{{indexmenu_n>999}}
====== ToOperator ======
###
Matrix.Operator(M) creates an operator $O = \sum_{i,j} M[i][j] a^{\dagger}_{i-1} a_{j-1}^{\phantom{\dagger}}$ from the matrix $M$
###
===== Example =====
==== Input ====
M = {{1,2*I},
{-2*I,4}}
O = Matrix.ToOperator(M)
print(O)
==== Result ====
Operator: Operator
QComplex = 1 (Real==0 or Complex==1 or Mixed==2)
MaxLength = 2 (largest number of product of lader operators)
NFermionic modes = 2 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis)
NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis)
Operator of Length 2
QComplex = 1 (Real==0 or Complex==1)
N = 4 (number of operators of length 2)
C 0 A 0 | 1.00000000000000E+00 0.00000000000000E+00
C 0 A 1 | 0.00000000000000E+00 2.00000000000000E+00
C 1 A 0 | -0.00000000000000E+00 -2.00000000000000E+00
C 1 A 1 | 4.00000000000000E+00 0.00000000000000E+00
===== Table of contents =====
{{indexmenu>..:#2|tsort}}