sin4\phi$] $\sigma^{Q}(4,0)$.

dichroism : 2 fundamental spectra

Average over A, B, C and D sites

 $\sigma^{\rm Q}(\hat{\varepsilon}, \hat{k}) = \sigma^{\rm Q}(0, 0) + \sqrt{5/14} (3\sin^2\theta\sin^2\psi - 1)\sigma^{\rm Q}(2, 0)$ $+ 1/\sqrt{14}(35\sin^2\theta\cos^2\theta\cos^2\psi + 5\sin^2\theta\sin^2\psi - 4)\sigma^Q(4,0)$ $-\sqrt{10}\sin\theta \left[(2\cos^2\theta\cos^2\psi-1)\cos\theta\cos(3\varphi)\right]$ $-(3\cos^2\theta-1)\sin\psi\cos\psi\sin(3\varphi)]\sigma^{Qr}(4,3).$

> trichroism : 4 fundamental spectra 51

crystal

 $\sigma^{\mathrm{D}}(\hat{\varepsilon}) = \sigma^{\mathrm{D}}(0,0).$ isotropic Average over A, B, C and D sites

One D_{3d} site $\sigma^{\rm D}(\hat{\epsilon}) = \sigma^{\rm D}(0,0) - (1/\sqrt{2})(3\cos^2\theta - 1)\sigma^{\rm D}(2,0)$

dichroism : 2 fundamental spectra

Be careful :

the fundamental spectra (tensor components) of the crystal are not necessarly the same as for a single site.

Here it can be shown that :

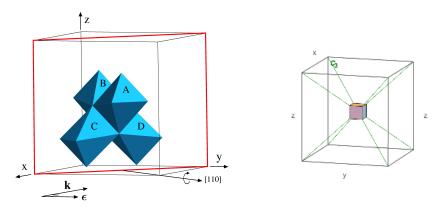
crystal

$$\sigma_{Q}^{cube}(0,0) = \sigma_{Q}^{D_{3d}}(0,0)$$

$$\sigma_{Q}^{cube}(0,0) = \sigma_{Q}^{D_{3d}}(0,0)$$

$$\sigma_{Q}^{cube}(4,0) = -\frac{1}{18}(7\sigma_{Q}^{D_{3d}}(4,0) + 2\sqrt{70}\sigma_{Q}^{D_{3d}}(4,3))$$

site



$$rot_{B} = R_{z}(\pi/2)$$
site A \rightarrow site B
$$\sigma_{D}(\epsilon) \qquad \sigma_{D}(rot_{B}^{-1}(\epsilon))$$

$$\sigma_{Q}(rot_{B}^{-1}(\epsilon), rot_{B}^{-1}(k))$$

$$rot_{C} = R_{z}(3\pi/2)$$
site A \rightarrow site C
 $\sigma_{D}(\epsilon)$ $\sigma_{D}(rot_{C}^{-1}(\epsilon))$
 $\sigma_{Q}(\epsilon,k)$ $\sigma_{Q}(rot_{C}^{-1}(\epsilon), rot_{C}^{-1}(k))$

$$rot_{D} = R_{z}(\pi)$$
site A \rightarrow site D

 $\sigma_{D}(\epsilon) \qquad \sigma_{D}(rot_{D}^{-1}(\epsilon))$

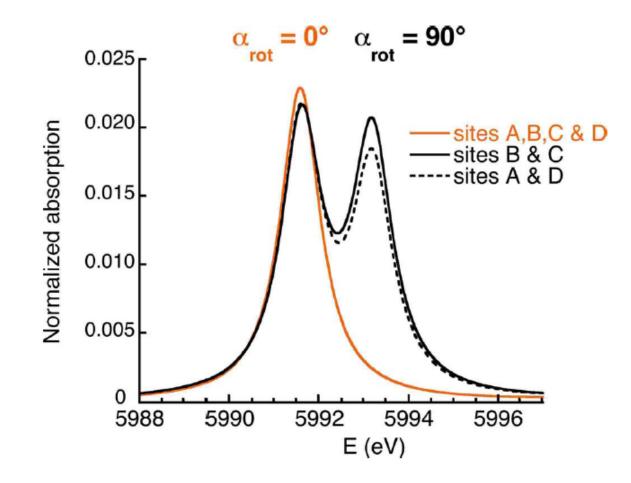
 $\sigma_{Q}(\epsilon,k) \qquad \sigma_{Q}(rot_{D}^{-1}(\epsilon), rot_{D}^{-1}(k))$

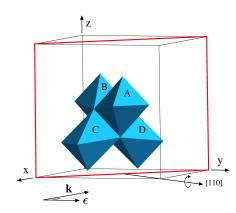
$$\sigma_D^{cube} = \sigma_D^A + \sigma_D^B + \sigma_D^C + \sigma_D^D$$
$$\sigma_Q^{cube} = \sigma_Q^A + \sigma_Q^B + \sigma_Q^C + \sigma_Q^D$$

For quadrupole XNLD, the number of calculations to do has been reduced from :

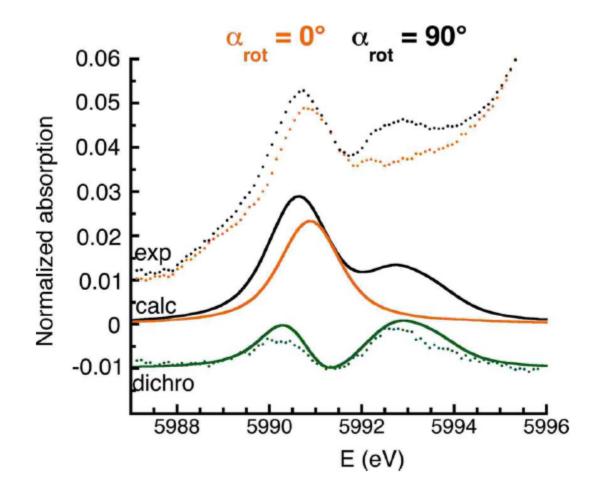
16 (sites) x 15 (components) to 3 by symmetry considerations

Conclusion : Always look first for symmetries !





DFT calculations



J. Phys. Condens. Matter 20, 455205 (2008) Phys. Rev. B 78, 195103 (2008)

Conclusion

- Symmetry considerations and tensor expressions are very helpful :
- to reduce the number of calculations / experiments needed
- to know what angular dependence to expect
 - XNLD in XAS is well understood
 - XNLD in RIXS, XMLD, XNCD... are much more difficult