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1

Chapter 1

Introduction

This document shall help to understand the Fplo package. We adopt the following notions. Text in typewriter

style refers to unix commands, Fedit options, �le content and such things. Text in blue typewriter are names

of �les (e.g. =.in). The special symbols Fplo, Fedit, ... are placeholders for the actual (version-related) full

names of these programs (if applicable).

Example: You have installed the binary fplo22.00-62 and related binaries. Then the unix command (exam-

ple)

Fedit -pipe < ./=.pipefile 2>./+log 1>/dev/null

means

fedit22.00-62 -pipe < ./=.pipefile 2>./+log 1>/dev/null

for your installation.

In order to avoid confusion, the installation process discontinued to create links with the generic names fplo,

fedit and so on after version 4 or so. The new policy is to call the programs with their full names. Beware,

that the full name may include a platform speci�er and even a user de�ned build branch name to use multiple

architectures with a common �le system1.

Hint: Every important output produced by the Fplo package contains the version number of the program,

which produced the output.

External materials, mostly additional information �les and help screens from program parts are marked with Help

a bar at the side, like for this paragraph.

1.1 Installation procedures

1.1.1 Main program

The distribution comes with the archive FPLO22.00-62.tar.gz, the unpacking script ftreeinst.sh and the

�le INSTALL, which contains the following instruction:

1There is an exception, the program Fpiotest, which is used to manipulate input �les on a basic level, usually from inside

maintenance scripts. This program is still installed with a generic name, since we need the generic name in order for that scripts

to work. And furthermore the program usually does not change in between versions.
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2 Chapter 1. Introduction

#Starting with the downloaded tar-archive FPLO22.00-62.tar.gz and the

#script ftreeinstall.sh, which both should now be in the same directory

#(where you want to install FPLO) execute the following commands

./ftreeinst.sh # now you must have an FPLO directory

cd ./FPLO/FPLO22.00-62/install

./MMakefile # answer all questions

cd .. # you are in FPLO22.00-62 now

make

make # re-run make if errors occur (especially when option make -j N is used)

make

make install

# the main code is now installed in ./FPLO/bin

# containing:

# faddwei22.00-62-x86_64 grepfplo fpiotest22.00-62-x86_64 fdhva22.00-62-x86_64

# dirac22.00-62-x86_64 fplo22.00-62-x86_64 fedit22.00-62-x86_64 foptics22.00-62-x86_64

# fpiotest22.00-62-x86_64

#

# next we build the pyfplo package:

#

cd PYTHON

make # answer questions

#or for use with python3

make python3 # answer questions

# !!! Follow the instructions at the end of the make process to setup

# the python path !!!

cd .. # back in FPLO22.00-62

# install XFBP

cd XFBP_rel

# read README and follow its instructions. Observe the python compilation mode

# setup decribed in README.

cd .. # back in FPLO22.00-62
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1.1. Installation procedures 3

# install XFPLO

cd XFPLO_rel

# read README and follow its instructions

cd .. # back in FPLO22.00-62

1.1.2 Xfbp

The Xfbp README contains:

--------------------------------------------------------------------------------

- QT setup

--------------------------------------------------------------------------------

QT5:

* Install qt5.5.1 or later, including the development

packages (header file, tools ...), including qt5help (or similar)

if this is separate.

* Or download qt5.5.1 or later and compile it.

* Locate the qt5.5.1 qmake (or sometimes called with option: qmake -qt=5)

* Check via

qmake --version

or

qmake -qt=5 --version

to find out.

* chdir

cd XFBP

* Edit QMAKE5 in makefile (not Makefile!) in order to call the

proper qmake.

If 'qmake -qt=5' is qt5 then use

QMAKE5=qmake -qt=5

in makefile.

* Edit QTVERSION in makefile as follows:

QTVERSION=5

* go to PYTHON setup

QT4:

* Install qt4.6 or later, including the development

packages (header file, tools ...).

* Or download qt4.6 or later and compile it.

* Locate the qt4.6 qmake (or sometimes called qmake-qt4 or similar)

* Check via

qmake --version

or

qmake -qt=4 --version

to find out.

* chdir
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4 Chapter 1. Introduction

cd XFBP

* Edit QMAKE4 in makefile (not Makefile!) in order to call the

proper qmake.

If 'qmake -qt=4' is qt4 then use

QMAKE4=qmake -qt=4

in makefile.

* Edit QTVERSION in makefile as follows:

QTVERSION=4

* go to PYTHON setup

--------------------------------------------------------------------------------

- PYTHON setup

--------------------------------------------------------------------------------

To compile with python support (strongly suggested since we use

it in the context of documentations and tutorials):

1) install python development packages (Python.h and python-config is needed)

Version should be >python2.7..., python3 is preferred

2) edit makefile and set the following variables to your python's

executable and config program

PYTHON=python3

PYCONFIG=python3-config

It could be named python-config, python2-config

or python2.7-config or python3-config or similar.

For PYTHON-version >3.8 we needed to include the ldflag --embed.

This is done automatically in the line starting with

PYCONFIGEMBED=

If thisdoes not work, or python changes it's setup again corrections

might be needed here.

Finally

make -f makefile clean

make -f makefile

make -f makefile install
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1.1. Installation procedures 5

OLD: to compile without python support:

make -f makefile clean

make -f makefile withoutpython

make -f makefile install

Beware that this is a development version, so some stuff does not

work properly yet or does not get saved yet.

Call one of the following

xfbp +band...

xfbp +bweights...

xfbp file.xfp

xfbp -p paramfile

xfbp -p pyxfbpscript.py

xfbp -p pyxfbpscript.xpy

xfbp pyxfbpscript.xpy

cat "..." | xfbp -p - # only for native script

or specialized

xfbp -xny datafile

xfbp -band bandfile

xfbp -bandweight bandfile

========================================================================

= DEVELOPERS ONLY =

========================================================================

For developpers. To remake the python binding from the src/parser/*.hpy

install python2 ply (python lex and yacc), unfortunately it is not

python3 yet.

then for compilation use

make c2py # python2

make clean

make

make install

# or

make c2py3 # python3

make clean

make

make install
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6 Chapter 1. Introduction

To remake help: install sphinx, then

touch src/parser/*.hpy

make c2py3

make c2py

make PYHELP

1.1.3 Xfplo

The Xfplo README contains:

Install qt5.5.1 or a later version 5, including the development packages

(header file, tools ...), including qt5help (might be in libqt5help5 on debian

or in qttools5-dev/qttools5-dev-tools)

or download qt5.51 or a later version 5 and compile it.

Locate the qt5 qmake (or sometimes called with option: qmake -qt=5), then

cd XFPLO

edit QMAKE5 in makefile (not Makefile!) in order to call the proper qmake

then execute

make -f makefile clean

make -f makefile

install into $HOME/FPLO/bin via

make -f makefile install

Beware that this is a program under development, so some stuff does not

work properly yet or does not get saved yet.

For help try

xfplo -h

Call one of the following for structure

xfplo -str

xfplo =.in

xfplo file.cif

For loading Wannier functions (or grid output functions)
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1.1. Installation procedures 7

xfplo =.in wfdata001

xfplo =.in grid_dens...

or one of the following for fermi surfaces

xfplo -fs

xfplo =.xef

The file versions are helpful if the files alreday exist.

#===============================================================================

# install with QT4

#===============================================================================

Install qt4.6 or later, including the development packages (header file)

or download qt4.6 or later and compile it.

locale the qt4.6 qmake (or sometimes called qmake-qt4)

cd XFPLO

edit QMAKE4 in makefile (not Makefile!) in order to call the proper qmake

execute

make -f makefile clean

make -f makefile all4

install into $HOME/FPLO/bin via

make -f makefile install4

1.1.4 Further information

For further reference a copy of your-installation-path/FPLO/FPLO22.00.../install/README contains:

Installation of FPLO-22.00-62

Ulrike Nitzsche (u.nitzsche@ifw-dresden.de)

Nov. 2013

I.Prerequisites

===============

What do you need to get FPLO-22.00-62 running?

At least a Unix system. FPLO-22.00-62 is tested under Linux on i386, x86_64

and ia64 architecture with the ifort compiler and it is planned to port

it to the gfortran compiler. Therefore the code should run (in near future)
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8 Chapter 1. Introduction

on most Unix platforms with gfortran and gcc. (Test show that gfortran is not

as runtime efficient as ifort.) It is not planned to port

FPLO-22.00-62 to any Windows flavour.

The sources of FPLO-22.00-62 are a mix of C, C++ and F90 code.

Therefore you need an ANSI conform C/C++-compiler and an F90-compiler.

For commercial Unix systems (AIX, HPUX, Solaris) we suggest to use

the native compilers to get best performance. Please take care to use latest

versions and bug fixes.

Unfortunately we are not able to test all the platforms and compiler

versions. Therefore we can only support a gfortran/gcc or ifort/gcc

installation there.

For all Linux (even for x86_64 Opteron) systems we recommend to

use gcc and ifort10 (ifort is the Intel Fortran compiler, after a registration

procedure for academic use you can get a unsupported non-commercial version

from http://www.intel.com/support/performancetools/fortran/linux/

(this link might have changed)

).

For the graphical software comming with FPLO you need to install the

qt libraries including development libraries. You need Qt version >=4.6

but < 5 in the moment. Ports to Qt5 will happen once qt5 is becomming

the standard.

There are some useful add-ons to FPLO-22.00-62. To use them you might need

perl5-Interpreter (for developing the code and some auxillary tools)

To unpack the source tree you need tar and gzip. To use the installation

scripts 'make' is required. On HPUX, we recommend to use gmake (gnu-make)

instead of HP's own make (for a detailed explanation see

http://www.ifw-dresden.de/FPLO/faq.htm).

II. Get the source (TODO)

===================

To get the source follow the instructions at

http://www.ifw-dresden.de/FPLO/conditions.htm. After signing the license

conditions and transfering the license fee you will get the source

of FPLO-22.00-62 as MIME-attachment FPLO22.00-62.tar.gz, another file

ftreeinst.sh, and this README by email. Save these 3 files

to disk and move them to your install directory. Let's say, you want to

install FPLO in your home directory. Hence do:

mv FPLO22.00-62.tar.gz ftreeinst.sh README $HOME

Change into your install directory (in our example the home directory):

cd $HOME
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Now we can start the installation procedure.

Starting with FPLO-3 we prepared our installation scripts for parallel

installation of several FPLO-versions (including subversions) side by side.

Therefor all FPLO-versions are located in a directory FPLO in subdirectories

FPLO-<Version>. In the directories FPLO/FPLO-<Version> you can

view the source code, change the code and compile it. The binaries

are installed into FPLO/bin as fplo-<version>, fedit-<version> and so on.

To create the necessary directory tree, you have to start the installation

with

sh ./ftreeinst.sh

If you don't have a directory called FPLO no problems are expected, if there

is a directory with this name you are asked to rename it.

Congratulations! The first step of the installation procedure is finished.

Now you will find a directory FPLO22.00-62 in your FPLO directory.

Change to this directory:

cd FPLO/FPLO22.00-62

Here, you find a directory "install". Change to it:

cd install

Now, you have to choose the type of installation:

If you use Linux with gcc and ifort or gfortran with default options

go to III. Simple Installation on Linux with ifort as F90-Compilers .

To install xfplo and xfbp please go to

cd XFPLO_rel

and follow the instructions in the README file.

And

cd XFBP_rel

and follow the instructions in the README file.

To install pyfplo please go to

cd PYTHON
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and type

make

or if wanted type

make python3

Setup the python path as announced at the end of make. Also consult

DOC/pyfplo/pyfplo.pdf.

For installation of multiple builds of the same FPLO version go to IIIa.

In all other cases go to IV. Advanced Installation .

III. Simple Installation on Linux with ifort or gfortran as F90-Compilers

=========================================================================

You are in the directory FPLO22.00-62/install .

To create the appropriate Makefile for your architecture, type:

sh ./MMakefile

You will be asked if f90 and gcc/g++ are your favorite compilers.

Answer the first question with either ifort or gfortran and the second/third question

with [enter].

If ifort is used it comes with the MKL library. The next question is if you

want to use the MKL-librarie's eigenvalue solver. Try answering y[es].

The installation tries to find the mkl path.

If it does not find it you will have to setup the linkage yourself or

restart MMakefile and answer n[o], which results in using FPLO's inbuild

eigenvalue solver.

If you want to setup the linkage yourself:

the MODULES/Makefile contains MKLLDFLAGS if MKL was requested by

answering yes as explained above. Find out your MKL installation and

edit this variable accordingly. Note: on 64-bit systems there are sometimes

two version of this library. One has 32-bit integer variable and one has

64-bit integer variables. In case you use the library, with 32-bit integer

arguments you need to make sure that the MODULES/Makefile contains the line

USE_MKL_DEFINE=-DUSE_MKL_LAPACK -I$(MKLROOT)/include

if the 64-bit integer argument version is used this line should read

USE_MKL_DEFINE=-DUSE_MKL_LAPACK_64 -I$(MKLROOT)/include

You can find this out by consulting the MKL library's documentation.
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Intel has an online app to determine the proper library link settings.

After all questions are answered there will be a lot of system specific output,

but you do not need to bother about it unless you suspect trouble.

Now, change into the FPLO22.00-62 directory. Start the compilation procedure and

install the executables in FPLO/bin:

cd ..

make

make install

Under certain circumstances it can be necessary to clean up the source

tree first (e.g., if you compiled FPLO-22.00-62 previously on another architecture

accessing the same file system):

make clean

make

make install

Now FPLO-22.00-62 is ready to work. To simplify its use, add the directory where

your executables reside to your PATH :

for sh users:

PATH=$HOME/FPLO/bin:$PATH ; export PATH

for csh users:

setenv PATH $HOME/FPLO/bin:$PATH

To make this permanent for the next login,

you have to add this line to your .profile or .login.csh respectively.

For bash .bashrc and for tcsh .tcshrc should be the correct places.

For local specifics you should ask your local system administrator.

Now you can read the Getting Started to learn how to perform calculations.

If you want to play with compiler options go to IV. Advanced Installation.

IIIa. Simple Installation on heterogenous Linux clusters

=========================================================================

If you need several compilates for different machines on the same cluster

do the following.

Go into the directory FPLO22.00-62/install.
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To create the appropriate Makefile for your architecture, type:

sh ./MMakefile 1

enter the build-branch name, when asked (e.g. machine name ) and

answer the next question with yes if the executables shall have the branch name

appended at their end.

Now go one directory down and make the specific stuff

Note, that {branch-name} is a place holder for the actual name you

gave during the MMakefile invocation.

cd ..

make -f Makefile.{branch-name}

make -f Makefile.{branch-name} install

This will make compilations in obj_{branch-name} sub directories.

When cleaning is needed use

make -f Makefile.{branch-name} clean

make -f Makefile.{branch-name}

make -f Makefile.{branch-name} install

IV. Advanced Installation

=========================

We tried to create a rather flexible install script. The script MMakefile

in FPLO22.00-62/install is controlled by a configuration script located in

FPLO22.00-62/install/conf. It is called either <CC>-<F90>-<OS>-[RELEASE] or

<CC>-<F90>-hostname.

<CC> is the name of the C-Compiler which you want to use

<F90> is the name of the F90-Compiler which you want to use

<OS> ist the name of the operating system on which

MMakefile is running (you may get this name by typing uname -s)

[RELEASE] is the (optional) release number of the operating system

on which MMakefile is running (type uname -r)

hostname is the hostname of the host on which MMakefile

is running (type uname -n)

In these configuration files, architecture specifics are contained,

concerning pathes, libraries as well as similar things and compiler flags

needed to compile FPLO-22.00-62.

MMakefile is looking for a configuration file in the following sequence:
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<CC>-<F90>-hostname

<CC>-<F90>-<OS>-[RELEASE]

<CC>-<F90>-<OS>

Now we have to distinguish several cases:

You use a combination of architecture and compilers which is tested and

supported by us, but want to take other compile options: Go to

1. Other compile options

You use an architecture which is supported by us but you want to take

other compilers: Go to 2. Other compiler

You want to use an unsupported architecture: Go to 3. Other architecture

1. Other compile options

Let us assume you want to compile FPLO-22.00-62 on a 32bit-system running Linux

with ifort but options different from the default options.

The name of your host is, e.g., MyHost. Then you have to go

into the configuration directory and copy the appropriate configuration file

gcc-ifort-Linux-i386 to gcc-ifort-MyHost. After that you can edit the lines

concerning the compile options (CFLAGS, CFEDITFLAGS, F90FLAGS,

SPECIALF90FLAGS), run MMakefile in FPLO22.00-62/install and compile

in FPLO22.00-62 .

cd FPLO22.00-62/install/conf

cp gcc-ifort-Linux-i386 gcc-ifort-MyHost

vi cc-f90-MyHost

cd ..

sh ./MMakefile

cd ..

make clean

make

make install

2. Other compiler

Let us assume you want to compile FPLO-22.00-62 on a 32bit-system running Linux

with with gcc but different F90-Compiler. The name of the new F90-Compiler

is MyF90, your host is e.g. MyHost. Then you have to

go into the configuration directory and copy the appropriate configuration

file gcc-ifort-Linux-i386 to gcc-MyF90-MyHost. After that you can edit the

lines concerning the compilers (F90, F90FLAGS, SPECIALF90FLAGS), run

MMakefile in FPLO22.00-62/install and compile in FPLO22.00-62. Be careful with the

compile options, at least you have to switch on ansi behaviour. Unfortunately,

it is impossible to give more hints for choosing appropriate compile options.

cd FPLO22.00-62/install/conf
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cp cc-f90-OSF1-V5.0 cc-MyF90-MyHost

vi cc-MyF90-MyHost

cd ..

sh ./MMakefile

Important: Answer the question about F90-Compiler with MyF90 !

cd ..

make clean

make

make install

3. Other architecture

This is the most difficult case, and we can give you only some general hints:

Choose a configuration file that seems to stem from a similar architecture,

copy it on a file with the known naming conventions, than read every line

carefully. Some are self-explanatory, for others you will need hints about

your operating system.

Please read FPLO22.00-62/install/README.advanced for more

information. Feel free to contact us in difficult cases.

V. Miscellaneous

================

You can change the names of the executables to be created in the

following files:

FPLO22.00-62/MODULES/Makefile.src (fplo, dirac)

FPLO22.00-62/BP/Makefile.src (bandplot)

FPLO22.00-62/FEDIT/Makefile.src (fedit)

You can change the directory where the executables reside in the

following file:

FPLO22.00-62/install/MMakefile (change the line: installdir=$srcpath/bin )

In the case you changed the executable's names and/or the install

directory, please repeat the install procedure, in order to let the

changes taking place.

For bugs in this document please send an email to fplo@ifw-dresden.de.

1.2 Program structure

The Fplo package consists of the source tree, which you hopefully compiled succesfully, and of the ex-

ecutables, which reside in $HOME/FPLO/bin in the standard installation. See installation instructions in

FPLO.../install/README... for more information. There are a couple of binaries and a number of scripts.

The binaries are the following:
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1.2. Program structure 15

Fplo The bandstructure solver for the Kohn-Sham problem of bulk systems and molecules. It is a

monolithic program, which performs the whole self consistent calculation. There are no such

things as a bundle of standalone programms, which handle subtasks of the whole problem. The

input of Fplo is handled via the input editor.

Fedit The input editor. It handles the input editing for Fplo, Dirac and Bandplot. There is basic

help available via

Fedit -h

Furthermore, there are help screens for every menu, which explain a number of aspects. Please
read them. Fedit has a pipe-mode, which is designed for automatic input management. It

allows manipulation of input �les by scripts, without messing up the input structure.

Xfplo Display and manipulate structures, display fermi surfaces, de�ne path through BZ for band

plotting. Sec. 9

Xfbp (X11-FPLO-BandPlot) Plot bands and other functions, this program works a lot like xmgrace.

Sec. 10

Dmatedit Edit LSDA+U occupation matrices for setting up starting con�gurations to enforce possible

metastable solutions.11

Faddwei Add/manipulate weights in band weight �les. Sec. 8

Foptics Manipulate the optics output to generate other optics functions from +imeps. See Sec. 12

Fdhva Uses the �les +iso_b... as input to calculate the dHvA spectrum (area in Tesla versus �eld

direction). See Sec. 13

Grepfplo extract information from output �les.7

Bandplot Old, since version 14 Xfbp provides better services. The bandstructure plotting utility.
It is normally used by Fedit (and not called from the command line) to create band-structure

and band-weight plots. Call

Fedit -bandplot

Dirac The standalone atom solver (spherical atoms). This solves the (non-) relativistic DFT problem

for spherical atoms. To edit the input, call

Fedit -atom

To learn more read the help screens in this mode. (SIC is not yet working!)

Fpiotest A utility for input manipulations. This is mainly used by the scripts of the distribution.
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1.3 Input structure

The main input �les use a special syntax, which has some aspects in common with the C-programming language.

It is, however, not one of the common data languages around, but a private one. The reason to introduce

this feature was the general design of the input handling and the aspired independence from external libraries,

which can not be assumed to be present on every machine. The package contains an input parser, which is

accessible to the C and F90 code. This reduces the need of FORTRAN IO management and thus increases the

�exibility of version management and such things.

As a consequence, the user normally cannot and should not alter the content of the input �les. All input
settings are meant to be changed with the help of Fedit only. (Exceptions are manipulations,

which are done by Xfplo.) In fact Fedit is very easy to handle and there is no need for manual input �le

manipulations. (Some scripts also change the input, using Fpiotest, which in turn uses the mentioned parser

to achieve this goal.) For batch jobs/scripting/automation there is a special mode called pipe-mode (Chap.

124) in Fedit. The new pyfplo python package allows input manipulation as well and it's use is strongly

encouraged (see ../pyfplo/pyfplo.pdf).

The input, which is needed by the various executables is managed in a particular way. The executables create

communication �les (+fedit, +fedithelp), which tell Fedit how to process input and how to manage menus.

Fedit uses some methods of back-communication2 to the executables to have them responding in certain ways.

This kind of communication is designed to avoid the user to edit input �les directly (with a few exceptions).

If Fplo is called in an empty directory, it will immediately terminate with a message telling that it created

one of those communication �les. On the next invocation it creates standard input �les and again terminates.

All this is not seen by the user, if he uses Fedit.

Important: To save a calculation it is su�cient to save all �les of class 1 with the pre�x '=.' (see Chapter

3). If one uses such an archived calculation later to, say, create some additional output data, the �rst call

to Fplo would stop as described above (unless Fedit was used before). So, dont be afraid if the code exits,

stating that it created the communication �les. Just restart it and everthing will be �ne.

New since version 17: all these tasks have been moved from Fplo to internal code in Fedit. This means

that we no longer have this communication between the two codes. Fedit is now tightly bound to the input

management of it's version, except in Dirac mode, where we still use the old scheme described above.

2These are command line options (Bandplot), status variables in the input �les (=.dirac) and deletion of certain �les.

Table of Contents | Index

../pyfplo/pyfplo.pdf


17

Chapter 2

Version control

The package uses rather strict version control rules. A version number has the form �x.xx�, where x is a

placeholder for a digit. Furthermore there is a release number, which has the form �x�. A full version-release

number is the version number followed by a �-� followed by the release number like in 22.00-62, which means

version 22.00 release 62. Additionally, a string is attached to the executable names in order to di�erentiate

between di�erent architectures, e.g. �-i386� or �-x86_64�. Optionally, the user can chose to add a speci�c

name at the end during the installation process, which is usefull on heterogenous clusters, where di�erent

compilations for di�erent architectures are needed. This is achieved by adding the option �1� to the call:

�install/MMakefile 1�during installation. Read the install/README (Sec. 1.1) �le.

Every major input �le contains its own version number. Every executable has its own internal version number.

To avoid problems, one usually cannot use �les with programs of di�erent version.

There is a simple rule: The version number of the code is changed whenever input has changed. If
only the release number has changed the input is not altered. Normally, changes of the input consist of adding

something. In rare cases, the structure changes. For this reason it is not recommended to manipulate version

numbers of �les by hand.

2.1 Upgrading

If the version number of Fplo has been increased it is rather simple to upgrade the old �les. Fplo upgrades

the �les in the working directory automatically if they have older version numbers. Just call Fedit or Fplo

and have a look at the output. If Fedit is used it will ask the user before performing the upgrade, while Fplo

will do it without asking!

Attention: We strongly recomment to copy the whole directory (assumed you organize di�erent calculations

in di�erent directories) before executing the upgrade. The reason is that the numerical results between di�erent

versions may slightly di�er due to numerical changes/improvements1.

2.2 Downgrading

Sometimes, it is nessecary to downgrad �les to an older version number, mostly to undo erroneous upgrading

of �les belonging to a series of calculations, which is intended to be completed with the older Fplo version.

However, sometimes one may whish to recalulate something with an older version for comparison (although

this should be a very rare case for the normal user).

1After all Fplo (like any other code) solves the problem approximately, although rather accurate.
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Downgrading means that some information gets lost. Thus, you should consider to save a backup copy
of the �les before you downgrade. Have in mind that some calculation-modes are not available in older

versions of Fplo. Downgrading of calculations using such modes makes no sense.

Downgrading is a bit more complicated than upgrading. There is a perl script in the distribution, which

handles the complicated restructuring.

1. Execute fdowngrad.pl at the command line and answer a few questions. As a result the input �les are

downgraded. The old �les are copied to a backup directory called fdowngrad_backup[n], where [n] is

a number which is increased on every call to the script.

2. Next call the older version of Fedit belonging to the downgrad-version to regularize the �les. Go to the

symmetry submenu and use update. NEVER SKIP THIS POINT!

Attention: Downgrading from version ≥ 9.07 to version < 9.07 includes a subtle step, which will be explained here

in detail. The density �le information has been enriched in several versions. If one would use the �le as it is with

an older Fplo version, the density would be interpreted in the wrong waya. To avoid this it is nessecary to map

the new density onto the old �le format, which can only be done with an Fplo version belonging to the density �le

(≥ 9.07). The nessecary steps are

1. Edit the �le =.densconvert: put in the main version number (like 9 or 7).

2. Run the Fplo corresponding to the density �le. It will stop after the conversion.

3. Delete =.densconvert, otherwise the program might get confused.

Important: fdowngrad.pl tries to do these steps for you. This will only work if you have the proper Fplo version,

idealy the one which has the version number of the �les to be downgraded. If everything fails, you still have the

backup. In the worst case you need to re-iterate the densityb.

aThis basically results in the destruction of the (already converged) density.
b:-(

Pitfalls: Some information from �les of newer versions may be invalid in older version executables. This is

seen if the older version Fedit is used on the downgraded �les (at least on exit, there will be a message.).

Correct the input and rethink if you really did what you wanted to do.

Example:

Downgrading a full relativistic input say version 4.00 to version 3.00 (where full relativistic mode is not

available) will leave the relativistic mode-data untouched in =.in. But, this is invalid input in fplo3.00-6.

Calling fedit3.00-6 and executing quit/save will result in an error message about an invalid value of

the variable relativistic. Go to the relativistic-select box and select a proper option. Now, you can

quit/save and you have valid input.
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Chapter 3

Files

3.1 General

The �les used by Fplo are classi�ed into 3 major classes.

1. Files, which contain input or both input and output data and which are nesseccary for a succesful restart

of a previously converged calculation. These have the pre�x '=.'. One should not delete these �les

nor use them for di�erent calculations with di�erent parameter settings. A safe rule is: each calculation

is done in a seperate directory. One may copy all these �les into a new directory, modify the input

with Fedit and start a new calculation. This is especially usefull in the case of slight changes of some

parameters, in which case the density of the previous calculation is usually a better starting point than

the atomic density (created in the very beginning of a calculation if =.dens is absent). If, however, the

number of sites in the unit cell or the type of elements is changing, an initial density is needed (see Fplo

output).

2. Files, which are mainly output �les and which are not nesseccary for a succesful restart of a previously

converged calculation. These �les have the pre�x '+'. In general one can delete these �les (rm ./+*)

after successful calculations.

Caution: the bandstructure is written into +band... or +bweights.... These �les are used by Xfbp

(Bandplot) to create a picture of the bandstructure. So, if one inadvertently deletes these �les

one needs a single step calculation, starting from a converged density, to recreate them.

Furthermore, there are �les, which are output of Fplo but input to other programs or used for

caching data , e.g. +imeps, +isoergcache... and +iso_b....

Important: Many (new) unix tools will interprete the '+' sign as an option �ag. To use these tools with

'+'-�les, specify ./+file instead +file on command line1. Example:

less ./+band

3. Files, which are either pure output or status memory �les for graphical tools. These �les have no pre�x.

Now, the grid output data and Wanier function data also have no pre�x.

Example: wfdata..., grid_..., .net-�les, .ini-�les

In the following the most important �les are described in more detail.

Most input �les are copied to the output. The script fout2in can be used to extract input �les
from any output �le.

1When Fplo was designed, this habit of unix (Linux) tools was not yet widespread, and hence not recognized by the Fplo

authors.
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3.2 File class 1

The pre�x '=' indicates their primary use as input to Fplo. Nevertheless, they are partially output �les. Fplo

uses the following �les2:

=.in is handeld by Fedit , it is no recommended to manipulate them manually

=.sym

Obsolete since version 17. It contains the crystal symmetry. From the information contained in this �le

=.in (and before version 6 =.basis) are recalculated. Recalculation happens if =.in is absent or if the status

�ag in =.sym requires an update. Normally this is done by Fedit. On update, the non-default settings of

the existing =.in will be retained unless the symmetry in =.sym contradicts these settings, in which case the

default settings are used. The code will notify these reset-events after update3.

In a standard Fplo calculation run (no update action) the symmetry settings of =.in are used even if =.sym

contains a di�erent symmetry. Normally, if the update function of Fedit was used, the symmetry settings of

both �les are equivalent.

If =.in exists and =.sym is absent, Fplo will extract a valid =.sym from =.in (this is usually done while invok-

ing Fedit).

=.in contains the major control data for Fplo, except for the the basis. You can manipulate it interactively

with Fedit or automatically with the Fedit-pipe-mode. Please read Fedit help screens! Some information

can be modi�ed via Xfplo. Since version 17 the symmetry update which required the �le =.sym is handled

di�erently, which makes =.sym obsolete. The update functionality is still present though, which means that

some data need resetting to default values when the symmetry settings change. Fedit handles these things.

=.dens contains the density contributions of all sites (in terms of radial functions, which are the coe�cients

of the angular momentum expansion of the overlapping site densities). This �le serves as input and ouptut

for Fplo. It is created by means of a simple atom-like calculation on Fplo startup, if not yet existing. The

density �le may be re-used in other calculations (often a better starting point than the atom densities) if the

number of sites in the unit cell and the type of atoms are equivalent.

=.dmat_init contains the occupation number matrices for LSDA+U. This �le's content is duplicated in

=.dens, so =.dmat_init can get lost. However, if it is present it will overrule the information contained in

=.dens. When Fplo runs it writes/updates this �le with the current occupation number matrices. Its main

purpose is to present the data in an easily editable format in order that one can manipulate the (initial)

occupation number matrices to drive the calculation to one of the possible (local) LSDA+U minima. The

format is quite unrestricted, however not fool-proof. So be careful when editing. In any case this �le will be

recreated in the next Fplo run. If you want a fresh copy just delete it. New: Dmatedit can be used to

manipulate this �le in order to set up starting conditions for (meta) stable solutions. This program allows to

rotate the local axis in which the orbitals are de�ned. (Sec. 11)

2There may be more class-1 �les, which are not documented here. However, the normal user is not expected to need them.

There are some utility programs for the package, which use the same �le name convention and thus have additional class-1 �les

(e.g. Bandplot). These are also not documented here.
3When Fedit is used, see the protocol screen after symmtry update.
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=.kp If this �le is found by Fplo, the bandstructure (written to +band... (see Page 26)) is calculated at

the points given in =.kp. This is e.g. used to calculate Fermi surfaces with Xfplo (Sec. 9.2). The points

are given in units 2π
a0
, thus i.e. for bcc lattices the line Gamma-H consists of all points between (0, 0, 0) and

(1, 0, 0).

Format:

line 1: number-of-k-points [only partially occupied bands] [lower o�set] [upper o�set]

line 2,...: one k-point per line (3 real numbers, separated by space)

Explanations:

The three entries behind the number of k-points in the �rst line are optional. They are used by the newer

versions of the program Xfplo to reduce �le size.

[only partially occupied bands] a logical (t/f). If this is t only partially occupied bands are written to the �les

+band... or +bweights....This reduces �le sizes considerably, especially when used in conjunction

with the Fermi surface program Xfplo .

[lower o�set] Additionally that number of bands below the lowest partially occupied band are written to the

�les.

[upper o�set] Additionally that number of bands above the highest partially occupied band are written to the

�les.

=.basdef The default basis and optional modi�cations are used if this �le is not present. This �le is copied

to the output like the other main input �les. Hence, we can extract the (default) basis de�nition �le from any

output. For the newer treatment of the basis read 4. Formerly, fout2in -b could be used in order to extract

the basis de�nition, used in the output �le under consideration.

=.unfold Unfolding is explained in a separate document (Chap. 15). Create the input by hand or use the

unfold editor of the structure mode of Xfplo. Sec. ??

=.addwei Add band weights. Used by Faddwei.(See. 8)

=.bwdef Molecular/individual band weigths can be de�ned via this �le (Sec. 9.3). The advantage is that

the resulting +bweights... �le can be much smaller if the user only needs a few fatbands. Furthermore,

molecular patterns help elucidate bonding behaviour. Call Xfplo -bw or Xfplo =.bwdef to edit the �le.

This �le can be speci�ed in the Fedit bandplot menu after which Fplo will use the bandweight de�nitions

from this �le instead of the default when creating fatbands.

=.densmap Map density �les from one structure onto another structure. See Sec. 9.4.
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=.xstr Saved by Xfplo . It contains all settings needed to replicate the structure, lighting, fog, polyhedra

and so forth. See Sec. 9.1. This has nothing to do with the structure used by Fplo.

=.xef Saved by Xfplo . It contains all settings needed to replicate the Fermi surface plot. See Sec. 9.2.

=.xfp Saved by Xfbp . It contains all settings needed to replicate the plot created by this program. See

Sec. 10.

=.cmd Saved by Xfbp . It contains a user written script used by this program. This enables automation.

See Sec. 10.

=.coeff Obsolete since version 10.00, because it has benn turned into the switch Ouput +coeff file

in the Fedit bandstructure submenu.

=.atcharge Obsolete since version 10.00, because input was moved to Fedit charges menu. On version

update the data is transferred to =.in (Fedit).

Somebody may want to use the virtual crystal approximation (VCA), which consists basically of introducing

non-integer nuclear charges. This may be done by de�ning the content of this �le.

Format:

line 1: number of lines following

line 2,...: number of Wycko�-position followed by the nuclear charge

The nuclear charge must not deviate from the nominal nuclear charge Z of the element by more than ±1.

Since basis sets are element speci�c it might make a di�erence, whether one uses Z− δ or Z+ δ. The basis set

is always chosen according to the nominal nuclear charge. However, basis parameters (and also other speci�c

paramters) are interpolated between Z and Z ± δ.

=.mol_charge Obsolete since version 10.00, because input was moved to Fedit charges menu. On

version update the data is transferred to =.in (Fedit).

In molecule mode this de�nes the allover cluster/molecul charge. The �le contains one real number (the charge)

in the �rst line. A positive number means less electrons than neutral.
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=.basis (obsolete since version 6.00) contains the basis de�nitions. This includes the de�nition, which or-

bitals enter the calculation (core/ semi-core/ valence/ polarization) and the inital de�nition of the compression

parameters (x0) of the con�ning potential. The �le content may be manipulated using Fedit.

In auto optimizing mode (option BASIS_OPTIMIZATION) the �le is updated with the new value of x0 while

Fplo is running. So, be aware if Fplo is running and Fedit is used meanwhile, that the �le content may have

changed on disk during the Fedit session. You will be promted to overwrite =.basis on exit (quit/save) in

case that the content changed, while the Fedit session was active. Usually it is correct not to overwrite the

=.basis content in such a situation.

For all these �les, read the help screens of Fedit!

=.densgrid Obsolete since version 9.00, because input has been moved to a new Fedit sub-menu.

To create real space density or potential plots create this �le. It contains header informations and grid data.

It may contain comments (line starting with '#') everywhere. It may contain empty lines.

Comments at the top of the �le (before data lines) may contain control settings. All other lines contain real

space vectors in cartesian coordinates. For each vector the density/potential is plotted into the �le +densgrid.

Header:

Important: please no tab-characters, only space!

All header control data are optional. Below we give the complete list of possible controls and their options.

Any combination and order of options is valid. Options must be separated by at least a single space. The

colon after the control key-word (output,data,...) may be separated with spaces. Any of the control lines

described in 1-3 may be omitted, which forces default behaviour.

1. # output: comments emptylines emptylines_with_space stop

comments output all lines starting with any space followed by '#'. If '# output' is the

�rst line, it controls the output of all lines following, including itself.

emptylines copy all empty lines of =.densgrid into +densgrid

emptylines_with_space put a line with one single space into +densgrid for every empty line of

=.densgrid (some plotting programs need this to separate data sets)

stop stop after plotting, please be aware that you need a converged calculation to

get reasonable densities/potentials!

emptylines_with_space wins over emptylines, if both are speci�ed!

2. # data : index point total spin spinup spindown

index print index of grid point in �rst line

point print grid point

total print total density/potential

spin print spin density (i.e. n↑ − n↓)/xc-�eld
spinup print majority density/potential

spindown print minority density/potential

3. # type : density potential
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density plot density data

potential plot total-potential data

The last type speci�ed, will win.

Plotting is done at the beginning of each iteration cycle after the potential is calculated.

Default:

1. type: density

2. output: no comments, no empty lines no stop

3. data: point total spin spinup spindown

The order of output data is �xed. So the data-options may be given in any order, but the output in +densgrid

allways has the order: index point total spin spinup spindown. Of course, some of the �elds may be absent, if

omitted in 'data: ...'

Remark: If some grid point falls onto an atomic position, the onsite contribution of this atom is neglected,

since relativistic densities diverge at the nucleus (s1/2 and p1/2 orbitals diverge). Same holds for the potential

(relativistic or not).

=.ldos Obsolete since version 4.01, because input was moved to Fedit bandplot menu

To create lm-resolved densities of states, create this �le in the directory, where the calculation is done. If

Fplo �nds this �le the local orbital-resolved DOS is calculated.

Format:

line 1: number of lines following

line 2,...: number of site, for which a resolved DOS should be created

'sites' means all sites in the cell, not the Wycko� positions! The de�nition of sites is found in the Fplo-output

section 'UNIT CELL CREATION', part 'Atom sites'.

3.3 File class 2

The pre�x '+' indicates the primary use as output from Fplo. Nevertheless, the �les are partially input �les

for subsequent runs or tests. (Examples: debug �les like +basis, +loi)

+dos.total This �le and all other DOS �les (except the +(i)ldos �les) are created if the option �CALC_DOS�

is set or if �Bandstructure plot� in the bandplot menu is true unless the option �NO_DOS� is set.4 It

contains the total density of states.

+dos.total.l contains the l-projection of the total density of states. E.g. the d-DOS is the sum of all

d-orbital contributions of all atoms to the total DOS. See comments inside the �les to see which angular

momentum l is contained in the �le. The numbers in the �le su�x are just counters.

4In CPA calculations there is no �bandstructure plot� option. Instead the Bloch spectral density may be calculated.
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+dos.sort contains the sort projected DOS. This is the sum of all DOS contributions of all sites belonging

to the same Wycko� position (sort).

+dos.sort.nl contains the sort and nl-projected DOS. This is the sum of all nl-DOS contributions of all

sites belonging to the same Wycko� position. See comments (lines starting with '#') in the �le.

+idos... These are like the +dos.-�les but with the integrated DOS. Integrated DOS is only created when

the option Plot IDOS in the bandplot menu is set.

+(i)ldos.site.nl These �les are created for all sites given in the bandplotmenu entry 'Local DOS sites'

(this entry is a space separated list of site numbers) (see page 24 for older input versions) and contain the

site and l,m-resolved DOS. The �le numbers nl... are running indices, the real nlm numbers are written in

comment lines ('#') inside the �les. In full relativistic mode also ljµ projected �les get produced.

+imeps This �le contains the inter-band part of the optical function Imε (ω) it is used for optics (see Sec.

12).

+isoergcache, +isoergcache_wan These �les contain the cached band energy (and band weights) from the

iso surface stage run of the dHvA module. They serve as input for a speedup of a possible re-run of the iso

surface stage. (see Sec. 13).

+iso_b..._p..._spin... These �les contain the iso surfaces for the dHvA module. They are produced by

the iso surface stage of the dHvA module and serve as input for Fdhva. (see Sec. 13). The numbers after _b

denote the band index of the corresponding band, _p denotes the number of the part of the sheet (if the sheet

for this band index has disconnected parts) and _spin denotes the spin. For full-relativistic calculations the

spin su�x is missing, since spin is not a good quantum number in this case.

+area_vs_angle_..., +mass_vs_angle_... These �les are output of the dHvA stage (Fdhva) of the dHvA

module (see Sec. 13). They contain curves of extremal areas in Tela vs. a continuous angle variable through

the main �eld directions. The mass �les contian the corresponding masses. They can be loaded using a

prepared script �le Xfbp area_vs_angle.cmd.

+coeff If coeff output is switched on in the Fedit bandstructure submenu this �le is created and contains

the wave function coe�cients C of the reduced valence problem

HC = SCE

This �le is usually very large. It can however be used in conjuntion with Xfplo -bw to create hand tailored

band weights.
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Attention: The full wave function Ψ = ΦC is constructed from this information (C) and from the core and

valence orbitals Φc,v and core-valence overlap Scv, which are not contained in +coeff.

+error Created (and updated), while Fplo is running. It contains a summary of warnings and error mes-

sages. The update mechanism does not work on some platforms. Thus at the moment, it is best practice to

check the Fplo output, since all messages are duplicated to standard output.

A lot of messages contain the number of the iteration step, where they occured. Normally, only the messages

of the last iteration step (before convergence) are relevant.

+run contains the hostname and the PID of the last run of Fplo. If it is still running, this information may

be used to kill the job.

Caution: Killing Fplo, may cause loss of the =.dens �le and therefore loss of the calculation result, in case

that Fplo is just writing the �le =.dens, when it is killed! (The same holds for =.basis.)

+band..., +bweights... are created if the band-structure/band-weights plotting options have been set via

Fedit. They contain the band-structure/band-weights. Use Xfbp filename (or before version 14 Fedit

-bandplot5) to produce the related pictures from them. Since version 14, a su�x is appended to +b... �les

(Table 3.1). Also since version 14, two band weight �les are produced in full-relativistic mode, one with

jlµ-orbital projection and one with (approximate) lmσ-projection (see Sec. 8).When unfolding is active, both

default and unfolded �les will be created.

cases not full-relativistic full-relativistic

default
+band

+bweights

+band

ljµ +bweights

lmσ +bweightslms

=.kp meshes (Fermi surface)
+band_kp

+bweights_kp

+band_kp

ljµ +bweights_kp

lmσ +bweightslms_kp

unfolding

+band

+bweights

+bweights_unfold

+band

ljµ +bweights

+bweights_unfold

lmσ +bweightslms

+bweightslms_unfold

=.kp and unfolding

+band_kp

+bweights_kp

+bweights_kp_unfold

+band_kp

ljµ +bweights_kp

+bweights_kp_unfold

lmσ +bweightslms_kp

+bweightslms_kp_unfold

Table 3.1: Band weights �les.

If the Xfplo =.bwdef mechanism (Sec. 9.3) is used the resulting weights �le is named by the user.

5This will use Bandplot to create a Postscript �le.
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It is always a good option to check which �les got created after a run (ls -ltr).

+points Created in the initialization phase at the beginning of the Fplo run. It contains the special sym-

metry points used for the band structure creation. It is used by Xfbp (old: Bandplot).

+symmetry Created by the symmetry module of Fplo. It contains information about the crystal symmetry.

+fcor.sort.spin These �les are created, if option PLOT_BASIS is switched on. They contain the radial part

of the core orbitals.

+fval.sort.spin These �les are created, if option PLOT_BASIS is switched on. They contain the radial part

of the valence orbitals. Here valence orbitals include all non-core orbitals.

+fkval.sort.spin and +fkcor.sort.spin The kinetic core and valence functions. This is supplied mainly

for debugging purposes.

+atpot.sort.ivat (New since version 7.00) Created if option PLOT_REALFUNC is switched on. Contains

the e�ective potential, used in the Hamiltonian of the radial atom like equation for the calculation of the basis

orbitals

V =
l (l + 1)

2r2
+ 〈V 〉spherical

〈V 〉spherical is a spherical potential de�ned by the basis parameters. If two basis orbitals have the same

parameters, they belong to the same class and have the same atomic potential. The index ivat... labels the

di�erent classes. These �les are supplied for debugging purpose.

+dens.site.spin, +har.site.spin Created if option PLOT_REALFUNC is switched on. All these �les contain

the angular momentum components. They contain

� The density contributions of site 'site'.

The L = 0 part is multiplied with
√

4πr2. So, it integrates to the electron number belonging to the

respective site.

� The local multipole-neutral Hartree potential contributions of site 'site'.

Be aware, that the local contributions have no physical meaning, only the sum of all has one. These �les are

supplied for debugging purpose.
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+fedit, +fedithelp Communication �les between the executables Fplo/ Bandplot/ Dirac and Fedit.

These �les are created on every run of the executables. In the initialization sequence of the Fedit run, they

are deleted and the appropriate executable is called, to recreate them. In this way it is assured, that Fedit

allways reads the correct information.

+plasmon This �le contains the main axis and energies of the plasmon tensor.

+grid_dens.***

Obsolete since version 18. Instead see page 29.These �les are created by the grid-output module if the

open-dx option is set, which is now o� by default. See Fedit help in the grid-output sub-menu.

+voronoi (Obsolete since version 6.00) Created in the initialization phase at the beginning of the Fplo

run. Contains the voronoi cell geometry.

If 'build voronoi' is true, +voronoi is created and used. If 'build voronoi' is false, one may specify 'voronoi

file' as an alternative �le to read from. This serves for cell merging. However, cell merging is not expected

to be needed in versions later than 3.00.

+symanalysis (Discontinued since version 6.00) Created by the symmetry module of Fplo. It contains

information about the crystal symmetry induced conditions for the (non relativistic) matrix elements of the

onsite blocks of the density-matrix/Hamiltonian/overlap-matrix. The diagonal elements give the conditions

for the site and angular momentum resolved DOS.

+fdval.sort.spin (Dicontinued since version 6.00) These �les are created, if option PLOT_BASIS is

switched on. They contain the radial part of the derivative of the valence states with respect to the prefactor

(λ) of the con�ning potential

V cf = λ

((rNN

2

) 3
2

)−4

r4

λ = x−4
0

+atcor.sort.spin, +atval.sort.spin (Dicontinued since version 6.00) Created if option PLOT_REALFUNC
is switched on. Contains the e�ective potential, used in the Hamiltonian of the radial atom like equation for

the calculation of the basis orbitals

V =
l (l + 1)

2r2
+
〈〈
V cryst.

〉
spherical

〉
smoothed
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〈V cryst.〉spherical is the spherical average of the crystal potential around the considered site. The potential

actually used (and contained in the �les) is a smoothed version of V !

+dirsh (Obsolete since version 6.00) Created, if shape test is performed. It contains the shape function
along the lines speci�ed in the shape sub menu of Fedit.

+unity (Obsolete since version 6.00) Created, if shape test is performed. It contains the sum of all shape

functions minus 1 along the lines speci�ed in the shape sub menu of Fedit.

It should contain zeros, at least near the origin. (For larger distances the summation of all shape functions

may be incomplete.)

+densgrid See =.densgrid

3.4 File class 3

These �les have no pre�x.

grid_... These are the output �les for gridded data, which can be loaded into Xfplo like this:

xfplo =.in grid_dens.001

For more details read the Xfplo help screen in Sec. ??.

wfdata... These are the output �les for the real space representations of the Wannier functions , which

can be loaded into Xfplo like this:

xfplo =.in wfdata001

Or if you used the �use data directories� Fedit option:

xfplo =.in +wfdata/wfdata001

For more details read the Xfplo help screen in Sec. ??.
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dmatedit.ini Dmatedit saves the local axes and stu� in this �le.11

area_vs_angle.cmd

This �le is created by Fdhva and can be loaded with the help of Xfbp. This produces a picture of the dHvA

spectrum belonging to the iso surfaces treated in the latest Fdhva run.

grid_***.[net|general|cfg]

Obsolete since fplo18. Instead see page 29. If the opend-dx option in the fedit grid-output submenu is set

they are still created. These �les can be created by the grid-output module. They de�ne the gridded data

structure and an opendx program to display it in opendx. This is explained in the grid sub-menu.

bravais.ps, primitive.ps Created in the initial part of the Fplo run, before the density is read. Contains

a postscript picture of the bravais/primitive cell.

vcell{site}.ps (Obsolete since version 6.00) Created in the initial part of the Fplo run, before the

density is read. Contains a postscript picture of the voronoi cell of site 'site'.

3.5 Directories

Fedit creates/uses a subdirectory +tmp in the directory where it was called, to perform input �le updates.

This directory may be deleted after use of Fedit (or at the end of the calculations) In newer verions Fedit

tries to delete it itself.6.

The dHvA module (Sec. 13) uses the subdirectory dHvAdata to store auxillary information.

The new Fedit option use data directories will put many of the output data into separate directories for a

tidier organization.

6Sombody will argue that we should use the systems tmp directory. May be. But our way of doing it is independend of the

system settings.
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Chapter 4

Basis states

4.1 General de�nitions

4.1.1 Orbital structure

The Fplo basis consists of atom-like orbitals Φti for each Wycko� position t with atom-like quantom numbers

(qns) i, which are products of radial and angular functions. Depending on the mode of the relativistic treatment

we have at atom t orbitals of shape

Φti =


ϕtnlYlmχs without spin orbit coupling (NREL/SREL)(

gtnljχκljµ

iftnljχ−κljµ

)
with spin orbit coupling (FREL)

(4.1)

where n is the main qn and χs are spin- 1
2 basis spinors: σzχs = χss (s = ±1), Ylm are (real) spherical

harmonics with angular momentum qns l and m ∈ [−l, l] and ϕtnl are radial functions (one per nl-shell and
atom). (In scalar relativistic modes there are actually up to four radial functions per ϕnl-shell, the details of

which are yet to be published.) In FREL mode the orbitals are four-spinors with two large gtnlj=l± 1
2
and two

small ftnlj=l± 1
2
radial functions per nl-shell and χκljµ are spherical spinors with spin-orbit quantum number

κ = (2j + 1) (l − j), total angular momentum qns j = l ± 1
2 and µ = [−j, j], such that κ̂χκµ = −χκµκ,

ĵχκµ = χκµj, ĵzχκµ = χκµµ and in detail κ̂ = 1 + σ̂L̂, κlj=l+ 1
2

= − (l + 1), κlj=l− 1
2

= l.

Note, that ϕtnl does not depend on the spin index s, so the spin polarization of the �nal wave functions must

be obtained via additional orbitals with the same qns (polarization-orbitals). More generally, any polarization

e�ect of an imagined e�ective radial function due to some perturbation must be obtained via polarization-

orbitals. (PO)

From an atom point of view polarization-orbitals are orbitals with higher angular-momentum- and/or main-

qns. We use the term PO more loosely than quantum chemists would. In a solid the distinction becomes mute,

the more orbitals we add, since a 4p is an l + 1-PO to the 4s-orbital but a 5s-PO (an n + 1-PO to 4s) is an

l − 1-PO to the 4p-PO.

Now, group all orbitals of the same l- (lj-) channel together and we get as possible valence orbitals s-, p-, d-

and f - orbitals and if polarization-orbitals are included it just determines how many orbitals of each l-channel

there are (see Fig. 4.1). Compare this to an angular momentum expansion of plane waves. Of course, also l > 3

channels exist. However, the resulting orbitals are quite high in energy, have a quite large Hilbert subspace

(2l + 1-dimensional) and rather small e�ect. So, we try to get away with low-l polarization-orbitals.
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atom with polarization basis definition resulting FPLO basis

1s

2s

2p

4s

3d
valence

3s

3p

4s

3d

4p

chemical

l-polarization

5s

4d

4fl-polarization

n-polarization

n-polarization

3s′
3p′

3s

3p

1s′
2s′
2p′

1s

2s

2p

D1s

D2s

D2p

D3s

D3p

D4s

D3d

S4p

S4f

1s′
2s′
2p′

1s

2s

2p

3s

3p

4s

3d

4p

5s

4d

4f

3s′
3p′

core

semicore

core

core PO

semicore

semicore PO

valence PO +
valence

polarization

polarization

...

Figure 4.1: From atomic basis to Fplo basis: the left column shows the essential orbitals of an isolated atom.

In the second column polarization orbitals are added. The third column is how one should thing about the

second column, while the right column shows the orbital order which results in Fplo.

In contrast to the valence orbitals, which serve to expand wave functions of higher and higher energy, the lower

lying (fully occupied) semicore (core) states are described by a single atom-like orbital (such that the isolated

atom limit) is correctly described. If polarization e�ects on these rather inert orbitals are important (hyper-�nd

�eld [BHF] calculations) the corresponding polarization orbital needs to live in the same energy region as the

main orbital and describe the e�ects of the polarization under consideration. To be speci�c if we need good spin

polarization of the 1s-orbitals we could consider the two spin polarized atomic orbitals ϕn=1l=0sY00χs, where

ϕn=1l=0s are the majority s = 1 and minority s = −1 1s-orbitals of a spin polarized atom. Equivalent/similar

sets of orbitals are a possibility, e.g. one spin-unpolarized orbital (and say the majority orbital). These two

functions are quit similar, but after orthogonalization we get a proper 1s-basis of dimension 2 which spans a

subspace of spin-polarized 1s-orbitals. What is important here is that we did not add a 2s PO (as we would

do for the open valence section) but a 1s′-orbital with slight perturbation. Afterall, the 2s-orbital also exists

in the basis. Since the core has a predetermined occupation pattern we need some bookkeeping to separate

the �rst set of core orbitals from the polarization-orbitals by sorting the polarization-orbitals towards the end

of the core-section and only occupy the �rst set. For the semicore section possible polarization-orbitals need

to be sorted to the very end of the valence section for various reasons (see Fig. 4.1).

4.1.2 Orbital classi�cation

The orbitals at each atom are classi�ed into sections

core: orbitals which can be treated separately from all other orbitals since they
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� are fully occupied

� have (essentially) no inter-site overlap/dispersion.

� have energies well below the chemical spectrum (valence band structure).

semicore: orbitals which need to be included in the non-core (valence) section since they

� have small inter-site overlap/dispersion

� although they are fully occupied

� and have energies below the chemical spectrum (valence band structure).

valence: orbitals which

� have large inter-site overlap/dispersion and form the valence and conduction bands

� are signi�cantly partially occupied (chemical valence+l-polarization)

� are essentially un-occupied and form high-lying bands (polarization orbitals)

The di�erentiation into semi-core and valence is used in automatic Wannier basis determination and in the

order of on-site orthogonalization: �rst the semi-cores are orthogonalized among themselves, then the valence

orbitals are made orthogonal to the semicore section and then among themselves. Exception occur if multi-

semicore orbitals are de�ned, in which case the �rst orbital of the multi-orbital is in the semi-core section and

fully occupied, while the additional (nearly empty) orbitals are sorted towards the end of the valence section.

Otherwise, the orthogonalization process would deform the valence orbitals of the same nl-qns. But we want

to keep the shape of the valence orbitals as close to an atomic orbital with corresponding qns as possible. Also

adding a semicore polarization orbital should not change the already existing valence orbitals.

4.1.3 Radial functions

The radial functions ϕtnl or gtlnj/ftlnj in Eq. (4.1) are solutions to a Schrödinger/Dirac equation with a

modi�ed atom potential Vtnl = V at
t + V∞t + V conf

tnl + VtQS , where t denotes the Wycko� position (sort) and

� V at is the self consistent atom potential, obtained by solving a DFT atom with con�ning potential

V∞t + V conf
tnl .

� V∞ is an in�nite potential well outside the compact support radius ρ, which is individual for each

atom and depends on the atom environment in a complicated manner. For FREL mode only the large

component feels this well, which gives leaking small component at r = ρ, which however is a very tiny

error.

� V conf
nl =

(
r

(PPnlρ)

)N
is a con�ning potential with atom-wide compression parameter P , orbital-speci�c

compression parameter Pnl, which is made to be close to 1 (default value), and with compression power

N (default: N = 14).

� VQS is added to the self consistent potential, when calculating the radial functions, and is obtained

after self consistency by recreating the atom potential (for each orbital separately) with modi�ed atomic

occupation numbers such that the resulting atom is missing charge of amount Qnl and/or has total

magnetic moment Snl. If Q is larger than the total atom charge (light atoms) a suitable exponentially
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localized potential is used. In FREL mode both j-sub-shells use the same Q-, S-parameters. The Snl
option is experimental and was used in the context of the uno�cial hyper-�ne �eld (BHF) module, where

core and semi-core s-orbitals need to describe the spin polarization at the nucleus extremely well. If

S > 0 the majority orbital for the corresponding qns is used, and if S < 0 the minority orbital (which

has a di�erent shape) is used.

4.1.4 Multi orbitals

To increase variational �exibility, polarization orbitals can be added, which results in the concept of multi-

orbitals (MuO) (see Fig. 4.1). These are denoted by prepending a multiplicity character to the orbital name.

Currently, multiplicities up to six are implemented with character: SDTQUX which stand for S ingle, Double,

T riple, Quadruple, qU intuple, siX tuple.

A multi orbital T3d then means that besides the �rst 3d-orbital two more d-orbitals are added to the basis,

which of course will have their own Q-, P - and S-parameters. Which qns the orbitals carry depends on the

orbital classi�cation (see below and Fig. 4.1).

All orbitals of a multi-core and multi-semicore orbital will have the same qns as the �rst orbital, since we

want to add slightly distorted orbitals with the same qns to add �exibility in the resulting e�ective radial

functions (implicit result of diagonalization). So a double core ore semicore orbital expands as

D2p→ 2p1 2p2

The orbitals of a multi-valence orbital will have increasing main qns, such that the resulting set of orbitals

looks like a set of atomic orbitals for ever higher energies:

T3d→ 3d 4d 5d

4.1.5 Default basis

Using our classi�cation we can de�ne a save core section in the sense that the inter-site overlap is negligible

even for close packed solids under pressure, say up to 200-300GPa.

The valence orbitals contain the �chemical� valence orbitals and one or two polarization orbitals (POs) of the

lowest unoccupied shells (in an atom) with di�erent angular momentum. Chemical valence is roughly de�ned

as the HOMO+LUMO or HOMO-1+HOMO of the atom, (exceptions apply). Additionally the �chemical�

orbitals are doubled to become double-orbitals (MuO with multiplicity 2), thus adding variational �exibility

to the corresponding nl-channel.

Examples:

� H has chemical valence 1s, to which we add the lowest lying l 6= 0 PO 2p. Then we double the chemical

valence by adding 2s resulting in D1s, S2p.

� C has chemical valence 2s, 2p (HOMO-1+HOMO), to which we add the lowest lying l 6= 0, 1 PO 3d.

After doubleing the chemical valence we get D2s, D2p, S3d.

� Na has chemical valence 3s, 3p (HOMO+LUMO) to which we add the lowest lying l 6= 0, 1 PO 3d. Then

we double 3s and 3p to obtain the valence section D3s, D3p, S3d.

� Fe has chemical valence 4s, 3d and the lowest lying PO with di�erent l is 4p. We double 4s and 3d to

obtain the valence section D4s, D3d, S4p.
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� Eu has chemical valence 6s, 5d, 4f and lowest lying polarization orbital with di�erent l is 6p. We double

6s, 5d and 4f to obtain the valence section D6s, D5d, S6p, D4f .

� La has chemical valence 6s, 5d, 4f and lowest lying polarization orbital with di�erent l is 6p. We double

6s, 5d to obtain the valence section D6s, D5d, S6p, S4f .

La is a bit of an exception since 4f is not doubled. The reason is that 4f should be essentially empty

(which it is not in LDA). This might be less optimal and be changed in the future. It can also be changed

via modi�cations.

According to these de�nitions the semicore section is formed by the remaining orbitals between the lowest

valence and the highest core orbital.

In the default basis all core and semicore orbitals are single.

4.1.6 Parameters

The parameters which determine the basis are the atom speci�c compact support radius ρ, the atom-speci�c

compression parameter P and compression power N . ρ and P are determined internally (based on optimiza-

tions performed once and for all) while N is �xed to it's default N = 14 .

The orbital speci�c chargesQtnl (and/or spin moments Stnl, currently experimental) and compression modi�ers

Pnl (see Par. 4.1.3) were also determined by optimizations and are tabulated internally. However, they can be

changed if circumstances make this seem reasonable. They also have to be chosen, when the basis is modi�ed

(extended).

The default parameter values are Qnl = Snl = 0 and Pnl = 1. S is not currently used; it is an option for

hyper-�ne (BHF) �eld calculations (experimental), in which case the spin polarization of s-orbitals at the

nucleus must be very precise. Making core and semicore MuOs, with the added orbitals having S 6= 0, will

improve the resulting spin polarization at the nucleus.

It seems to be the right strategy to let the essential orbitals have Q = S = 0 in order to get atomic (yet

compressed) orbitals with energies such that the single-atom limit is basically correct. Essential means: �rst

core/semicore and �rst chemical valence orbitals, basically the orbitals which are occupied in the atom. Imagine

calculating a free standing atom, then compression goes to zero (ρ becomes large) and these orbitals need to

be solutions to the free atom, hence Q = S = 0.

For orientation:

� the �rst core orbitals (usually core is single) have default values

� the �rst semicore orbitals (usually semicore is single) have default Q and S but may have P 6= 1 (from

optimization in solids), especially for heavier atoms under pressure.

� The chemical valence orbitals (�rst of MuOs) usually have default Q = S = 0 but some P 6= 1.

� The additional orbitals of a MuO and the true polarization orbitals usually need Q 6= 0 (determined by

optimization and tabulated).

� Experimental : additional orbitals for core and semicore MuOs (for BHF) should use Q2... = 0, 2, 4, . . .

and S2,... = 5,−5, 10,−10 (remember Q0 = S0 = 0), where Qi = 0 seems to be good for ligther atoms

and Q = 2 for heavier. If problems occur, they are visible in the population analysis, where the net

occupations become signi�cantly larger than the gross occupations. Example: D2s Q = (0, 0), S = (0, 5)

or D2s Q = (0, 2), S = (0, 5). This business is prone to instabilities.
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4.1.7 Modi�cations

The default basis can be modi�ed in various ways: using Fedit, using pyfplo.fploio.Basis (../pyfplo/

pyfplo.pdf) or editing =.basdef by hand (see Sec. 4.4). The following are the most important modi�cations

� Extend the basis

� add more polarization orbitals to existing orbitals (increase the multiplicity of multi-orbitals)

� add a d-orbital if none exists (H and He)

� add an f -orbital if none exist

� Core treatment of 4f (for crazy people who know what they do)

� move 4f into core

� move 4f into core and remove all remaining f -POs from the valence altogether.

� Experimental: Improve core/semicore for BHF

� double/triple the core

� double/triple the semicore

� Modeling, testing . . . (not accurate)

� make all valence orbitals single (not a standard option, but possible using pyfplo)

� remove orbitals (possible using pyfplo)

4.2 Basis setup

As explained in Sec. 4.1, the default basis is out of the box and ready to go. However, it turns out that in some

contexts a modi�ed (especially extended) basis gives better results. To understand how such modi�cations are

achieved we need to explain the basis setup of Fplo in detail.

default basis
from tables

apply
modifications

read =.basdef

write basis
to output
=.basdef-format

apply VCA

continue with
calculation

created by hand
or using
pyfplo.fploio.Basis

fedit: basis version

fedit: modification
options

Figure 4.2: Flow of basis setup on Fplo run.

When Fplo is running
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1. for each Wycko� position the default basis is extracted from internal tables according to a user selected

basis-version (currently there is still only one version available).

2.

(a) If standard modi�cations are requested by the user these are applied.

(b) If the �le =.basdef is found in the working directory it will be read and it's content will overwrite

the default basis and sidestep the Fedit-de�ned modi�cations!

3. The basis obtained thus far is written in =.basdef format to the output in a section marked like this:

------------------------------------------------------------------------

Start: content of =.basdef

------------------------------------------------------------------------

...

...

...

------------------------------------------------------------------------

End : content of =.basdef

------------------------------------------------------------------------

4. If the virtual crystal option was chosen (VCA) the basis obtained thus far will be merged with a default

basis of appropriate atomic number to interpolated the basis parameters (as good as possible) between

the two bases belonging to the interval boundaries of the atomic number interval which contains the

VCA-nuclear charge. This process cannot be made absolutely consistent, since neighboring atoms can

have di�ering basis sets, e.g. Zn and Ga. So keep in mind that VCA interpolation is applied after the

basis de�nition/reading of =.basdef! This also means that VCA will not be completely symmetric in the

sense that ZnxGa1−x with Zn as nominal (input) element will be slightly di�erent from ZnxGa1−x with

Ga as nominal (input) element. Plan your investigations accordingly. VCA is a crude approximation

after all.

Note, that there are two mutually exclusive routes to modifying the basis

� use-speci�ed modi�cation via Fedit

� whatever is written in =.basdef

Also note, that starting from Fplo version >21.00, the =.basdef content in the Fplo output is no longer

the preferred starting point to created a user-de�ned basis. Instead use pyfplo.fploio.Basis (and various

examples) explained in ../pyfplo/pyfplo.pdf.

Some users used =.basdef in the past as the only way to modify the basis. However, it is advised to use the

newer mechanisms for basis manipulation in future projects. In almost all cases the modi�cations provided by

Fedit/pyfplo.fedit.Fedit should be enough.

4.3 =.basdef

Although =.basdef is not the preferred path to modifying the basis it will be explained �rst, since it is a

useful representation of the basis to discuss extensions in detail. (It actually is the internal representation.)

The �le =.basdef contains one line for each Wycko� position (sort), which looks like:
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3 P=(0.67); N=(14); 1s2s2p : 3s S3p P=(0.79); / D4s Q=(0,3.1) P=(0.92,1.01) ; D3d ... S4p Q=(4.2) P=(1);

and has the structure:

sort P=(); N=(); core : semicore / valence

� The �rst number is the sort number. Hence, if =.basdef does not contain certain sorts, the basis

de�nitions of these missing sorts will retain their default settings.

� The leading P=() de�nes the atom-wide compression parameter Pt (see Secs. 4.1.3,4.1.6).

� The leading N=() de�nes the compression power Nt.

� Between the power and ':' follows the core section

� Between ':' and '/' follows the semicore section

� After '/' follows the valence section

� An orbital with default parameters Qnl = Snl = 0 (and Pnl = 1 for non-core orbitals) can simply be

written with the usual notation 2p.

� A single orbital with non-default parameters must be written S3p P=(); , where only the non-default

parameters need to be explicitly speci�ed. Of course all parameters can be speci�ed, which for this

example would read S3p Q=() S=() P=();.

� A multi-orbital starts with a multi-orbital character (Sec. 4.1.4) followed by the orbital name and the

parameter list, which can consist of Q, S and P (if not core). The number of values in the parameter

list must match the multiplicity of the multi-orbtial, e.g. T3d requires Q=(Q1,Q2,Q3).

� For the core a condensed notation like D{1s2s2p} Q=(Q1,Q1) S=(S1,S2); can be used to group several

core orbitals together, having the same parameters.

4.4 Basis modi�cations

4.4.1 In Fedit

Some standard basis modi�cations are implemented in the Fedit menu Basis since Fplo version 22. The

modi�cations are applied to the default basis in the order as they appear on the menu screen! This together

with the explanations below determines the resulting basis. Naturally, all calculations of one (sub-) project

should use the same basis! So, using simple python scripts (pyfplo.fedit.Fedit) to create all inputs seems

advisable.

Modi�cations:

basis-version identi�es a complete set of default basis de�nitions for all (implemented) atoms. As of version

22, only one basis version is implemented, but others might follow.

extension-level determines how many valence polarization orbitals will be added to the default basis. The

default level is 1 and yields the default basis with certain prede�ned valence MuOs. Using the =.basdef

notation (Sec. 4.3) a valence section example could look like this:
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... / D4s Q=(Q4s,Q5s) P=(P4s,P5s); D3d Q=(Q3d,Q4d) P=(P3d,P4d); S4p Q=(Q4p) P=(P4p)

which expands to the valence orbitals

4s5s3d4d4p

We used place holders for the parameter values. Note, that we name the values Q4s, Q5s, . . . according

to the rules of Sec. 4.1.4.

An extension level 2 would increase the multiplicity of all MuOs by one (S→D, D→T, . . . ), level 3 by two

and so on, such that our example for extension level 2 would yield

... / T4s Q=(Q4s,Q5s,Q6s) P=(P4s,P5s,P6s); T3d Q=(Q3d,Q4d,Q5d) P=(P3d,P4d,P5d); D4p Q=(Q4p,Q5p)\

P=(P4p,P5p)

which expands to the valence orbitals

4s5s6s3d4d5d4p5p

The increased multiplicity requires that all parameter lists get a new value appended. Since only the de-

fault basis parameters were optimized and since the optimization becomes less stable the more parameters

are added, we need a rule to chose additional parameters, which is

Qn+1,l = Qn,l + 2

Pn+1,l = max (0.85,min (Pnl, 1)) (4.2)

add-3d The default basis for H and He does not contain a d-orbital. This options adds a single S3d Q=(5)

P=(1); orbital to the basis, if the atom does not contain any d-orbital in any section.

add-f If the valence section of an atom does not contain an f -orbital this option adds a single Snf Q=(5)

P=(1); , where n is the lowest f -main qn, not contained in any section. So, if there is no f -orbital at all

this adds a S4f and if the core contains a 4f -orbital this adds a S5f. If the valence contains an f -orbital

none is added.

Put-4f-into-core uses a list of elements and/or a list of sorts as input. For some reasons it might be desirable

to put the 4f -valence orbital into the core and give it a particular (non-full) occupation (Fedit submenu

Core-Occupation). The union of the sorts resulting from the two input lists de�nes for which atoms this

happens. This option moves an existing 4f -orbital to the core and leaves the remaining f -POs in the

valence. Such a calculation, even if it does not have a bad population analysis (net- much larger than

gross-occupation), will have unreliable total energies! So, only use this option if you need to get rid of

the f -states from the Fermi energy and if you know what you are doing. I would use LDA+U instead!

Example: Eu has default basis

core : semicore / non-f-valence D4f Q=(Q4f,Q5f) P=(P4f,P5f);

which applying this option becomes

core 4f : semicore / non-f-valence S5f Q=(Q5f) P=(P5f);

Put-4f-into-core-and-remove-f-POs uses a list of elements and/or a list of sorts as input. This option puts

any existing 4f -valence orbital into the core and removes the remaining 4f -POs of the corresponding

MuO altogether. This option might be more stable then the previous one, since a (physical valence)

4f -orbital in the core violates the zero inter-site overlap condition and the additional f -valence POs of

the corresponding f -MuO will lead to wrong matrix elements between the core-4f and the remaining

f -valence POs. By removing the POs this error is removed (other similar errors remain though). The

closing remarks of the previous option apply. Eu has default basis
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core : semicore / non-f-valence D4f Q=(Q4f,Q5f) P=(P4f,P5f);

which applying this option becomes

core 4f : semicore / non-f-valence

Multi-core-orbitals uses a multiplicity and a Q- and S-list of said multiplicity as input. The default are

empty lists, which indicate �no change�. This option will turn all core orbitals into corresponding multi-

core orbitals each having the speci�ed Q- and S-parameter values (experimental for BHF calculations).

Example: multiplicity 2 with two Q- and S-values turns a core section

1s2s2p / ...

into

D{1s2s2p} Q=(Q1,Q2) S=(S1,S2); /...

Multi-semicore-orbitals uses a multiplicity and a Q- and S-list of said multiplicity as input. The default

are empty lists, which indicate �no change�. This option will turn all semicore orbitals into corresponding

multi-core orbitals each having the speci�ed Q- and S-parameter values and P -values copied from the

P -value of the existing single orbital (experimental for BHF calculations). Example: multiplicity 2 with

two Q- and S-values turns a semicore section

core : 3s S3p P=(0.79); / valence

into

core : D3s Q=(Q1,Q2) S=(S1,S2); D3p Q=(Q1,Q2) S=(S1,S2) P=(0.79,0.79); / valence

which in turn gets internally expanded according to the rules of Sec. 4.1.1.

If you want to check which basis actually resulted from the modi�cations have a look at the =.basdef section

in the Fplo output which was explained in Sec. 4.2.

In practical applications we have used extension level 2, add-3d and add-f together as a kind of �standard

extended basis�, if such a basis seemed to be indicated by enhanced accuracy requirements or for testing that

the default accuracy was indeed su�cient.

In publications one should report the use of basis modi�cations. Assuming a �standard extended basis� was

used we suggest a formulation like:

. . . we used the default basis with extension level 2 and compulsory valence f and d-orbitals

. . .

or if more than one basis versions exist in the future

. . . we used the FPLO9 basis with extension level 2 and compulsory valence f and d-orbitals

. . .

where FPLO9 stands for the basis version descriptor as found in the Fedit basis menu.

When in doubt list the orbitals explicitly.
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4.4.2 pyfplo

As an advanced option the =.basdef-method of modifying the basis, using class pyfplo.fploio.Basis, is

outlined in the following.

You will need the basis-version identi�er (as for Fedit) on which to base the modi�cation and a list of the

elements or atomic numbers of all Wycko� positions (explained in ../pyfplo/pyfplo.pdf). With this you

can extract the default basis directly from pyfplo (without running Fplo �rst, as in the past). Then you can

modify the basis for each sort at will (as provided by the python interface) and save it into =.basdef. This

way one can setup the Fplo input (=.in) together with the basis (=.basdef).

Let us stress again that the preferred way to achieve a non-default basis is to use Fedit or in scripts

pyfplo.fploio.Fedit (if it provides what the user needs)!

Of course one can also create a default =.basdef via pyfplo (or extract the basis from an output �le via

fout2in -b) and then edit it by hand as was done in the past.
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Chapter 5

Algorithms

5.1 SCF k-mesh

Traditionally, the k-integration grid is obtained by subdividing the primitive cell into micro cells (primitive

cell algorithm: PCA). The resulting grid-points are reduced with respect to symmetry to reduce the number

of k-points as much as possible. This has the side e�ect that in centered lattices one cannot chose di�erent

subdivisions in directions of di�erent length. (Anyhow, the primitive vectors have equal length in centering

directions.)

To remedy this, a new scheme, the conventional cell algorithm (CCA), has been implemented. It takes the

conventional reciprocal cell and subdivides it in all three directions individually (if symmetry allows it). So,

for instance in body centered tetragonal lattices Nc 6= Na but Na = Nb can be chosen. In body centered

orthorhombic lattices all subdivisions can be di�erent! In order to be able to get a number of points in the BZ

as small as possible (reduction by primitive translations) the subdivisions are internally multiplied by integer

factors depending on the centering: 2 for body- and face-centered and for the centering plane of base-centered

and 3 for all directions of rhombohedral lattices. This also means that a subdivision of 1 will result in a

minimum of 2 or 3 subdivisions of the conventional cell, which after back-folding into the primitive cell (BZ)

gives a smaller number of points, of course. These multipliers lead to the e�ect that an input of say 12 12

12 results a in larger number of points in the BZ than in PCA. For non-centered lattices both algorithms are

identical.

The algorithm is chosen in the Fedit main menu under hotkey M (BZ subdiv (M)ethod).

In this context an automatic subdivision was also implemented in version 19.00. The input k-mesh subdivision

in the Fedit main menu can have the following meaning now:

� three numbers>1, e.g. 12 7 5 de�ne the individual subdivisions of the primitive cell (PCA) or of the

conventional cell BEFORE centering multipliers are applied (CCA).

� A subdivision of 1 at any position �xes this subdivision to 1 (e�ectively 1, 2 or 3 in CCA, depending

on the centering), even if auto subdivision is applied to other directions. This is ment to signal to the

program that there is no dispersion in this direction (momentarily this is used by some parts of the

Wannier function module).

� A subdivision of 0 indicates auto subdivision:

� All subdivisions of all directions, which are not > 1, will be multiplied to obtain the total number

of points NBZ in the BZ.
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� The directions which are not �xed (subdivision6= 1) will be subdivided such that maximal isotropy

of the resulting grid in these directions is achieved and that the resulting number of points in the

BZ is approximately NBZ . So, if some directions are �xed the grid in not isotropic in these �xed

directions compared to the others.

� Isotropy is followed over achieving NBZ, which means there could be other resulting subdivisions

which get closer to NBZ but are less isotropic. Consequently, the actual number of points NBZ must

be inquired from the output �le: search for �irreducible k-points� to get something like

BZMESH: 84 irreducible k-points from 2197 ( 13 13 13 )

for the PCA and

BZMESH: 85 irreducible k-points from 2048 ( 16 16 16 ) / 2 from input ( 8 8 8 )

for the CCA. The meaning is this:

* there are 85 irreducible points (reduced by symmetry and primitive translations)

* and 2048 points in the smallest primitive cell (or BZ) obtained from the input subdivisions 8

8 8,

* which because of centering (fcc) get multiplied by 2 in each direction (hence the subdivisions

16 16 16 of the conventional cell)

* which leads to 1
2163 = 2048 points in the BZ, since the primitive reciprocal lattice is bcc which

has halve as many points as the conventional reciprocal cell (→ divide by 2).

� Examples:

* 1 1 1: triggers Γ-point mode (temperature broadening, as in molecule mode)

* 0 1 0 or 0 0 0 or any combination of ones and at least one zero: the actual 1 1 1 subdivision

using the tetrahedron or Methfessel-Paxton method.

* 2000 0 0: auto subdivide all directions to get approximately 2000 points

* 200 10 0: same (NBZ =
∏
i|Ni 6=0Ni)

* 1 500 0 or 1 0 500: auto subdivide the b-and c-direction to get a total of 500, which in CCA

can mean 2 or 3 subdivisions in the conventional a-direction (see above).

* 12 6 1 or 1 400 1: subdivide as is and indicate lack of dispersion in the directions with

subdivision=1.

5.2 LSDA+U

The new basis since version 7 sometimes requires the gross population projector, since the new basis funcions

are more extended than the Fplo<5 basis functions. Due to historical reasons the default is still orthogonal

projection (net population). Please consider the gross projection, especially if your calculations do converge

badly, especially for small volumes and cases of considerable ligand hybridization. Check the population

analysis for overly large net occupations (much larger than gross). This might be a hint to use the gross-

projector.

Now, full relativistic LSDA+U is implemented. Note, that this is less stable than non-full-relativistic LSDA+U.

Main reasons are

� bands now carry non-integer spin weight, which allows reshu�ing between spin occupations depending

on tiny band shifts at the Fermi level

� symmetry is lower → more non-zero occupation number matrix elements
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� at the same time now orbital momentum is a meaningfull shell property, which increases the number of

solutions, between which to �uctuate. Furthermore, it seems to converge slower than the spin moment

and total occupation.

In order to see the proper orbital momenta we have to project onto the spin quantization axis, since otherwise

we can not compare Sz which is in the �eld coordinate system and Lz, which would be in the global coordinate

system. This means that when using Dmatedit you have to go into the proper system (axis dialog) to

manipulate the orbital moment.

Note, that in non-spin polarized full relativistic LSDA+U time reversal symmetry is enforced.

5.3 Total energy

The total energy in the output (see Sec. 7 and an actual output �le: search for EE) is the usual density

functional zero temperature energy. In Broadening schemes the resulting energy is not force consistent (Weinert

Davenport https://doi.org/10.1103/PhysRevB.45.13709 and https://doi.org/10.1103/PhysRevB.49.

13975) and an entropy term can be de�ned and added, which gives the electronic free energy F = Etot − TS,
which is force consistent. Alternatively, an approximate correction can be added to the total energy to obtain
F+E

2 ≈ Etot (T = 0) (see https://doi.org/10.1103/PhysRevB.58.13459 and therein). This does not give

corrected forces (whose correction are not implemented).

for historical reasons, in a molecule and Γ-point calculation the output under search string EE is the free energy

while for all other BZ integration schemes it is the total energy, while the free energy and the corrected one

are printed separately. All can be grepped using Grepfplo (Sec. 7)

5.4 Hamilton matrix elements (three-center integrals)

In order to calculate the Hamiltonian matrix elements integrals I = 〈ΦR′s′ | V | ΦRs〉 of two orbitals with the

crystal potential need to be evaluated. In the old times these contained terms which were named three-center-

integrals (THCI). This di�erentiation is no longer appropriate, since the technical solution to the integration

problem does not separate into n-center terms, however for historical reasons the name is still used .The way

these integrals are implemented requires shape functions (from a partition of unity) at each site R + s in the

lattice, which decompose each single integral into contributions from all sites in the lattice. This results in a

large number of new integrals, centered at sites and restricted to the compact support of the shape functions

around these sites. These are essentially single-site integrals. To evaluate them a numerical mesh is introduced

which consists of a radial and an angular mesh. The angular mesh is chosen from a set of prede�ned Lebedev-

type meshes of various sizes (not exactly Lebedev, since we determined them ourselves, including a set of

hexagonal meshes, which are slightly less e�ective but have the correct symmetry!). The size of the mesh

determines how many spherical harmonics are integrated exactly, or more practically, the larger the mesh size

the more accurate the angular integral. Now, it seems reasonable to chose smaller meshes for radial mesh points

with smaller radius. This is implemented such that depending on a �xed radius criterion the angular meshes for

each radial point are picked from the set of meshes having sizes between minangmesh and maxangmesh, smaller

sizes for smaller radii and larger sizes for larger radii. This means that there are jumps in the integration

accuracy at certain radial mesh points. As long as the compact support radii do not change, i.e. as long a

the lattice parameters are not varied, these jumps merely enter the all-over integration accuracy. But, if the

radii change, jumps in angular mesh size can from one radial mesh point to the next, which leads to di�erent

numerical integration errors depending on the lattice parameters, which in turn produces discontinuities in

the resulting energy curves with respect to lattice parameters/volume.
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Now, in all our tests this turned out to produced numerical noise far smaller than the physically important

energy di�erences. Only, in 2021 did we learn that there might be cases where this matters. For this reason the

choice of the THCI-integration mesh was made adjustable in the Fedit Numerics submenu (hotkeys N1...N4).

5.5 XC-functionals

Fplo implements a limited number of exchange and correlation (xc) functionals. Some need explaining,

The xc-functional/potential is selected in the Fedit main menu under hotkey V ( (V)xc-version ). For some

xc-potentials certain parameters can be set in in Fedit submenu (X)C options.

5.5.1 Becke-Johnson (BJ06) and modi�ed Becke-Johnson (mBJ)

The BJ06/mBJ potentials are implemented in several modi�cations mentioned in the literature:

BJ06 original Becke Johnson 06 [2, 11]

BJ06LDAc original Becke Johnson 06 + Perdew-Wang-92 correlation [2, 11, 8]

mBJ modi�ed Becke Johnson (parameter c = −0.012 + 1.023
√
g) [10]

mBJLDAc modi�ed Becke Johnson + Perdew-Wang-92 correlation (parameter c = −0.012+1.023
√
g) [10, 8]

mBJlinLDAc modi�ed Becke Johnson + Perdew-Wang-92 correlation version "All" (P-present) (parameter

c = 0.488 + 0.500g) [4, 8]

mBJsemcoLDAc modi�ed Becke Johnson + Perdew-Wang-92 correlation version "Semi Conductor" (P-

semiconductor) (parameter c = 0.267 + 0.656g) [4, 8]

where

g =
1

Vcell

∫
Vcell

1

2

∑
σ

|∇ρσ|
ρσ

d3r

cmBJ = A+Bge

For the users convenience cmBJ can be set �xed in the xc-submenu of Fedit. Both g and cmBJ can be grep-ed

from the output with Grepfplo (Sec. 7)

Note, that all those xc-potentials are not derived from a functional and hence do not provide a total energy.

For stability (and conceptual) reasons we used slight technical variations as compared to the o�cially doc-

umented WIEN implementation, which might lead to small di�erences in the results. Another source of

di�erences is the basis set. It turns out that the gap is not always best described by the default Fplo ba-

sis. In such cases an extended basis (Sec. 4) was used to obtain better results. Following the published

results, we performed comparisons between WIEN and Fplo results for various compounds, which are shown

in Figs. 5.1,5.2,5.3. (Note, that the occasional compound might be missing in either the Fplo or WIEN

data). We get an all-over good agreement with WIEN when comparing the scatter with respect to experiment.

However the scatter plots for Fplo-exp and WIEN-exp di�er for certain compounds. These deviations lay on

average within the accuracy of the xc-potential as indicated by the WIEN-exp scatter plot.
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Figure 5.1: Gap error versus experimental gap: upper left: Fplo default basis, upper right: Fplo extension

level 2 and compulsory f - and d-orbitals, lower panels: WIEN [4].
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Figure 5.2: Fplo-WIEN gap di�erence as a function of the experimental gap: upper: default basis, lower:

basis with extension level 2 and compulsory f - and d-orbitals. WIEN from [4].
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Figure 5.3: Comparison of the Gap error versus experimental gap for three mBJ �avors for smaller gap

compounds : upper left: Fplo default basis, upper right: Fplo extension level 2 and compulsory f - and

d-orbitals, lower panels: WIEN [4].

An example of mBJ calculations can be found in ../pyfplo/pyfplo.pdf (mBJ XC-potential).

A notable di�erence between WIEN and Fplo is the de�nition of the kinetic energy density τσ. In WIEN it

is derived from the band energies and the e�ective potential, while in Fplo it can be calculated directly from

the application of the kinetic operator on the basis functions. The latter has the advantage that it straight

forwardly generalizes to scalar-/full-relativistic modes and that it �ts better into the general program �ow of

Fplo. In particular it improves iteration stability.

It has to be mentioned that BJ06 is a local potential, which tries to mimic the e�ect of a non-local xc-potential.

This leads to a strong sensitivity of the xc-potential on the actual band occupation. Slightest re-occupations

between the valence and conduction bands lead to remarkably large changes in the potential in the interstitial

region, which in turn acts back on these occupations. This gives an inherently unstable situation, which shows

in the bad SCF-iteration behaviour of this xc-potential. Additionally, for an isolated atom (or molecule) the

asymptote of this xc-potential is formally c0 + c1
r but is in practice determined by the ratio τ and ρ which both

become very small at some radius, after which they are no longer numerically reliable. The resulting large

errors in the asymptotics then re�ect back on the self consistency. For this reason we established a smooth

cross-over between the numerical potential for smaller radii and an analytic form of the asymptotic tail for the

atom calculations (which underlie every Fplocalculation for the determination of the basis.)

To make matters worse the parameter g in cmBJ in mBJ relies on an integral of a function containing the

square root of
∣∣∣∇ρρ ∣∣∣, which has nodal lines in the interstitial (and becomes unstable for large distances from

atoms) which leads to kinks and a function which is di�cult to integrate numerically. This conceptual �aw has
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been remedied in Fplo by using a weighted integral, which screens away the regions with small ρ and τ . For

the atom calculations a correct assymptotic of
∣∣∣∇ρρ ∣∣∣ was used to determine a similar screening technique. This

results in self-consistent mBJ parameters cmBJ for atoms, which (once determined) were tabulated for use in

the initial atom-calculations in Fplo (for stability). Of course the basis depends on the choice of cmBJ. All

this is a consequence of the construction of mBJ and some of these conceptual issues are already mentioned

in the original publications. Especially, the fact that mBJ is de�ned for extended solids and has problems for

�nite systems has an in�uence on the implementation into Fplo, which for each compound depends on solving

the atom �rst.

Because of the conceptual issues with applying BJ06-type potentials to molecules currently these potentials

are disabled in molecule mode. The interested user can un-comment the relevant lines in fplostartup.f90

to circumvent this prohibition. However, it is almost certain that some intermediate functions internal to the

workings of Fplo will look quite bad.

As a curious �nding we have found that for anti-ferromagnetic FeO the self-consistent solution using one of

these xc-potentials results in a ground state, which di�eres from that reported by WIEN. It is a valid solution,

just one without a gap. By using an LSDA+U calculation to force the desired order of irreps and produce a

starting density we were able to obtain the gapped solution.
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Chapter 6

Wannier functions with Fplo

co-author Marc Höppner
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6.1 Intro

Wannier functions can be de�ned in many ways since there is a gauge freedom of choosing a phase transfor-

mation. One way of �xing the gauge is the requirement of maximum localization [7] (ignoring the constraints

of the point group). This is a tedious algorithm and even more complicated, if one adds point group sym-

metry [9, 13]. We do not do this in Fplo. However, it turns out that our de�nition [3, 5] leads to highly

localized Wannier functions (WFs) which obey the symmetry relations of the original crystal by construction.

If the WFs turn out to be not well-localized, then in most cases the WF is badly chosen. The main drawback

of our approach is that the user has to decide, where the WFs shall sit and which symmetry they shall have.

However, this is at the same time intended, since for modeling it is exactly what one wants to do.

The WF sitting in cell R and being of type µ (which denotes the WF center and its symmetry) is de�ned as

WRµ =

∫
e−ikR

∑
n

Ψk
nU

k
nµ (6.1)

where Ψ denotes the Kohns-Sham (KS) functions and U is a unitary matrix. If we de�ne less WFs than KS

functions, U is a column unitary projector (U+U = 1, UU+ = P ). It maps all the KS bands on some few

WFs. The choice of U is the choice of the gauge. In Fplo we use a chemically motivated local orbital basis Φ

to construct KS functions

Ψk
n =

1√
N

∑
Rsν

ΦRsνeik(R+s)Cksν,n

(s is the atom position and ν some quantum numbers specifying the orbital). These orbitals although non-

orthogonal are in a way 'optimally' localized by their construction. Hence, it is clear that a WF centered at

an atom and having a certain orbital symmetry has the corresponding orbital as its main contribution. This

allows the following choice of U . We project the KS functions on a test function χ, which is an Fplo orbital in

the simplest case. The resulting number is the square root of the orbital character of the KS bands, as plotted

in the FAT bands. If we now select only the KS functions with a large such orbital character in Eq. (6.1),

we will end up with a WF resembling χ the most and this is where the localization of our WFs comes from.

If we want WFs corresponding to sub bands of a band complex with a character χ we have to project onto

a particular energy window as well. This happens if there are bonding (B) and anti-bonding (AB) bands of

character χ and if one wants, say, only WFs of the AB bands. So, in total we de�ne a test function or WF

projector χ and an energy window for each WF. The WF projector χ can in principle be a linear combination

of Fplo orbitals.

Example: suppose we have a Cuprate plane. The bands are formed by a linear combinations of Cu 3d and

ligand O 2p orbitals. Around certain k-points, the upper bands are clearly AB and hence correspond to a

certain molecular orbital with a certain phase relation between the central 3d orbital and the O 2p orbitals. The

lower (B) bands are clearly formed of the same orbitals, but with a di�erent phase relation. If this is the case,

then de�ning WF-projectors using the AB molecular orbital as χ will automatically yield the anti-bonding

bands, given that the band topology is dominated by the clear character separation around the considered

k-point. This would make the energy window obsolete.

The Wannier transformation can be described in two steps. In the �rst step the unitary projector is build

from the users de�nitions of χ and the energy windows. U is applied to the KS functions yielding the Bloch

sums of the WFs

W k
µ (r) =

∑
n

Ψk
n (r)Uknµ (6.2)

=
1√
N

∑
R

eikRWRµ (r)

Table of Contents | Index



52 Chapter 6. Wannier functions with Fplo

WRµ (r) =

∫
e−ikRW k

µ (r) dk (6.3)

(Note, that the k-integration contains appropriate normalization factors, left out in the formulas or being

hidden in the integral measure.) The orbital Bloch functions are

Φksµ =
1√
N

∑
R

ΦRsµeik(R+s)

where the additional phase factor eiks makes live easier by removing the dependence on the coordinate origin.

From the formulas we get the representation of the Hamiltonian in orbital Bloch sums

Hk
s′s =

〈
Φks′ĤΦks

〉
=

1

N

∑
R′R

〈
ΦĤΦ

〉
R′s′Rs

eik(R+s−R′−s′)

=
∑
R

〈
ΦĤΦ

〉
0s′,Rs

eik(R+s−s′)

from which we get the KS eigenvalues

εkn =
(
Ck+HkCk

)
n

(6.4)

Using the result above, the WF Bloch representation is〈
W q
µ′ĤW

k
µ

〉
=

∑
n

Uq∗nµ′ε
k
nU

k
nµδqk (6.5)

=
1

N

∑
RP

〈
WPµ′ĤWRµ

〉
eik(R−P )δqk

=
∑
R

〈
W0µ′ĤWRµ

〉
eikRδqk

with

ε0µ′,Rµ =
〈
W0µ′ĤWRµ

〉
(6.6)

=

∫
e−ikR

〈
W k
µ′ĤW k

µ

〉
dk

which is the WF Hamiltonian in real space representation, which usually contains the model we are interested

in. Its k-representation (Bloch sums) Eq. (6.5) can be diagonalized and will give the bandstructure corre-

sponding to the model. If the WFs represent the whole Hilbert space spanned by all Ψk
n of course the resulting

WF-bandstructure coincides with the original bandstructure Eq. (6.4). There is a modi�cation one can do,

which consists of restricting the matrix elements Eq. (6.6) by removing hoppings with distances above a certain

cuto� radius or hoppings, which are smaller than a certain threshold. The resulting restricted hopping matrix

can be Bloch summed and diagonalized again. Note, however, that this modi�ed Hamiltonian does not strictly

correspond to the WFs calculated above.

The whole transformation can be summed up, by de�ning a transformation from the Fplo basis into the WF

basis

WRµ (r) = W0µ (r −R)

W0µ (r) =
∑
R′sν

ΦR′sνDR′sν,µ (6.7)

Table of Contents | Index



6.2. The Fplo WF module 53

6.2 The Fplo WF module

The Wannier function module in Fplo is currently a postprocessing tool. First, one needs a converged

calculation. Then, the relevant information must be written to the hard disk in order to access it conveniently

later. This might take plenty of disk space (see Sec. 6.2.6)! This information is read afterwards and used in a

subsequent Fplo run to calculate the desired Wannier functions. In order to use the module a particular �le

(=.wandef) must be created by the user. Since Fplo15 a python script can by used to create default Wannier

function de�nitions for a large set of situations (../pyfplo/pyfplo.pdf). If =.wandef is found by a running

Fplo process the Wannier module is activated, if the keyword doit is found on a single line in the �le. To

disable the module change the keyword into something like e.g. xdoit. If Fplo �nds the �le =.wandef with

the keyword it will start dumping data after every Kohn-Sham diagonalization process. If the Fplo process

comes to convergence (best to start with a converged calculation to begin with) it stops like in normal mode.

The �le created after the initial data-dumping is +wancoeff (besides all the usual �les). Note: the band

structure plot in the fedit submenu should be switched on.

On restart of Fplo (provided that =.wandef exists and the doit-keyword is set therein) all the data are used

and the actual WF-module is executed. It reads the WF de�nitions from =.wandef and constructs the WFs

accordingly. The WFs can be produced in real space for visualization and the (interpolated) WF Hamiltonian

in Bloch representation Eq. (6.5) can be written to the �le +hamongrid on a (much denser) k-space grid. The

WF hopping integrals Eq. (6.6) are produced in the output and are written in a convenient format into the

�le +hamdata, which is used e.g. by the pyfplo.slabify module (also see ../pyfplo/pyfplo.pdf). Be aware

that the WF Hamiltonian on the k-space grid is restricted by the cuto� of the real-space Hamiltonian Eq.

(6.6) according to user input.

Example: We will walk through the example of CaCuO2 step by step. The input-�les are provided in

the example directory. The calculation is done in the ferromagnetic phase of CaCuO2 (just to have a more

complex situation). The goal is to create a WF for the anti-bonding 3dx2−y2 band. In Figure 6.1 we show the

spin-polarized

Figure 6.1: Fplo fat-bands CaCuO2
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fat-bands as given by Fplo. The �lled symbols denote the 3d majority fat-bands and the open symbols the

3d minority bands. The 3dx2−y2 bands are called 3d+ 2 according to the standard convention and orientation

of the global coordinate system and have magenta color. Focusing on the majority bands (�lled symbols), you

see a bonding and anti-bonding band (best seen at the M-point). We are interested in a description of the

anti-bonding band. There is only one Cu atom in the unit cell and according to the list of sites in the output

�le it is site number 2. We now guess that the Cu, site 2, 3dx2−y2 orbital will have the largest contribution

to a WF describing the anti-bonding part of the �lled magenta band(s). Thus, we choose this orbital as a

WF-projector χ. We assume that the �le =.wandef exists and that the keyword doit is set and that the �le

+wancoeff got already created.

We have to de�ne, which linear combinations of local orbitals are used as WF-projectors. Note that we have

two basic choices: the WF-projector and the energy window. In our case of CaCuO2 we already identi�ed the

projector. The simplest projector consists of one single orbital centered on site 2. A WF-projector is de�ned

using the keyword wandef. A wandef can have many contributions contrib, each denoting an Fplo orbital

with a certain weight factor. Here comes the example

...

-------- Cu --------------

wandef

on

name Cu x2-y2

emin -4 -1

emax -1 3

de 1 1

contrib

site 2

difvec 0 0 0

xaxis 1 0 0

zaxis 0 0 1

orb 3d+2

fac 1

As can be seen there can be additional lines in the �le, and they are considered comments as long as they do

not start with a keyword. In our case '--------- Cu ----------------' is such a comment. Subsequently,

the keyword wandef starts a WF-projector section. The next keyword is on or o�. This allows to have

several wandefs in one �le, where only some are used (playing around). The wandef has a name, which

can be anything after the keyword name (actually it should not be more than 17 characters). The energy

window is discussed later. In our example the wandef is made of one contrib. The contrib is an orbital

sitting at site 2, being difvec 0 0 0 away from the (imagined) center point of the WF, which in this case is the

position of site 2. The orbital is de�ned with respect to the local coordinate system, whose xaxis is 1 0 0 and
zaxis is 0 0 1. In this local system the orb is 3d+2 and the contrib enters the whole wandef with relative

weight fac 1. If there are more than one contribs the fac of each contrib can be given. The whole thing

is normalized automatically. If the wandef is made of several contribs at di�erent sites it is important to
correctly de�ne the di�erence vectors difvec. Choose a particular point in space as WF center and express

the sites of the contribs by vectors pointing from the WF center to the sites . . . these are the difvecs.

If there is more than one site belonging to a crystallographic orbit (all sites generated by the same Wycko�

position), the user has to give every WF-projector separately in the current implementation. In this case it is

important that the user takes care of all the di�erent symmetry-related WF-projectors belonging to the same

cryst. orbit. This means setting up proper difvec, x/zaxis, orb, fac and so on values.

In our example the orbital used as WF-projector forms a bonding and an anti-bonding part. There is only one
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Cu 3dx2−y2 orbital in the simple unit cell and hence it can only form one band. However, this orbital forms

sigma-bonding hybrids with the plaquette oxygen 2p orbitals and this creates �two� bands having a shared

character of Cu 3dx2−y2 and O 2p. Moreover, it is clear from Figure 6.1 that the anti-bonding (AB) band is

not isolated due to other hybridizations. Hence, a well de�ned Wannier function cannot exist. In order to have

some approximation for modeling we create a single WF of AB type. According to the rules of how WFs are

created it is evident that we need to project away the part of the KS spectrum, which contains the bonding

part of the corresponding band. This is done by specifying an energy window. All bands outside this window

will be ignored. For the majority bands we have the AB band between -5 and 0 eV and the B band between

-8 and -5 eV. For the minority band it is shifted upwards accordingly. The energy window could be de�ned as

a sharp cuto�. This can lead to weird e�ects, if the band character speci�ed through the WF-projector occurs

ONLY outside this window for a particular k-point (such things can actually happen). This would mean that

for one k-point the weight of the WF-projector in the considered Hilbert-subspace is zero and this leads to an

inde�nite problem, when calculating the WFs. So, it is better to make the window smooth in order to have

the interesting subspace in the main energy window but allowing to sample outside of it, in case we have a

character-run-away scenario. The energy window is de�ned by a function being 1 between emin and emax
and falling of as a Gaussian with a width de outside this window. Of course, the energy window applies to all

contribs of one wandef. In spin-polarized cases these three keywords take two values, one for the majority

and one for the minority bands. The user should also pay attention that the energy window has to be the

same for all wandefs belonging to the same cryst. orbit!

Suppose that we de�ned the above described WF projector onto one orbital, having one WF per unit cell

and that we did not specify the energy window. This would lead to a WF whose corresponding band will

be pretty dispersionless situated at an energy between the B and AB bands in the original band structure.

This happens because the projector χ makes one single band out of the B and AB part of the KS-Hilbert

space, which essentially forms two bands. In mathematical terms this will lead to an average of the B and

AB KS wavefunctions, which will have non-bonding character. That should also make clear what happens, if

we extend the energy window more and more towards the B energies. This will mix in more and more of the

bonding KS functions, which leads to a WF band whose energies get pulled down more and more. The user

is encouraged to play with these values to get a feeling for the construction of speci�c WFs.

Now, we have de�ned all the stu� in the �le =.wandef and we can run Fplo.

1. The �rst thing in the WF module will be that the content of =.wandef is copied to the output, followed

by a more condensed printout of the Wannier parameters. The latter output shows all parameters, also

the ones not explicitly set in =.wandef (which will have their default values). Then follows a section,

in which the symmetry of the WF-projectors χ is checked. If this check does not run through properly

there is a mistake in the symmetry relation between wandefs of χ-s belonging to the same cryst. orbit.
Check all keywords. In the moment the energy window is not checked for proper symmetry setting. So,

if the code runs through, but the output seems weird, check the energy windows!

2. Now, if the �le +wancoeff is found it will be loaded. If not, the normal Fplo execution will continue.

Reading the data is not the fastest that is why there is an internal loop (see below). See also Sec. 6.2.6.

3. Now, the Wannier bands get processed. As a result the hopping matrix elements between WFs are printed

to the output. This printout is controlled by user de�ned restrictions to avoid enormous amounts of data.

Example:

spin 1: WF(Cu x2 -y2) -> WF(Cu x2-y2) at relative

T= 0.00000 0.00000 0.00000 hop= -2.093458893797475

T= 0.00000 0.00000 6.04712 hop= -0.061341124468540

T= 0.00000 0.00000 -6.04712 hop= -0.061341124468540
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T= -7.29434 0.00000 0.00000 hop= -0.463606088774015

T= 0.00000 -7.29434 0.00000 hop= -0.463606088774014

T= 0.00000 7.29434 0.00000 hop= -0.463606088774014

T= 7.29434 0.00000 0.00000 hop= -0.463606088774015

The WFs are given by their name, and the symbol '->' means that the vectors, which follow ('T= ...')

point from the WF left of '->' to the one right of '->'. After each vector 'T=' the hopping element in

eV is printed. If T=0 the hopping element is the onsite matrix element. The information written to the

output is restricted such that only hoppings with |t| >WF_ham_threshold are considered and only

for |T | ≤ham_cuto�.

4. After this the output on the reciprocial grid is performed. It is important to realize that the Hamiltonian

in k-space is constructed from the truncated real space Hamiltonian, i. e. the Bloch sums of the hoppings

Eq. (6.6) after cutting o� of the hoppings for which |T | >ham_cuto� and |t| <WF_ham_threshold.
The resulting Hamiltonian is written to +hamongrid. See the wannier.f90 soure code for the order of

the data.

5. The very same hopping data are also written to +hamdata for further processing by pyfplo.

6. Now, +WF_coefficients is written, which contains information about the contributions of the Fplo or-

bitals to theWFs Eq. (6.7). This �le shows only contributions, which are larger thanWF_coe�_threshold
in =.wandef.

7. At the end of the module the WF are written to disk on a real space grid into �les wfdata.... Those

can be used to visualize the WFs using Xfplo (also see Xfplo help screens of the WF/Gridplot dialog

in ../Xfplo/xfplo.pdf):

xfplo =.in wfdata001 wfdata005

or if the use-data-directories option (in Fedit) was used

xfplo =.in +wfdata/wfdata001 +wfdata/wfdata005

8. After this Fplo pauses with the message

CTRL_C for abort, enter for next trial

Here, one can type CTRL-C to stop, or one modi�es the wandefs (in another window/editor) and hits

enter to re-run the module, with re-scanning =.wandef but without re-reading +wancoeff (which is slow,

since it is a large �le).
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Figure 6.2: Wannier �t for CaCuO2

Figure 6.2 shows the result of the CaCuO2 example. Dark yellow and magenta are the 3dx2−y2 fat bands

as produced by Fplo. Red shows the full Wannier function transformation (without cuto�s) from the �le

+wanband and green shows the model WF bands including cuto�s from the �le +wanbandtb. One can nicely

observe how the WF bands interpolate the hybridization gap between Γ and X, and M and Γ.

6.2.1 Files

There are three band structure �les produced.

+wanband The Bloch-sums of the WF Eq. (6.2) are obtained by doing the unitary transformation in k-

space (U). The Hamiltonian in WF-Bloch basis in k-space Eq. (6.5) is directly related to the WF-Bloch

sums and hence is obtained straight from the U -transformed KS functions and Hamiltonian. The resulting

k-dependent Hamiltonian has the dimension of the WF-basis de�ned by the user. It can be diagonalized

to get the band structure belonging to the WF model. The result of this is written to +wanband. If the

WFs describe an isolated band complex (one needs as many WFs as there are KS bands in the band

complex) then the +wanband band structure must coincide with the bandstructure of this band complex

in the full Fplo band structure plot. Deviations are possible, if there are not enough k-points in the

Fplo-SCF calculation. This comes about since a discrete approximation to the k-integral in Eq. (6.1)

de�nes WFs, which have periodic images with a period of the Born von Karman torus.

+wanbweights This �le contains the fat-bands corresponding to +wanband. The band weights are determined

with respect to the WF character in the corresponding bands. Let's make that clearer. In a local orbital

basis like Fplo the overlap of the orbitals with the KS functions determines the fat-bands or how much

of a certain orbital a band is made of. This concept can be applied to the WFs as well thinking of the

WFs as a basis. So, how much of a particular WF makes up a band? This is given by the information
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in this �le. Note, that the Fplo fat-bands and WF fat-bands do not coincide. That is the main reason

why we do a WF analysis, see Figure 6.3

Figure 6.3: Comparison of Fplo fat-bands (upper panel) with WF fat-bands (lower panel) for a NiO2-chain.

Some WFs are linear combination of several orbitals, such that the WFs are centered between two orbitals. One

can clearly see that in the WF basis each band has a pure character, i.e. the bands are completely decoupled

by chosing a symmetry adapted basis (WFs).

+wanbandtb Now, we can go a step further and Fourier transform the WF-Bloch sums Eq. (6.2) into real

space Eq. (6.3). This provides the actual WFs. In real space these WFs overlap (ensuring orthogonality)

and the expectation value of the Hamiltonian in this basis forms the hopping integrals Eq. (6.6). These

hopping integrals can be cut o� at some distance or if they are smaller than a threshold. This de�nes a

modi�ed Hamiltonian in real space. We transform this modi�ed (model) Hamiltonian back into k-space,

diagonalize it and get the band structure in this �le. If the cut o� and threshold is moderate the result

should equal +wanband otherwise it can di�er. Especially, for non-isolated bands we can get non-analytic

behavior in +wanband, which is unavoidable in some cases. It turns out that the real-space cuto� reduces

these unwanted e�ects.
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The band structure data �les can be visualized using the bandplot-tools of Fplo. Besides these �les there are

a few more. If the use data directories �ag in fedit is set most of these �les are written into subdirectories

for sake of keeping the directory clean. Exceptions from this rule are +hamdata and the old-style opendx

interface �les.

+hamdata... contains the WF Hamiltonian in real space after the cuto� procedure (see ../pyfplo/pyfplo.

pdf).

wfdata... contain the real space Wannier function for visualization with the help of Xfplo or opendx. These

�les can be directly loaded into Xfplo. The opendx interface is considered to be obsolete and is no

longer switched on by default. Use the opendx_interface keyword to switch it on.

xfplo =.in wfdata001 wfdata005

or if the use-data-directories option (in Fedit) was used

xfplo =.in +wfdata/wfdata001 +wfdata/wfdata005

(also see Xfplo help screens of the WF/Gridplot dialog ../Xfplo/xfplo.pdf)

+WFstat... contains the absolute values of the coe�cients in Eq. (6.7) as a function of the distance of the

corresponding orbitals from the Wannier function center. Plot this �le (e.g. xfbp ./+WFstat.xpy) to

have an idea of the localization of the WFs.

+Rstat... contains the statistics of the position operator matrix elements. Plot this to estimate the fallo� of

this operator (e.f. xfbp ./Rstat.xpy).

+T... contains the hoppings from a given WF to the neighbouring WFs corresponding to Eq. (6.6) as a

function of the distance between the WF centers.

WFstat.xpy use this to plot the orbital contribution statistics (+WFstat. . . )

xfbp WFstat.py

Rstat.xpy use this to plot the position operator statistics (+Rstat. . . )

xfbp Rstat.py

opendxWF.dx, WF.net and WF.cfg these are the opndx interface �les, which are used in the following way

dx -image WF.net

6.2.2 Keywords

The keywords in =.wandef are explained in the following.

doit switch the WF module on.

keeprunning can be on or o�. If this keyword is on or if it is absent the program will not terminate,

which is usefull for a re-run of the WF-module after changes to =.wandef. This avoids the loading

of +wancoeff(+wancoeffbin). By default the program keeps running. So what you want to use to

overwrite this behaviour is keeprunning o�.
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save_spin_info save the spin operator in +wancoeff (only in full relativistic mode). This option makes the

�le bigger and must be set before +wancoeff is created!

save_b�eld save the exchange �eld in +wancoeff (only in full relativistic mode). This option makes the �le

bigger and must be set before +wancoeff is created!

save_position save the invariant position operator matrix elements in +wancoeff. This option makes the

�le bigger and must be set before +wancoeff is created! (see gradorder, below)

gradorder can be 1, 3, 5 and 7. In the calculation of the position operator a numerical gradient formula is

needed. The position operator converges slowly with the density of SCF k-mesh (by its very nature).

The default is gradorder 1. In many cases gradorder 3 and a default mesh-density gives a more

accurate result. At least it speeds up convergence with the mesh density. Possible values are 1,3,5,7 but

5 and 7 seem to not improve the result. The current implementation for higher orders is probably not

good for strongly anisotropic k-mesh distances.

Note, that if the k-mesh subdivision is 1 in some direction(s) the derivative formula will be dimensionally

reduced, assuming that there is no dispersion in this direction. This yields better results than the full

formula, but only if the dispersion is really small. It will however, not always yield the same as a a full

(isotropic) k-mesh, due to the �nite nature of the formula. Both the full mesh and the reduced mesh

will converge to the same result for a �ne enough mesh, though (hopefully).

In general the position operator is very sensitive to the disentangling energy window fall o� and the

number of SCF k-points. This is so, since it is used in the MAXLOC-WF algorithm to smooth the

Hilbert space, which for our maximally projected case must mean strong dependence on the energy

window.

wandef start a de�nition of a single Wannier function.

on/o� make the corresponding wandef active/inactive.

emin the lower bound of the energy window (two numbers if spin-polarized).

emax the upper bound of the energy window (two numbers if spin-polarized).

de the width of the Gaussian tail above and below emax/emin de�ning a smooth energy window (two

numbers if spin-polarized).

delower/deupper like de, but for the lower/upper end of the energy interval. Note, that de will

overwrite delower/deupper if speci�ed after the latter!

ubands/lbands band indices, which specify the maximum and minimum band to be contained in the

projector (energy window). (two numbers if spin-polarized)

contrib add an Fplo orbital to the wandef. There can be several contribs in one wandef, one after
the other.

site the site number of the orbital according to the Fplo output.

name an arbitrary name to identify the WF.

difvec the distance of the contributing orbital from the WF center. The difvec of the �rst contrib
to a wandef together with the site of the �rst wandef implicitly de�ne the WF center. The

choice of the WF center decides whether the WF is real or not. The WF must be de�ned such

that they are real. E.g. a single orbital/contrib WF should always have difvec 0 0 0. (In

full-relativistic mode WFs are likely to be complex not matter how the center is chosen.)

xaxis the local x-axis expressed in global coordinates

zaxis the local z-axis expressed in global coordinates
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sxaxis/szaxis the local x/z-axis for the spin wave functions expressed in global coordinates for

full relativistic mode.

This can be a string or a vector. If sxaxis is a vector szaxis must also be de�ned and a vector.

If it is a string, szaxis need not be and should not be speci�ed.

long short meaning

'global' 'glo' use the global cartesian axes

'local' 'loc' use the local axes as de�ned by xaxis/zaxis.

'quant' 'qua' use the global spin quantization axis as de�ned in Fedit

By default (if not speci�ed) the spin axis points into the global spin quantization axis as de�ned

in Fedit. If you want to construct projectors for full relativistic calculations using hand made

linear combinations of orbitals the spin axes matter for the actual orbital shape as well as

for transformation properties, especially if local coordinate systems are used. Example: the

Osmate jeff = 1
2 and jeff = 3

2 representations for the t2g subspace contain functions like∣∣∣∣jeff =
1

2
,meff =

1

2

〉
=

1√
3

(|dyz ↓〉+ i |dxz ↓〉+ |dxy ↑〉)

which contain speci�c orbital-spin combinations. In order to use the proper coordinate system

for the spin part we need to specify sxaxis='loc'. Then we only need to specify the xaxis/zaxis

pair to rotate the projector in the local coordinate system, including the spin-part.

The �rst contrib of eachwandef is written into the wfdata �les to be available for visualization
in Xfplo.

orb the orbital (e.g. 2s+0 or 3d-1). In full-relativistic mode the orbitals can either be pseudo

non-relativistic projections denoted by �3d-1 up� or �3d-1 dn� or spherical spinors denoted by

3d3/2-1/2 or 3d5/2+3/2.

fac a weight factor, determining the relative weight of the orbital/contrib in cases of multiple-

contrib wandefs. The weights need not to be normalized, this is taken care of.

automode can be valence, all or none: This option makes wandef de�nitions unnecessary. When this

mode is not none, wandefs for all valence or all semi-core and valence orbitals are created. This leads

to a larger Wannier basis and slower calculations. It helps however for automated tasks. Be aware, that

a larger ham_cuto� might be needed. In this context also a larger SCF k-mesh might be needed, since

a to small SCF k-mesh misses Fourier components of the more extended higher lying orbitals. This is

demonstrated in DOC/Tutorials/wan. If automode is valence and if some semi-core bands overlap

the valence sector, semi-core orbitals are added to the Wannier basis until the totality of resulting bands

has a clear gap below the lowest band. For convenience a python script called makewandeffromauto.py

is created. To modify this �le, please copy it.

coe�cients_format can be bin or something else. Since version 14.00, the �le +wancoeff can be converted

into binary format for faster loading. After the �rst Fplo run with a valid =.wandef present, +wancoeff

will have been created. A rerun will start the WF creation process. If this option is set to bin the

data �le will be converted into binary format, if not already done. On any further run the binary �le

+wancoeffbin will be read instead of +wancoeff. This is faster. The user has to take care of deleteing

+wancoeffbin whenever +wancoeff got changed due to settings changes by the user.

ham_cuto� restricts output of the real-space WF Hamiltonian in standard output and +T.... Also re-

stricts the matrix elements used in creating +hamongrid and +hamdata. Since version 19.00 the reach

of the matrix elements is restricted by the size of the SC k-mesh (dual R-lattice of the same size). This

avoids replica and allows to give a large cuto� for safer results when automode is used.
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WF_coe�_threshold restricts the output of coe�cients in +WF_coefficients.

WF_ham_threshold restricts the output of real-space Hamiltonian in standard output and +T... and

restricts the hoppings used in creating +wanbandtb, +hamongrid and +hamdata.

WF_write_coe�_stats can be on/o� and triggers the output of the �les +WFstat...

ham_write_t_stats can be on/o� and triggers the output of the �les +T...

print_T can be on/o� and triggers the printing of the T=... lines on standard output ...

do_WF_in_real_space can be on/o� and triggers the output of +WFstat and open-dx �les... every-

thing, which is related to the real space representation of the Wannier function. (If it is o�, the speed
increases.)

For the output of the WFs on the real space grid (visualization) we have to de�ne a grid

WF_grid_basis can be conv/prim. This de�nes the basis B =

 ~b1
~b2
~b3

 of the box-like grid. We can use

the conventional or the primitive basis vectors.

WF_grid_directions in terms of the basis we can de�ne three vectors forming the rows of V = DB. These

three directions span the grid-box. The input here is the matrix D.

WF_grid_subdivision subdivide the box along the directions V accordingly.

WF_grid_origin put the origin of the box here. If this keyword is commented out (e.g. xWF_grid_origin)
the box will be centered around the WF center.

For the output of the WF Hamiltonian on the k-space grid (�le +hamongrid) we have to de�ne a grid

k_grid_basis the basis B in reciproical space. (Note the reciprocial relations between bcc and fcc and the

like.)

k_grid_directions the directions V = DB de�ned here by giving D.

k_grid_subdivision subdivisions, see above.

k_grid_incl_periodic_points can be on/o�. The Hamiltonian in k-space is periodic. We can include or

exclude the periodically equivalent points at the boundary of the box.

opendx_interface if this keyword is found the old-style opendx interface �les (opendxWF.dx, WF.net and

WF.cfg) are produced. In the newer version the real space Wannier function data (wfdata...) can be

loaded into Xfplo directly.

6.2.3 De�nition of real spherical harmonics

We de�ne real spherical harmonics Ylm with magnetic qn. numbers m = −l, . . . , l as

Ylm (x, y, z) ∝ P |m|l

(z
r

){sin (|m|ϕ) m < 0

cos (|m|ϕ) m ≥ 0
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The sin/cos can be expanded according to the addition theorems, e.g. sin (2ϕ) = 2 sinϕ cosϕ. Using sinϕ ∝ y
and cosϕ ∝ x we get sin (2ϕ) ∝ xy. Additionally we need P

|m|
l

(
z
r

)
∝ polynomial of degree l −m in z. Thus,

Y2,−2 ∝ P 2
2

(z
r

)
sin (2ϕ) ∝ xy

Y2,−1 ∝ P 1
2

(z
r

)
sin (ϕ) ∝ zy

Y2,0 ∝ P 0
2

(z
r

)
cos (0ϕ) ∝ z2

Y2,1 ∝ P 1
2

(z
r

)
cos (ϕ) ∝ zx

Y2,2 ∝ P 2
2

(z
r

)
cos (2ϕ) ∝ x2 − y2

For more speci�c information on the polynomial in z one has to look up the associated Legendre polynomials

P
|m|
l (z).

6.2.4 Full relativistic spin-part

In full relativistic mode the spin part is important. The real space representation on the grid for visualization

with Xfplo is containing the large and small component for spin up and spin down. Usually, you would focus

on the large component. So, e�ectively we have a spinor(
g↑
g↓

)

which is expressed via eigenfunctions χ↑ =

(
1

0

)
and χ↓ =

(
0

1

)
of the spin in the global cartesian system.

In the current implementation a global spin quantization z-axis can be de�ned in Fedit which results in

a colinear approximation for the xc-�eld pointing in this direction. The Xfplo interface o�ers to display

the spinor components (or density n or spin-density m, colored by the spin polarization ζ = m
n ) in a spin

basis which corresponds to the xc-�eld direction. To be speci�c the Wannier function (the data in the �les

wfdata...) is expressed in global coordinates as

W = χT g =

( (
1

0

) (
0

1

) )(
g↑
g↓

)
The xc-�eld induces a transformation of the form BTR = (00Bz′), where R is a 3 × 3 rotation matrix. The

matrix R is obatined as R =
(
e′xe

′
ye
′
z

)
, since then we get for a �eld in e′z-direction B = Bz′e

′
z

BTR = Bze
′T
z

(
e′xe

′
ye
′
z

)
= Bz′ (001) = (00Bz′)

The corresponding spin eigenfunctions in this frame are expressed by χ′T = χTD, where D is a 2 × 2 spin

rotation matrix with the property

σTR = DσD+

σTRT = D+σD

where σ is the vector if Pauli matrices. Let's express the Zeeman term in this spin basis

EZ =
〈
χ′T | σTB | χ′T

〉
= D+

〈
χT | σTB | χT

〉
D

=
〈
χT | D+σTBD | χT

〉
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where the last step is possible because χT is the unit matrix.

EZ =
〈
χT | D+σTBD | χT

〉
=

〈
χT | D+σTDB | χT

〉
=

〈
χT | σTRTB | χT

〉
=

〈
χT | σT

(
BTR

)T | χT〉
=

〈
χT | σT (00Bz′)

T | χT
〉

=
〈
χT | σzBz′ | χT

〉
which shows that the �eld in this basis looks like a �eld in the z′-direction. Now, the Wannier function in the

xc-�eld frame will be

W = χ′TD+g

which has components

g′ = D+g

in this spin frame. If the spin polarization energy is larger than the spin-orbit coupling this spin frame will

show the purest spin character for Wannier functions, which have a spin axis along the global quantization

z-axis, as given by the keywords sxaxis/szaxis.

6.2.5 Problems

The number of k-points used in the SCF calculation in�uences the Wannier function quality. If the k-

mesh is not �ne enough, the band structure determined by diagonalizing the WF Bloch Hamiltonian Eq.

(6.5) (+wanband) will not coincide with the corresponding bands of the full Fplo band structure (+band).

(Coincidence can of course only happen anyway, if the WFs describe an isolated band complex.)

If the real space Hamiltonian cuto� is smaller than the extend of the WFs the �tted Wannier bandstructure

(+wanbandtb) will not conincide with the full WF band structure. This may also be due to a bad Wannier

de�nition, which is not localizing the WFs su�ciently (check energy window, use molecular orbitals � several

contribs per wandef � instead of simple orbitals).

There might be unnatural spikes at certain k-points in the WF band structure. This usually means that the

energy window is to narrow and that the character of χ is only large outside the window at the corresponding

k-points.

If slabs or chains are calculated, there is an arti�cial periodicity in the irrelevant directions. If not enough

SCF k-points are used in these directions, we get in�uences of the arti�cial periodic replica (actually replica

are avoided now, but there still might be artifacts). Hence, either the vacuum spacing is very large, which is

detrimental for other parts of the code, or one has to use su�ciently many points in the irrelevant directions.

However, always �rst start with subdivision 1 in this direction and only if this fails try more poinst. (Only

some experimenting can tell.) Especially, when the position operator is requested additional points in this

direction might be needed. This operator really is badly converging.

6.2.6 Saving memory (and time)

In order to reduce the size of +wancoeff the user can set the FEDIT option �restrict bands to window� in the

bandplot submenu. Then lower and upper energy bounds in the same submenu de�nes the bands, which will

be written to +wancoeff for all data contained in this �le.

Use the coe�cients_format option in =.wandef in order to convert +wancoeff to binary format.
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6.3 Examples

All examples can be found in ../WannierFunctions/.

6.3.1 Hexagonal, Graphene, MgB2: sp
2

Here we analyse the Wannier function choices for a hexagonal lattice with essentially two atoms per unit cell.

The main issue is to understand the symmetry considerations.

Have a look at the accompanying example directories for MgB2.

g1

g2

M

K

s2

s1

a1

a2

Figure 6.4: Real and reciprocal cell of graphene, MgB2

Figure 6.4 shows the basic lattice structure. We have a unit cell given by

A =

 aT1
aT2
aT3

 = AE, E =

 eTx
eTy
eTz

 , A =

 aH 0 0

0 aH 0

0 0 cH



√

3
2 − 1

2 0

0 1 0

0 0 1


and two sites sT = sTA, sT1 =

(
1
3

2
30
)
, sT2 =

(
2
3

1
30
)
. The reciprocal space is spanned by

G = 2πA−T =

 gT1
gT2
gT3

 = 2πGE, G = A−T =

 1
aH

0 0

0 1
aH

0

0 0 1
cH




2√
3

0 0
1√
3

1 0

0 0 1


(A−T =

(
AT
)−1

=
(
A−1

)T
) with orthogonality

GAT = AGT = 1

and closure

GTA = ATG = 1

The two high symmetry points in Fig. 6.4 are

M =

(
1

2
00

)
G =

2π

aH

(
1√
3

00

)
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K =

(
1

3

1

3
0

)
G =

2π

aH

(
1√
3

1

3
0

)
The symmorphic space group is 191 with a maximal point group D6h at (000) with generators C6 (z), C2 (0)

and I (indicated in Figure 6.4). Clearly Ĉ−1
6 s1 = s2. The local pointgroup at the two sites is D3h with

generators C3, C2 (0) and 6 = IC6. For the sake of de�niteness let's de�ne operations. We understand the

operation g to actively transform the basis vectors ex,y,z into a new set according to

gET = ETR (g)

where R (g) is the 3D real space representation matrix of operation g. Multiplication from the left with a

symmetry operation as in gET denotes the actively transformed object E′T . If we emphasize that something

is the operation (as opposed to the representation matrix) we use an explicit operator symbol as in Ĉ6, while

representation matrices are denoted by plain symbols.

For example

g = Ĉ6, R (C6) =

 1
2 −

√
3

2 0√
3

2
1
2 0

0 0 1


transformes the basis ET as

Ĉ6 (exeyez) = (exeyez)R (C6) =

(
ex +

√
3ey

2
,
−
√

3ex + ey
2

, ez

)

The coordinates of the actively rotated real space vector r = ET r can be obtained from the basis transformation

according to

r′ = gr = gET r = ET (R (g) r)

which can be abbreviated by

gr = R (g) r

or grT = rTRT (g).

Applied to our example we get the following relation

Ĉ−1
6 s1 = ETC−1

6 s1

= ETC−1
6 AT

 1
3
2
3

0


= ET

(
ATG

)
C−1

6 AT

 1
3
2
3

0


= ETAT

(
GC−1

6 AT
) 1

3
2
3

0


= ETAT

 0 1 0

−1 1 0

0 0 1

 1
3
2
3

0


= ETAT

 2
3
1
3

0


= s2
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A set of functions of the coordinates (orbitals) transforms as

gfm (r)
def
= fm

(
g−1r

)
= fm

(
rTR (g)

) def
=
∑
n

fn (r)Df
nm (g)

where Df
nm (g) are the representation matrices of the group in the space spanned by fm. In other words the

orbitals gfm (r) are also actively transformed like the Cartesian basis vectors ex,y,z.

In our examples we have a light p element sitting at the two sites of lower than maximal symmetry. The

essential basis consists of one s and three p orbitals. Figure 6.5 shows the band structure of MgB2, where the

boron bands are highlighted. (The Mg bands do not play a big role in this energy window.)

Figure 6.5: Bandweights of boron in MgB2

The irreducible representations of the site symmetry D3h make px,y an E
′′ doublet and pz a A

′′
2 singlet, while

the s-orbital represents an A′1 singlet. In total we have 8 orbitals and hence bands. Due to the symmetry the

pz bands largely decouple from the other orbitals along high symmetry lines in the kz = 0 and kz = π
cH

planes.

At general points they of course couple. Furthermore, these bands cross the Fermi level, while the s and px,y
bands form bonding and anti-bonding band complexes of three bands each separated by a gap. The bonding

band complex has exactly three bands, while the AB complex shows a high degree of band entangling with

other bands. The two pz bands cannot be separated into two distinct bands because of their Fermi surface and

symmetry (see Sec. 6.3.2). However the planar-orbital bands can be represented by di�erent kinds of Wannier

functions.

The simplest way of de�ning WFs is to use the atomic s, px,y orbitals sitting at the two sites. This more or less

reproduces the Fplo band characters. Another alternative is to try to �nd WFs for the bonding (anti-bonding)

bands only. There are essentially three bands in each band complex and it is immediately clear that atom

centered functions cannot ful�ll the crystal symmetry due to the number of sites (two). The bands must be

combinations of orbitals from both sites and hence an odd (3) number of orbitals from an even number of sites

(2) cannot be symmetric. We discussed the irreducible representations of the orbitals in the site symmetry

above. We have a singlet (s) and a doublet (px,y) (as is re�ected in the degeneracies at the Γ-point) but all

three orbitals are mixed in the bonding bands (no further decoupling).
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x

s1

s2

Figure 6.6: sp2-hybrid basis. The left panel shows one sp2-orbital at both sites (�lled) and the remaining two

120◦/240◦-rotated orbitals at s1 (open). The right panel shows a bonding bond-centered combination (full)

and two symmetry related combinations (open).

Unfortunately, there is hardly a simple linear combination of say the px,y orbitals from both sites, which will

ful�ll the full crystal symmetry. Hence, we have to resort to reducible representations aiming at constructing

as highly symmetric orbitals as possible. The well known answer is of course sp2 hybrids. We introduce the

following orbitals at each site  Φ1

Φ2

Φ3

 =
1√
3

 s+
√

2px
s+
√

2C3px
s+
√

2C2
3px


which are depicted in the left panel of Figure 6.6. Note, that here C3px is the C3 rotation of the px orbital

with the rotation origin at the site not at the global coordinate origin.

Obviously, C3px is not parallel to px and hence contains some py. On the other hand
(
1 + C3 + C2

3

)
= 3P‖

where P‖ is a projector onto the rotation axis. For in-plane objects P‖px,y = 0. This consideration shows

that the p-parts of Φ1,2,3 are linearly dependent, however, with the s-admixture they span the same space as

s and px,y. The factors are chosen such that |Φi|2 = 1 and that
∑
i |Φi|

2
contains one |s|2 density and two |p|2

densities.

Now, we can put three sp2 hybrids onto each site (rotated by 60◦, 180◦ and 300◦ at the second site) and clearly

they posses maximum crystal symmetry as a reducible 3-dimensional representation. (Figure 6.6, left panel).

The symmetry relations are (rotation origin at (000))

C6Φs2,1 = Φs1,3, . . .

C3Φs,1 = Φs,2, . . .

C2 (0) Φs2,1 = Φs2,1, C2 (0) Φs2,2 = Φs2,3, . . .

IΦs2,1 = Φs1,2, . . .

where we have droped the details which show in which unit cell the transformed orbitals end up. This

information is important for a detailed and complete description of the space group symmetry but is not

necessary here. What these relations show however is that the sp2 orbitals at both sites span a basis under

the full symmetry. The resulting Wannier function fat bands are shown in Figure 6.7.

The advantage of this high symmetry is that we now can create linear combinations of one sp2 from each site

at the bond centers and by construction this additionally generates two similar symmetry related combinations

(Figure 6.6, right panel). This would not be possible if we used the irreducible s and pxy orbitals. In that way

Table of Contents | Index



6.3. Examples 69

Figure 6.7: Wannier function �t with 3 sp2-orbital per site.

one can separate the bonding from the anti-bonding orbitals. This is an example for the fact that in many

covalent p-electron systems the bonding/anti-bonding bands must be described by bond-centered Wannier

functions (Carbon chain: sp1, diamond sp3). Once we have separated the bonding Wannier functions, we can

of course produce either a separate �t for the bonding or anti-bonding bands respectively (Figure 6.8) or a �t

for bonding and anti-bonding bands together (however with clear energy separation of the orbital).
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Figure 6.8: Bonding/anti-bonding bond centered Wannier function �ts.

One last consideration concerns the choice of energy windows. For the entangled anti-bonding bands to be �tted

better we put a narrow energy window onto the occupied bonding bands but allow for a large Gaussian tail at

the upper side of the energy window. This pulls the majority weight from the well-separated bonding bands

and magically adds the missing anti-bonding weights. If we extend the main energy window to encompass the

anti-bonding bands it would pull in weights from higher lying bands, which also show s and px,y character,

which in turn pulls the �tted bands up in energy. This trick can be used rather generally to improve the

Wannier �t.

6.3.2 Hexagonal, Graphene, MgB2: pz orbitals

To elucidate the situation with the pz subsystem we perform a little excercise. As we stated earlier the

pz bands largely decouple from the rest, but have a Fermi surface which prohibits the separation of bonding

and antibonding bands

The local pz basis consists of two functions ΦRs (r) = Φs (r −R− s) destinguished by the site label s = s1, s2.

This basis can be used as Wannier projectors and allows the construction of pz WFs for the pz two-band complex

Table of Contents | Index



6.3. Examples 71

as a whole. The corresponding Bloch functions, which form a basis for the eigenstates of the Hamiltonian are

Φk
s =

1√
N

∑
R

eik(R+s)ΦRs

The convenient additional phase factor eiks is a uniform U (1) phase of each function and does only a�ect the

Boundary condition: Φk+G
s = Φk

s eiGs. It removes the origin dependence in matrix elements.

For molecules one can form symmetrized molecular orbitals. So we will introduce them for the lattice as well.

The �benzene-ring� orbitals around the point (000) (center point in the left panel of Fig. 6.4) are

Φ± =
1√
6

[(
1 + C3 + C2

3

)
Φs1 ±

(
1 + C3 + C2

3

)
Φs2
]

Its Bloch functions are given by

Φk
± =

1√
N

∑
R

eikRΦ±

=
1√
N

∑
R

eikR
1√
6

[(
1 + C3 + C2

3

)
Φs1 ±

(
1 + C3 + C2

3

)
Φs2
]
R

Note that the subscript R at the square bracket means that one �rst constructs the molecular orbital by

applying all symmetry operators and then shifts the whole object to the lattice vector R.

We use the following detailed transformation properties

C3s1 = −s2 =

(
−2

3
− 1

3
0

)
= s1 − (110)

C2
3s1 =

(
1

3
− 1

3
0

)
= s1 − (010)

C3s2 =

(
−1

3

1

3
0

)
= s2 − (100)

C2
3s2 =

(
−1

3
− 2

3
0

)
= s2 − (110)

to re-express the ring Bloch functions via the local basis Bloch functions (of which we know that they form a

basis): (
1 + C3 + C2

3

)
Φs1 = Φs1 (r − s1) + Φs1 (r − s1 + (110)A) + Φs1 (r − s1 + (010)A)[(

1 + C3 + C2
3

)
Φs1
]
R

= Φs1 (r −R− s1) + Φs1 (r − (R− (110)A)− s1) (6.8)

+Φs1 (r − (R− (010)A)− s1) (6.9)

and similarily for s2. Under the Bloch sum we can rede�ne the R summation variable to remove the additional

lattice vector shifts of Eq. (6.8)

1√
N

∑
R

eikR
[(

1 + C3 + C2
3

)
Φs1
]
R

= Φk
s1e−iks1 + Φk

s1eik((110)A−s1) + Φs1eik((010)A−s1)

Φk
± =

1√
N

∑
R

eikR
1√
6

[(
1 + C3 + C2

3

)
Φs1 ±

(
1 + C3 + C2

3

)
Φs2
]
R

=
1√
6

((
1 + eik(110)A + eik(010)A

)
Φk
s1 ±

(
1 + eik(100)A + eik(110)A

)
Φk
s2

)
e−iks1
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One can see that the additional phase factors vanish for k = ±
(

1
3

1
3kz
)
G. Hence on the whole line KH

Φk∈KH
± = 0

Consequently, the ring functions do not span a basis for the whole BZ. This leads to singularity warnings in

the WF module. If, however the input data for the wandefs is not precise enough such that numerically the

phase factor calculated above is not exactly zero it looks as if the process worked. What you will experience

is that the exact WF transform in +wanband might �t the Fplo bands while the +wanbandtb �t only �ts if

a very large ham_cuto� in real space and a very small threshold WF_ham_threshold are considered.

This is so because the WFs de�ned via ring-functions are essentially non-analytic.

In summary, the ring functions are good for molecules but not for extended states. In moleculs there is no

Fermi surface. The MO levels are discrete and hence in this case the MO WFs work. One last note: the ring

functions do not work since the ring combines orbitals of several unit cells with �xed phase factors. There

are less (2) resulting MOs than unit cells (3) involved in de�ning them. This should make clear that a linear

combination of the MO Bloch sums cannot have the same �exibility and hence Hilbert space size as the

individual orbitals. In truth we left out four of the six possible ring linear combinations. However our Hilbert

space has dim = 2 (two bands or pz orbitals per cell). This too tells us that there is something wrong. A

locally complete ring basis has dim = 6 but we use a dim = 2 basis in the unit cell to construct this. The full

phase �exibility requires to use all six ring orbitals but the resulting six Bloch bands must be overcomplete.

Of course, in other cases the ring MOs might work, e.g. if the ring is completely contained in a single unit cell

and if the other four MOs have higher energy.
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Chapter 7

Grep data from output: Grepfplo

7.1 Speci�c data

The old grEE �avours of output greping have been enriched/replaced by the program Grepfplo.

Usually di�erent calculations are performed in di�erent directories, with input values changing from calculation

to calculations. If the directory names are given such that they contain the value in the name, output greping

is straight forward. Let's suppose we have a bunch of dirs for varying FSM momenta and the dirs are called

M=1, M=2, M=2.3 and M=2.5. The output �les are called out in all dirs. We can now create a data �le containing

the FSM momenta and total energies of all four dirs by calling

grepfplo -m EE -p M=

which results in a �le looking something like:

1 -141.12

2 -141.13

2.3 -141.14

2.5 -141.13

Note, that we changed the table for the onsite orbital momentum to show entries for each site not each sort.

This is repetitive information, but more consistent with other tables.

Grepfplo has a help screen (option -h), which is shown below:

Extract data from the fplo output file(s)

Usage: grepfplo [-h] -m mode [options] (-p prefix) (-f outfile) ([-a(ll)])

([-x(fbp)]) ([-xm(grace)])

We assume that separate calculations are done in separate directories

and that the directory names contain the running variable value.

prefix: is the prefix string of a bunch of directories, of

which the data shall be extracted. (Default is . =current directory.)

The prefix is used to select the directories and is removed from the

directory name to get the corresponding values;
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E.g. if the directories are named

M=0.1 M=0.2 M=0.3, the prefix M= will result in a data set

0.1 data1

0.2 data2

0.3 data3

where data... is the data actually extracted from the output files. (See below.)

If the directories are named id=1_M=0.1 id=2_M=0.2 ..., the prefix

'id*M=' (quotes are important) will give the same list as above.

The prefix is used to identify the directories but also

is removed from the directory name to obtain the values of the

first column (which are encoded in the dir-names).

Use single quotes to protect * in shell context;

If prefix is . (simple dot), the file in the current directory is scanned.

In this case the option '-all' will make a list of the data indexed by the

iteration step.

outfile: is the name of the output file, which should be the same in all

directories. Default is out.

modes: Default is EE.

EE: extract the total energy. There is no options. Examples:

grepfplo -m EE -p 'id*M=' -f out

This extracts all Etots from all directories named id*M=...

where * can be anything and ... after M= is usually the value of M for

this particular directory/calculation

The result is a table of M and Etot values

grepfplo -m EE -p M= -f out

Same as above, but for directories called M=...

grepfplo -m EE -p . -f out

Extract last total energy from file out in current directory

Equivalent to grepfplo -m EE or grepfplo

grepfplo -m EE -p . -f out -a

Extract total energies for all iteration steps from current directory

The resulting table has columns 'iteration step' 'total energy'

Equivalent to grepfplo -a

grepfplo -m EE -p . -f out -a -x

grepfplo -m EE -p . -f out -a -xm

Extract total energies for all iteration steps from current directory

and send them to xfbp (-x) or xmgrace (-xm)
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This is equivalent to grepfplo -a -x or grepfplo -a -xm

FF: free energy (if it applies)

EEcorrected: broadening corrected energy, (Efree+Etot)/2

SS: total gross spin. no options.

it: iteration progress

fit: force iteration progress

time: timing of one cycle

term: termination of process

SSat: total gross spin of atom. Options: site-number. Examples

grepfplo -m SSat 13 -p M= -f out

N_net/N_gros/S_net/S_gros: individual population numbers.

Options: site-number orbital-number.

orbital-number is the number of the orbital in the order as printed in the

population analysis.

If orbital-number is out of range the total site population number is printed.

For the N_gros cases there is one more number than for N_net and S_..., which

is the number of excess electrons of the site.

Lzat: the orbital moment of an atom. Options: site-number. Example

grepfplo -m Lzat 12 -p U=

Bfsm: the auxillary magnetic field needed to set the FSM moment.

dBfsm:the change of the auxillary magnetic field needed to set the FSM moment.

This is for controlling what's going on in full relativistic FSM calculations.

NkTotal:the total number of k-points in the BZ.

spinmoments:table of all spin moments.

orbitalmoments:table of all orbital moments.

gmBJ: the modified Becke Johnson g-parameter.

cmBJ: the modified Becke Johnson coefficient.

gap: the total gap.

7.2 Categorized data

Several modules write their output with a pre�x in order to easily extract the data. E.g. the topological

insulator module pre�xes all output with �TI:�. In order to grep it
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and to pipe it to a pager or save it to a �le you can do something like

grep TI: out | less

or

grep TI: out | more

or

grep TI: out | tee tidata

or

grep TI: out > tidata

Possible pre�xes are listed in Table 7.1.

Module Pre�x Comments

Forces FORCES:

Topological Insulator TI:

Optics OPTICS:

Molecular fatbands FATBANDS:

dHvA iso surface stage ISO:

Normal iteration information SCF:

Parallel execution MPI: not ready yet

Force iteration information FORCES:

Preparing basis potentials vatom[Wyckoff number] (e.g.

vatom1)

Only shown, if

verbosity level ≥ 4

Start density preparation startatom[Wyckoff number]

(e.g. startatom1)

Table 7.1: Module output pre�xes
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Chapter 8

Adding band weights: Faddwei

Band weights are created if the bandstructure plot and weights options are set in Fedit. This will produce

+bweights. The bandplot submenu of Fedit contains the option to de�ne a coordinate system for the orbitals

to project on (transform axes). In full relativistic mode additonally a projection onto quasi non-relativistic

symmetries is provided in the �le +bweightslms.

The full relativistic basis has quantum numbers ljµ, while the non-relativistic basis has lmσ (σ is spin up or

down). In not full relativistic mode the spin is encoded by having spin up and spin down bands. This means

that for non-spin polarized calculations only one set of bands/weights is needed. In full relativistic mode spin

is not a good quantum number, hence a projection into lmσ space is approximate. Furthermore, the spin

is no longer distinguishing bands. Instead spin becomes a weight itself, which means that the orbitals are

now carrying an explicit spin label. For non-spin polarized full relativistic calculations the resulting fatbands

are written for both spin directions, for the reason that in systems without inversion symmetry there can be

spin polarization of individual eigen functions even though the sum over all eigen functions always produces a

non-polarized density.

The weights are normalized such that the sum of the weights of all orbitals at a certain point of the band-

structure add up to one. In full relativistic mode with lmσ projection they add up to one summing over the

spins, which are now part of the orbitals. If there is an inversion center and a non-spin polarized calculation,

Kramers degeneracy will lead to every band being doubly degenerate. In this case the spin-up an spin-down

weights will be equal. A pure band with pure orbital character, say Fe 3dz2 will actually have weight 0.5 for

each spin, so that the weights appear half as small as compared to a not full-relativistic calculation. On the

other hand there will be two degenerate bands (inversion center → Kramer) which e�ectivly gives the same

counting as in not full-relativistic treatment. This has to be kept in mind when interpreting (adding) band

weights in such cases.

As an alternative to the default route of producing fatbands the =.bwdef mechanism Sec. 9.3 can be used to

create custom tailored weights.

Once a �le +bweights... or another �le containing band weights exists it is sometimes desirable to add

several weights together to create coarser representations. E.g. the default weights for a 3d transition metal

would contain weights for each individual orbital 3dxy, 3dyz, 3dz2 , 3dxz and 3dx2−y2 . The weights �le contains

a header, which names the character of each weight. In a default �le these labels are named e.g. �Fe(003)3d-1�,

which stands for iron site 3 orbital 3d−1. In not-full-relativistic calculations the angular part of the orbitals

are de�ned as real spherical harmonics Ylm with respect to the global cartesian coordinate system. In this

system we get the labeling Table 8.1.

In a full relativistic calculations the angular parts of orbitals are de�ned as spherical spinors.

χκµ = χljµ =

1∑
s=−1

csκµχsYl,µ− s2
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with Clebsch-Gordon coe�cients csκµ the complex spherical harmonics Ylm and the spin-orbit quantum number

κ: κ
(
l, j = l − 1

2

)
= l, κ

(
l, j = l + 1

2

)
= −l−1. These spinors are completely speci�ed by the quantum numbers

l, j = l± 1
2 and µ = −j, . . . , j. The indices ljµ span a space of 2 (2l + 1) orbitals, which is the the same number

as for the non-relativistic lm orbitals if spin is counted (lmσ).

real Ylm complex Ylm
m s p d f s p d f

-3 y
(
3x2 − y2

)
e−i3ϕ

-2 xy xyz e−i2ϕ ze−i2ϕ

-1 y yz y
(
5z2 − 1

)
e−iϕ ze−iϕ

(
5z2 − 1

)
e−iϕ

+0 1 z 3z2 − 1 z
(
5z2 − 3

)
1 z 3z2 − 1 z

(
5z2 − 3

)
+1 x xz x

(
5z2 − 1

)
eiϕ zeiϕ

(
5z2 − 1

)
eiϕ

+2 x2 − y2
(
x2 − y2

)
z ei2ϕ zei2ϕ

+3 x
(
x2 − 3y2

)
ei3ϕ

Table 8.1: Mapping spherial harmonics to functions. (Normalization/Phases not included!)

In a user manipulated �le these labels can contain anything. They are however restricted to 17 characters.

Now, it could be good to show fat bands for the whole 3d set of orbitals, which means that we have to add

wsum =
∑2
m=−2 w3dm . More generally, one could add all weights corresponding to a certain site or several

sites and so on. This is achieved by Faddwei. It supercedes the old programs addweig and addweights. The

program has commentline �ags (try -h).

Faddwei reads one weight �le (+bweights... or such) and one state-de�nition �le. The default is =.addwei.

When starting fresh it o�ers to create an example state-de�nition �le. This �le tells which weights/orbitals

have to be added into a new weight. There are two options to do that. Either specify a complete label for each

weight to be added, or specify an element a number of sites and a number of orbitals. Optionally, a factor can

be given, which is multiplied to each weight of the corresponding speci�cation before adding all up. This is

most likely seldomly nessecary.

If pseudo-nonrelativistic projections onto Ylm symmetries are created in full relativistic mode lmσ-projection

or using the =.bwdef mechanism (Sec. 9.3) the default orbital labels contain an additional spin indicator

(up/dn) at the end, in which case the input in =.addwei must specify the spin. In ordinary calculations the

spin is encoded by haveing one band for each spin direction. This however is not possible in full-relativistic

mode, hence the explicit spin in the default labels.

To obtain a complete (long) list of all labels use Faddwei -p.

Examples:

� We have Fe at sites 2,3,4 and 8, oxygen at sites 12,13,14,15,16 and some other stu�. We de�ne one

weight with name Fe3d one with �O2p� and one with �Fe O all�.

# all Fe 3d

name �Fe 3d�

atom Fe sites 2..4 , 8 orbitals 3d # all Fe 3d orbitals for sites 2,3,4 and 8

# all O 2p

name='O 2p'

atom= O sites =12..16 orbitals= 2p # all O 2p orbitals for sites 12 through 16

# one weight sum containing Fe and O

name 'Fe O all'

atom Fe sites 2..4 8 orbitals 3d

atom O sites 12..16 orbitals 2p

Table of Contents | Index



79

� We have a weight �le with labels �all Fe� �all O� and �K s� created by some other tools. Lets create one

weight with them all summed up but with the �all Fe� weight being multiplied with factor 2

name all

labels 'all Fe' fac 2

labels 'all O' 'K s'

� We have a full-relativistic calculation and created pseudo non-relativistic Ylm projections. Weights of Fe

3d are obtained via

name Fe_up

atom Fe sites whateversites orbitals 3d spin up

name Fe_dn

atom Fe sites whateversites orbitals 3d spin dn

name Fe

atom Fe sites whateversites orbitals 3d spin both

� We want all orbitals of Fe site 2. (This would add all orbitals whose labels start with �Fe(002)� including

all spins for pseudo-nonrelativistic weigths. If you want the spins separately add the orbitals explicitly)

# all weights whose label reads Fe(002)....

name 'All Fe'

atom Fe sites 2 orbitals all

# all essential spin dn Fe orbitals from pseudo-nonrelativistic projections

name 'all Fe dn'

atom Fe sites 2 orbitals 3s 4s 3d 4d 4p spin dn

The way the program works is to assemble all labels �El(site)orb[spin]� which can be created from the de�nition

and sum them with optional factors. The resulting labels must exist int he �le header. If the �labels� keyword

is used the �le header must contain these labels.

Quotes (� or ') can be used to include spaces into names and labels, but they are not needed when no space

is contained in a name or label. Comments start with # and end at the line end. Commas can be used to

separate list elements but are not needed. An = sign can be added after keywords for convenience (name=Fe

instead of name Fe). The range speci�er 2..6 is usefull and expands to 2,3, ... 6 for long integer lists.

There is the option (ewindow) to de�ne an energy window, which when de�ned restricts the band written

to the output �le to bands, which are not completely outside this window. This saves time and makes the

resulting �les smaller.

The program writes the labels it selected to stdout. Please check the list.

Formal grammar:

� #comments

can appear everywhere

� weightinfile �le_name_of_input_weight_�le

this will de�ne, which weight �le (e.g. �le+bweights...) is used as input. If the commandline option -f is

used the command line argument �le name will be used instead.

� weightoutfile �le_name_of_resulting_weight_�le

this will de�ne, which weight �le (e.g. �le+bwsum...) is used as output.If the commandline option -o is

used the command line argument �le name will be used instead.
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� ewindow emin emax

remove all bands, which are completely outside this energy window (in eV). This makes the resulting �le

smaller.

� name somename

starts a new output weight adding all the weights de�ned by labels- or atom- keywords after this until

the next name-keyword or end of �le is met.

� labels list_of_input_weight_�les_labels [fac number]

extract and sum all weights corresponding to the labels given in the list. These labels must appear in

the input weight �le header. Optionally a factor can be speci�ed, which is multiplied to each resulting

input weight before adding them all up.

� atom element sites list_of_int_or_ranges orbitals list_of_orbitalnames [spin up|dn|down|both]

[fac number]

select all input weights with labels El(site)orb[spin] multiply them with the optional factor and add them

to the output weight de�ned in the previous name clause. The site list can be a list of integers are ranges

(e.g. 4..8). Orbital names can be

nl: selects all orbitals nlm. Example 3d: results in 3d-2, 3d-1, 3d+0, 3d+1 and 3d+2.

nlm: select orbital nlm. Example 3d+0: results in 3d+0 (the plus sign matters!)

nlj: select all orbitals nljµ: Example 3d3/2: results in 3d3/2-3/2, 3d3/2-1/2, 3d3/2+1/2 and

3d3/2+3/2

nljm: select orbital nljµ: Example 3d5/2+3/2: results in 3d5/2+3/2

all: select all labels, which are speci�ed by the atom and sites keywords resulting in labels

El(site)...

Note, that the orbtial name nl will select the non-relativistic names. If you want to add the whole

3d-shell in a full-relativistic case use �3d3/2 3d5/2� to get the whole nl-shell.
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Chapter 9

Graphical interface: Xfplo

9.1 Structure viewer

Structures can be loaded via

Xfplo =.in

Xfplo =.xstr

Fresh start in structure mode

Xfplo -str

Structures can be manipulated in the symmetry dialog. From there one can export =.in, which also involves

a symmetry update of =.in. The whole picture (not just the structure) can be saved into =.xstr.

9.2 Fermi surface viewer

A fresh start in fermi surface mode is

Xfplo -fs

One can save all settings (but not the +band data . . . to big!) in =.xef, which can be loaded via

Xfplo =.xef

One can also de�ne the path through the Brillouin zone for band structure plots in the Fermi surface mode.

To achieve this �rst you need at least a =.in (use Fedit or the symmetry dialog in the structure viewer to

create this.) Then open

Xfplo -fs

Now, switch o� the Fermi surface display via the Fermi-surface button and switch on the high symmetry points

(Fig. 9.1). Open a dialog: Menu plot → high-symmetry-points. Switch on user-de�ned. Load default if you

want. Select a point in the list. Click on the pick button, select current, click on a green point in the Brillouin

zone, hit enter or press accept. You must have changed a point. Use pick-button → to create a new point.

Use F2 in the list to edit or just start typing. Export to or import from =.in, if needed.
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Figure 9.1: Fermi-surface and sym-points buttons.

9.3 Molecular/individual band weights

The default method to created an orbital projected bandstructure (fatbands/band weights) is to switch on

band weights in Fedit. The more �exible way is to use the band weight editor mode of Xfplo. On a fresh

start use Xfplo -bw or with an existing �le Xfplo =.bwdef to edit the desired band weights. There are help

screens in the program.

One can use this interface to request single weights for selected atoms, which would help to reduce the �le size

of the usually big �le +bweights.

One can also create molecular orbital projectors, which are linear combinations of atomic orbitals with certain

coe�cients, which determine the bonding character and symmetry of the molecular orbital.

9.4 Density mapper

This is not well tested and was implemented on special request of some user.

An existing calculation (call it A) with a =.dens �le can be a good starting point for a modi�ed structure (call

it B). However, since the structure of B determines the dens-�le of B the dens-�le of A cannot be used in B.

You can use Xfplo to de�ne the �le =.densmap.

We assume that calculation A exists and that the structure of calculation B is already set up (=.in exists).

1. Go into the directory of the the new calculation B.

2. Call �Xfplo =.in� to display the structure.

3. Open tools→density-maper.

4. Click button �Open old structure� and select the =.in of directory A. This will open a new structure

view, this time of A.

5. In the mapper table click on an atom of new structure B. The atom will be highlighted. Now click on

the atom fo structure A, whose density shall be copied onto the selected B-atom in the dens-�le to be

created.
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6. You can use the �Copy this atom� button to copy this de�nition to all B-atoms with the same element.

Proceed with all B-atoms, which have an equivalent in the A-structure. You can leave some B-atoms

un-mapped, in which case a default starting density for these missing atoms will be produced by Fplo.

You can also open other old structures and map atoms from there.

7. Save the �le in the directory of calculation B (name =.densmap).

8. Quit Xfplo.

9. Run Fplo in the directory of B until it stops after creating a new =.dens.

10. Zip or rename or delete =.densmap.

11. You can now start the B calculation with the freshly mapped dens-�le.

Note, that only the spherical part of the local site densities are copied during mapping. Hence,
the created mapped density is not nessecarily a good starting point.

9.5 Help

Inside Xfplo there are help screens, which explain basic operations in most places which are listed here:

../Xfplo/xfplo.pdf.
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Chapter 10

Plotting program: Xfbp

Use this to plot band structures/DOS and stu� like this. There are help screens (main window and Script

editor (Transform Dialog), which explain basic operations:

The new version of the documentation for Xfbp is in an external �le ../Xfbp/xfbp.pdf
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Chapter 11

Occupation matrix manipulator: Dmatedit

LSDA+U uses onsite occupation number matrices for certain nl−shells (de�ned by the user in Fedit). These

matrices are saved in =.dmat_init and serve as input for consecutive runs. Sometimes the user needs to

see/edit them in some local axes and/or complex harmonics basis in order to prepare starting conditions

for new runs in order to force the calculation into one of the many possible local (meta) stable solutions of

LSDA+U. This is provided by this program. It needs the �le =.dmat_init, which gets created once LSDA+U

was switched on and Fplo was runing at least once after switch on. It reads this �le, lets you manipulate it

and saves it back on Save/Quit. Note, that the program always saves the �le =.dmat_init in real
harmonics basis of in the global cartesian coordinate system. It uses transfomrations de�ned
by all the settings in the dialog to display the matrices appropriately in local axis and chosen
harmonics, but does save the matrices after transforming them back into the global system. That
means the �le can look di�erent from what's shown on screen. In full-relativistic calculations the spin density

matrix ns
′s
mn can be non-diagonal. It is de�nd within global real harmonics but in the spin frame corresponding

to the xc-�eld quantization axis speci�ed in the Fedit main menu. This means that its o�-diagonal part n↑↓mn
should be small. If this is not the case, especially if the diagonal of n↑↓nn is sizeable, the colinear aproximation of

the full-relativistic mode is violated by LSDA+U. The o�-diagonal part (denoted �Spin mixed�) is only shown

if present and only the up-down block. Note, that the occupation numbers de�ne the shell occupation, shell

spin moment and shell Lz-moment.
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Figure 11.1: Dmatedit for non-full-relativistic case

a) Filters de�ning, which matrices are shown in the occupation matrix list (b) and can be browsed

through via the Prev and Next buttons (c). Only the shells for which LSDA+U was actually

enabled are shown in this list.

b) Occupation matrix list �ltered by (a)

c) these buttons browse through the matrices shown in the list (b).

d) Switch between real and complex spherical harmonics as basis for the matrices.

e) Chose to show the real, imaginary or both parts in the matrices (f,g)

f,g) Spin up and down occupation number matrix for the selected shell. Here you can edit the matrices!

h,i) Set default values. This is a tool button. The arrow to the right allows to select which default it

sets. Clicking on the button part sets the currently selected default

k) Change the local axis in which the harmonics are de�ned. This is needed for instance if the local

environment of the atom is rotated versus the global cartesian system.

m) The matrices are saved back to =.dmat_init and the program exits.

n) (Hotkey <Escape>) quit the program without saving.

Dmatedit saves local axes and such information in dmatedit.ini in the current directory.
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Chapter 12

Optics: Foptics

Optical functions are basically variations of the energy dependend q = 0 dielectric tensor εij (ω). It consists

of an intra- and an inter-band part. The intra-band part is usually taken from the Drude model, since

scattering processe, which lead to a �nite life-time Γ of the electrons are not included in standard bandstructure

calculations.

The Drude model contains the plasma energy tensor ωPij , which can be diagonalized resulting in principal axes

along which the plasmon has energy ωP1,2,3 and a life-time Γ1,2,3. The life-times are user input parameter and

the plasmon energies can be chosen by the user as well. However, the plasmon energies and principal axes also

get calculated by Fplo and are written to the output and into the �le +plasmon. Note, that in spin-polarized

calculations the principal axes can actually di�er between di�erent spin directions (spin up, spin down and

total spin sum), which is why all three cases have their own plasmon information in +plasmon.

The inter-band part is more expensive to calculated and depends on the actual band structure and on optical

matrix elements. The implementation actually only calculates Imε (ω) for ω ≥ 0, since Reε (ω) can be obtained

via the Kramer-Kronig relation. Fplo calculates the optical matrix elements p and performs the k-integration

in the expression

Imεinter
ij (ω) = − 1

ω2

4π2

V

′∑
k,n,n

[f (εk,n)− f (εk,n)] δ (εk,n − εk,n − ω)piknn ◦ p∗jknn

and writes the result into the �le +imeps. This �le is not meant to be used directly, but one can look at it via

Xfbp for convergence controll. You can control this process via the OPTICS submenu in Fedit (read the help

screen).

Caveats: The inter-band k-integral is not very smoothly converging especially if many small Fermi surfaces

are present. Always check k-point convergence of +imeps. Furthermore, Fplo is a small basis method, which

means that there are not very many unoccupied bands, which means that optics gets less and less accurate

the higher the energy ω is.

After Fplo has created the �le +imeps some optical functions can be created in a separate step, in which also

the intra-band part gets added. The program Foptics is a command line tool. It has command line options,

which are avaialble via Foptics -h:

usage:

foptics22.00-62-x86_64 [-i fplooutput_imag_part_interband_eps] ...

[-os suffix_for_output_files] [-h] ...

[-gamma gamma1 [gamma2 ... gamman]] ...

[-omega omega1 [omega2 ... omegan]] ...

[-skip nskip] [-nointer] [-nointra] [-ni]
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fplooutput_imag_part_interband_eps: normally +imeps

omega: the plasmon frequencies for the intraband contributions in eV

gamma: the broadening (life time) for the intraband contributions in eV

nskip: take only every nskip data point

-nointer: only take the intraband contributions

-nointra: only take the interband contributions

-ni = not interactively: take values from +plasmon and from -gamma and -omega

but do not ask for not explicitly specified values.

There are 3 gamma values: for each principal axis one.

There are 3 omega values along the principal axes for each spin direction

and for the total (spin sum). This is so, since the principal axes

need no coincide for spin up, spin down and the spin sum.

In non-spin-polarized cases ony spin1 is used and equals the spin sum.

This program reads inter-band output from FPLO (+imeps)

and calculates some optical functions. The user can define

plasmon frequencies and broadenings to include the intra-band

contributions.

The program also reads the file +plasmon to extract the calculated

plasmon energies and the principal axes of the plasmon tensor.

The user can overwrite the plasmon energies by interactive input

or by the option -omega.

The output functions are

re_eps: real part of epsilon

im_eps: imaginary part of epsilon

re_sigma: real part of the optical conductivity in inverse Ohm*cm

loss: the loss function

For the individual spin contributions _spin1/_spin2 is appended to the

file names. (Only for spin polarized cases.)

If an output suffix (-os) is defined it will be appended to all file names.

One can also just call the program without options. It reads +imeps to obtain Imεinter (ω) and +plasmon

to obtain the eigen decomposition of ωP =
∑
iZiω

P
i Z

T , where Zi is a principal axis of the tensor. The

program writes the plasmon and life-time information to standard out and asks the user for input of ωPi and

Γi unless option -nointra or -ni was set or values were provided on the command line. The command line

option -gamma reads up to 3 Γi, one for each principle axis. These Γi are used for all spin directions. The

command line option -omega reads up to 9 ωPi , the �rst three are ω
P↑
1,2,3, the next three are ω

P↓
i and the last

three are ω
P (↑+↓)
i . If not all ωPi (Γ) values are provided the program will interactively ask for user input for

the non-speci�ed values. The default ωPi values are taken from +plasmon. If option -ni (not interactively)

is set, all values speci�ed via -omega and -gamma are used and the not explicitly speci�ed values are taken

form +plasmon. So, interactivity can be avoided by either specifying all values via the options (3 Γ and 3ω

(non-polarized) or 9ω spin-polarized) or by using -ni, which is usefull for falling back to the default values

from +plasmon without having to type enter for all questions asked. Play with it to get the idea.
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Foptics will use the Kramers-Kronig transformation to calculate Reεinter from Imεinter. Then the intra-band

part Eq. (12.1) is determined for which the plasmon tensor is constructed from the principal axis Zi and the

(user-speci�ed) paramters Γi and ω
P
i . Finally,

ε = εintra + εinter

is calculated and the optical functions are derived form it and written into separate �les. Note, that the two

parts can be switched o� via the options -nointer and -nointra. Currently, there are the following optical

functions (see Sec. 12.1)

function �le name

Reεij (ω) re_eps[_spin1|_spin2]

Imεij (ω) im_eps[_spin1|_spin2]

Reσij (ω) re_sigma[_spin1|_spin2]

Lij (ω) loss[_spin1|_spin2]

Table 12.1: Optical functions

These �les contain comments for user orientation and they can most conveniently be displayed with Xfbp.

Note, that only the non-zero tensor elements are written. A symmetry analysis of the inter-band part is used to

determine these tensor elements. In this it is assumed that the intra-band part must have the same symmetry.

The options -i and -os are usefull if several di�erent settings (e.g. k-points) are used and the �le +imeps was

renamed into e.g. imeps_12_12_6 and imeps_42_42_12 for the di�erent runs by the user. Then Foptics -i

imeps_12_12_6 -os 12_12_6 reads imeps_12_12_6 and produces re_eps_spin1_12_12_6 and so on.

Example Al We make a standard calcultion for Al as explained in getting started. Then we go to the OPTICS

submenu of Fedit and switch on optics and set the upper energy bound to 20 eV (this is for demonstration

of the plasmon peaks, the interband part is not really accurate at such high energies!). We re-run Fplo. The

UNIX command

ls -ltr

shows that the �le +imeps got created. For orientation open it via

Xfbp +imeps

Copy it:

cp ./+imeps ./+imeps_12

(to indicate the default 12 × 12 × 12 k-mesh). Change the k-mesh in Fedit to 42 × 42 × 42. Re-run Fplo.

(This will require a few steps to achieve the self-consistency for this k-mesh.) Copy it:

cp ./+imeps ./+imeps_42.

Load both �les

Xfbp +imeps_12 +imeps_42
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You see the convergence issue. Make another calculation for a 60× 60× 60 k-mesh, copy the �le and compare

the +imeps �les. (Aluminum really has tiny Fermi surfaces.)

Now, run

Foptics -i +imeps_60 -os 60

and hit enter for all questions or use option -ni to take the default values. Open the resulting loss function

Xfbp loss_60

(the su�x _60 came from the -os 60 option). Compare the position of the plasmon peak at 15eV with the

bare plasmon frequency 12.3eV in the Foptics output. This shift is due to the inter-band part. Now, calculate

the intra-band only loss function:

Foptics -i +imeps_60 -os 60_intra -nointer

Now, the plasmon peak is at the bare energy 12.3eV. At last calculate the inter-band only loss function:

Foptics -i +imeps_60 -os 60_inter -nointra

(Beware of the correct placement of inter and intra!!) Compare the three:

Xfbp loss_60 loss_60_intra loss_60_inter

You must see something like Figure 12.1.

Figure 12.1: Total, intra-band and inter-band loss function for Al.

This example is also discussed by the Wien2k implementation. Finally, you can have a look at all the other

functions (Note that the intra-band part of ε diverges at ω = 0).
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12.1 Optical functions

12.1.1 General

The immediate function is the optical dielectric function (without momentum transfer)

ε (ω) = εintra−band (ω) + εinter−band (ω)

where the intra-band expression must be approximated via a Drude model and the interband part is the

expensive thing the optics-module is all about. ε is connected to the optical conductivity via

σ (ω) = −i 1

4π
ω (ε (ω)− 1)

which makes σ a measure of the imaginary part of ε.

Reσ (ω) =
1

4π
ωImε (ω)

Imσ (ω) =
1

4π
ω (1− Reε (ω))

The Loss function is de�ned as

Lαβ = −Im

(
1

ε (ω)

)
αβ

12.1.2 Intra-band (Drude)

The intraband contribution is approximated by

εintra (ω) = 1− ω2
P

ω (ω + iΓ)
(12.1)

which gives

Reεintra (ω) = 1− ω2
P

ω2 + Γ2

with a root at

ω0 =
√
ω2
P − Γ2

and

Imεintra (ω) =
ω2
PΓ

ω (ω2 + Γ2)

which results in

Reσintra (ω) =
1

4π

ω2
PΓ

ω2 + Γ2

Imσintra (ω) =
ω

Γ
Reσintra (ω)

For the loss function we get (in the diagonal principal axis frame of ωP )

Lαα = ωΓ
ω2
Pα

(ω2 − ω2
Pα)

2
+ ω2Γ2

(12.2)
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with the maximum at

ωpeak =
1√
6
ωPα

√√√√2− Γ2

ω2
Pα

+

√
16− 4

Γ2

ω2
Pα

+
Γ4

ω4
Pα

ωpeak ≈ ωPα

(
1− 1

8

Γ2

ω2
Pα

)

Figure 12.2: Intra band contribution for an unaturally large Γ = 1eV (to resolve the small shifts of ωP .)

12.1.3 Intra-band and constant interband ε∞

Now, we include a constant approximation for the interband contribution ε∞.

ε (ω) = 1− ω2
P

ω (ω + iΓ)
+ ε∞

= (1 + ε∞)

(
1− ω̃2

P

ω (ω + iΓ)

)
where we de�ned the renormalized plasmon frequency as

ω̃P =
ωP√

1 + ε∞

This means that in all expression we have to replace ωPα → ω̃Pα and devide (multiply) by 1
1+ε∞

.

Eq. (12.2) then gives

Lαα =
1

1 + ε∞
ωΓ

ω̃2
Pα

(ω2 − ω̃2
Pα)

2
+ ω2Γ2
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with the peak at

ωintra+ε∞
peak = ω̃Pα

(
1− 1

8

Γ2

ω̃2
Pα

)
which is better suited to determine the plasmon peak than extracting the divergent Drude part from σ.
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Chapter 13

The dHvA-Module: Fplo/Fdhva

Note: it is not possible to explain everything in a linear order. It is advisable to read the document two times.

In order to calculated dHvA spectra a two-stage procedure has to be followed. In the �rst stage a high

resolution energy iso-surface (IS) is calculated. It serves as input for the second stage, which determines the

extremal orbits and produces the spectrum (extremal area vs. �eld direction). We call the Fermi surface iso

surface in the following to stress that it does not need to be at the Fermi level.

13.1 First stage (iso surface)

The iso surface is not calculated via the usual Fplo interfaces because the accuracy demands for dHvA are

higher. Instead we use a di�erent module, which calculates the iso surface via mesh re�nement.

Initially the primitive unit cell is transformed into an equivalent cell, which is as isotropic as possible. This

de�nes three cell basis vectors (or axis). A coarse initial mesh of n1 × n2 × n3 micro cells is de�ned for this

unit cell on which the Hamiltonian is diagonalized (band energies are determined). In fact the micro cells

themselves are subdivided into tetrahedra in order to use linear interpolation. Then each micro cell, which

contains the iso surface (the tetrahedra edges are cut by the iso surface) is subdivided into 23 smaller cells

by bisecting each axis direction, which introduces new mesh points (the bisecting points) on which in turn

the band energies are determined. Now, again the resulting micros cells which contain the iso surface are

determined and another subdivision step is taken until a maximum number of bisections is reached. In many

cases this procedure leads to a high resolution iso surface without the necessity to diagonalize the Hamiltonian

on each mesh point of the �nest subdivision. It is clear from this desciption of the algorithm that at the end

only iso surface parts are resolved, which are �seen� by the initial subdivision. If an iso surface part is contained

completely within one of the intial mesh micro cells it will not be visible after a number of re�nements either

since only iso-surface-cutting micro cells are subdivided. In the moment the crystal symmetry is not used.

This has both technical as well as conceptual reasons. The latter being that the module allows band weight

dependend energy shifts for the adaption of the dHvA spectra. In general band weights do not have the full

symmetry of the lattice. Hence, the use of symmetry would be a hinderance. If the energy shift option is not

used, symmetry would improved the performance, but only for highly symmetric systems.

The process of bisecting the mesh can be done iteratively by the user. For this purpose all energy/band-

weight data are stored in a cache �le (+isoergcache...) during the iso surface stage. If the resulting iso

surface is not accurate enough a higher bisection level can be set and in a re-run the data for all previously

calculated mesh points are read from the cache and not recalculated. Essentially, only the points needed

for the now required �ner subdivision are calculated. This caching of course only makes sense if the self

consistent calculation (density) did not change in between. Also all band weight options for the iso surface

stage should not change. The code is able to detect certain changes to the input data (energy window, band
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weight options) and invalidates the cache automatically. However, if other data change (e.g. the density) the

user is responsible to delete the cache �le by hand before a re-run. A program termination during a cache

write can lead to incomplete data in the cache, which is detected in a re-run. An error message is written and

the correponding mesh points data are recalculated. So, you can savely interrupt an IS stage run. In case that

a Wannier function model is used to extract the iso surface the cache �le is named +isoergcache_wan.

If the user wants to change the iso level the cache �le can be re-used. For small changes the existing mesh points

are likely to already surround the slightly changed iso surface. This leads to less necessary diagonalizations as

compared to a fresh run without a cache �le.

The intial subdivision must be chosen such that it is as homogenous as possible. Note, that the iso-cell is not

the primitive unit cell but a modi�ed one. This cell together with a suggestion for a proper subdivision is

written to the output. All lines refering to the iso surface calculation are pre�xed with �ISO:�. There usually is

an initial output section and the output section for the actual calculation. Always check these parts of output

for a proper setup. Ihe relevant part for the initial mesh looks like this:

ISO:

ISO: Reciprocal iso cell vectors/(2*pi):

ISO: g1: -0.09903 -0.17153 0.00000, |g1|: 0.19807

ISO: g2: 0.19807 0.00000 0.00000, |g2|: 0.19807

ISO: g3: -0.00000 0.00000 0.15025, |g3|: 0.15025

ISO:

ISO: Most homogenous initial subdivision would be: 10 10 8 or multiples of these.
ISO:

The default way of performing the iso surface stage is by de�ning a number of input values and by running

Fplo. Fplo will do what it usually does (calculating the potential, the local orbital integrals (LOI) and

diagonalizing the Hamiltonian) until after the population analysis, where it jumps into the iso surface module

(if switched on). Only after the population analysis the LOI and Fermi energy are known. This means that

for each IS stage run it has to go through the diagonalizations of at least one SCF step as for the calculation of

the default band structure output (+band...). There is an option to circumvent this. For that to take e�ect

you need to de�ne a proper Wannier function (WF) model. Make sure that it reproduces the band structure

around the desired iso value (Fermi energy) as good as possible (or the dHvA spectrum will not be exactly

the same as from an Fplo run). The IS stage input can be told to use the output of the WF modul in which

case Fplo will jump into the IS module early in its run. (The SCF step is avoided).

The result of the IS stage run are �les which contain the iso surface. They have names +iso_b..._p..._spin...

where the ellipses stand for numbers. The numbers after _b denote the band index of the corresponding band,

_p denotes the number of the part of the sheet (if the sheet for this band index has disconnected parts there can

be more than one part.) and _spin denotes the spin. For full-relativistic calculations the spin su�x is missing,

since spin is not a good quantum number in this case. In the default setup the program will automatically

determine the bands, which cross the iso level (usually the Fermi energy). Optionally, the user can request a

set of speci�c bands. +iso_b... �les will only be created if the band has an iso surface for the given iso level.

To spell it out explicitly: If the iso surface of a certain band number has disconnected parts, they are treated

as separate entities and get their own �le.

After the IS stage run is performed individual iso surface parts can be visualized by loading them into Xfplo

xfplo +iso_... +iso_...

More than one �le can be given as argument. Or one can load all

xfplo +iso_*

Additionally, the option -raw can be given
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xfplo -raw +iso_... +iso_...

in which case the iso surface data are shown as they are stored in the �le, that is only in the iso cell which

was setup at the beginning. Without this option the data are periodically extended to �ll the boundary of the

main display cell (usually the black frame). The loading with the -raw option is faster since no clipping takes

place. There is one pecularity in the raw mode : if an iso surface part is closed, .i.e. completely contained

within one (possibly shifted) unit cell the �le data will contain the iso surface part in one piece, which means

its unit cell will be shifted accordingly if needed. If the iso surface part is open it will be contained in the iso

unit cell which was set up in the beginning.

When loading iso �les the way shown above the default xfplo Fermi surface is switched o�. It can be switched

with the button shown in Fig. 13.1. The default coloring shows the magnitude of the Fermi velocity (at the

chosen iso level [the one in the dHvA Fedit submenu not he one in Xfplo]). If the band weight options where

Figure 13.1: Left: Fermi surface button in the tool box of Xfplo. Right: extern color values checkbox and

state spinbox in the plot->colors menu in Xfplo.

set in the dHvA Fedit submenu the coloring can be changed to depict as chosen band weight. For this go

into the plot -> colors menu in Xfplo and switch on extern color values. The state spinbox allows

to select the number of the band weight to be shown. The name of the weigh should appear in the legend

(unless switched o�). If the state number is invalid it is anounced in the legend as well. It is in principle

possible to load +iso_... �les together with the default Fermi surface. In this case the legend can only show

one of the two things. Consider it to be unde�ned behaviour. Currently the +iso_... �les cannot be saved

in =.xef, they can only be loaded via the command line arguments as shown above. One can however, de�ne

other settings in Xfplo (e.g. the extern color settings) and save them from Xfplo (usually in =.xef). In

this case load the �les via

xfplo =.xef +iso_...

in order to restore the settings previously saved in =.xef. The default coloring with the Fermi velocity helps

to judge the quality of the iso surface. The smoother it is the better will the subsequent dHvA run perform

(see Sec. 13.2). Of course there are limits due to calculation time. The Fermi velocity (or gradient) is used in

Fdhva to determine the connectivity of the individual extremal areas. Consequently, a good gradient is vital

for a good dHvA spectrum.

The +iso_... �les will be deleted at the beginning of each IS stage run to avoid confusions between consecutive

runs to optimize the re�nement. This behaviour can be disabled by setting a �ag in the dHvA Fedit submenu.

The background is that the number of parts for each iso surface sheet depends on the mesh size. E.g. iso

surfaces with pointy edges or tips can end up producing the main iso surface and tiny disjoined parts at the

tips or edges. If you cannot see these parts in Xfplo have a look at the �le size of the +iso_... �les. If they

are small compared to the �les sizes of other parts it is an indication that the corresponding part is also small.

There is an option to drag band weight information along with the band energies. This can be helpful for

visualization or for manipulating the band energies via a band character dependent energy shift. Fplo has

several ways of producing band weights: the old style where a transformation of the global quantization axes
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can be de�ned in the bandplot Fedit submenu or the more �exible approach the molecular/individual fat

bands Sec. ??, ?? and 9.3. The later approach allows individual quantization axes for each weight and it is

necessary in the context of the IS stage if an nlms basis is wanted for full relativistic calculations (where the

default basis is spherical spinors [njµ]). Fplo will transmit the band weights de�ned either via the old style

(bandplot Fedit submenu) or via =.bwdef (also there) to the IS module. Let's call them raw weights.

If the Wannier function model option was chosen, the weights for all WFs will be transmitted to the IS

module. The =.bwdef �le options is not available in this case, even if such a �le is de�ned in Fedit. Local

axes transformations (if wanted) must be de�ned when defning the Wannier functions themselves.

Note, that the raw weight setup takes place in the bandplot submenu not in the dHvA submenu. (Similarily,

the energy window options from the bandplot menu will be used in the IS module, but only if no WF model

is used.) The raw weights will be written into the cache �le.

Additionally, one can de�ne another set of band weights, which is obtained by adding some of the raw weights.

This is achieved by editing an =.addwei �le and entering it into the appropiate �eld in the IS Fedit submenu

(see below). Also see section 77 for information about this �le. If such an adding step is de�ned by the user

we obtain another set of weigths (added/�nal weights). These weights are written into the +iso_b... output

�les. Hence, when the energy window information or the =.bwdef �le options are changed in Fedit the cache

�le will loose its validity, while altering the weight-adding option will not.

Of course the weights de�ned in the =.addwei �le (which one can name as whished) must be build out of the

set of raw weights. The information about the available raw weights is written to the output in the �ISO:�

section at the beginning of the IS stage calculation (after the population analysis). Only the weight de�nitions

in this �le are used by the IS stage. The energy window and �le information in =.addwei are ignored for this

purpose.

If the adding step is ommited, by not entering a �le name into the �addwei file� �eld in the dHvA submenu,

the raw weights become the �nal weights.

Figure 13.2 summarizes the �ow chart of the weights.

Finally, one can use the �nal weights to de�ne k-dependent energy shifts ∆εn (k), which are de�ned as a

weighted sum of the �nal/added band weights. This results is a band character dependent energy shift. For

the de�nition of the terms of the energy shift formula one needs the number of the �nal weight, which enters

the term. Final weights are counted in the order as written to the output starting with 1. (See below)

For completeness the density of states (DOS) of each iso surface part is written to the output together with

an estimate of the change of the particle number dN due to the energy shift. Example:

ISO: ========================================================================

ISO: spin summed, band 00011, part 001, dos= 0.07863 [states/eV] dN~= 0.00000

ISO: spin summed, band 00012, part 001, dos= 0.11918 [states/eV] dN~= 0.00000

ISO: spin summed, band 00012, part 002, dos= 0.11918 [states/eV] dN~= 0.00000

ISO: ========================================================================

ISO:

ISO: ===============================================

ISO: Finished Iso-Surface Calculation

ISO: ===============================================

The change of the particle number is determined via

dN =

∫
d3kδ (ω − εn (k)) ∆εn (k)

which is the same as: DOS times iso surface average of the energy shift ∆εn (k). Note, that an IS sheet/part

can completely vanish due to a shift, in which case all the electrons/holes of this sheet become unoccupied.

The code cannot estimate a dN for such a situation.
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Figure 13.2: Flow chart of weights.

13.1.1 Input options

The input which controls the IS stage is edited via the �rst part of the dHvA submenu of Fedit shown in Fig.

13.3.

Iso surface run If this switch is on Fplo will activate the IS stage after the �rst population analysis. If the

Wannier function route is taken the IS stage takes place before the �rst SCF cycle.

Iso value This is the iso value (Fermi energy) at which to calculate the iso surface. An iso value zero

corresponds to the Fermi level of the SCF cycle. The units are eV.

Initial subdivision This is a three values list of the number of intervals along each of the iso cell axes,

which will determine the intial mesh in the Brillouin zone (see explanation above).

Bisections This is the maximum number of bisecting subdivisions which will be performed to re�ne the mesh

around the iso surface sheets. A value of zero means that only the mesh from the initial subdivision will

be used. If the resulting iso surfaces are not �ne enough one can come back and increase this value and

make a re-run of Fplo. The cache �le +isoergcache... will be used to avoid unnecessary recalculations

unless a change of some input data invalidates the cache.

Spin-up/down band number A list of band numbers. The default value is an empty list, which triggers

automatic determination of the bands, which cross the iso value. This option is usefull when the individual

iso surface parts have very di�erent sizes, in which case one can use di�erent re�nement levels (bisection

values) for di�erent iso surface parts. Warning: In such a case make sure that you switch o� the delete

old files �ag or save the +iso_b... �les somewhere else, while treating speci�c bands.
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                                     DHVA                                     

 e(X)it                                                     (/) Search (H)elp 

______________________________________________________________________________

 PREPARE ISO SURFACE                                                          

                                                                              

 Iso Surface (R)un       : [X]                                                

                                                                              

 Iso (V)alue             : 0.                                                 

 Initial (S)ubdivision   : 12 12 12                                           

 (B)isections            : 3                                                  

                                                                              

 spin−(U)p   band number :                                                    

 spin−(D)own band number :                                                    

                                                                              

 (W)annier Hamilt. file  :                                                    

                                                                              

 de(L)ete old files      : [X]                                                

                                                                              

 n(E)ed bandweights      : [X]                                                

 (O) addwei file         : =.addweiiso                                        

                                                                              

 Energy shift                                                                 

 (P) number of shift terms   : 0                                              

 ____________________________________________________________________________ 

 No.    weight−index        factor                                            

 ____________________________________________________________________________ 

                                                                              

                                                                              

 ____________________________________________________________________________ 

 DHVA                                                                         

                                                                              

 (N)umber of fields          : 2                                              

 ____________________________________________________________________________ 

_[...]________________________________________________________________________

 STATUS: OK                                                   (18.00−52:M−CPA)

Figure 13.3: First part of the dHvA sub menu in Fedit.

Wannier Hamiltonian file Here you can give the name of a Wannier Hamiltonian �le. Default: empty

string. This �le is created in a Wannier function run of the newer Fplo versions and by default is

called +hamdata. It contains the real space tight binding model derived from the Wannier functions as

requested by the user in =.wandef. One can however, also write this �le by hand to construct a model.

If the �le name is given Fplo will branch into another mode after the intialization before the start of the

�rst SCF cycle. It will then calculate the iso surface corresponding to the band structure of the model.

This can help to speed things up, in case that a reasonable WF model can be created.

Delete old files As explained above the code will delete all existing +iso_b... �les in the beginning of

each IS stage run to avoid confusion with left over �les from previous runs. Uncheck this �ag if bands

shall be treated individually on users request.

Need bandweights If this �ag is on the code will extract band weight information addityionally to the band

energies as explained above. If this �ag is toggled between reruns the cache �le will be invalidated. Chose

your desired settings early to avoid wasting resources. This �ag also needs to be set if energy shifts are

used.

Addwei file Default: empty string. Give the �lename of a Faddwei �le containing appropriate de�nitions
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for adding the band weights obtained from the iso surface run. If set, the +iso_b... �les will contain

the added weights, otherwise they will contain the raw band weights. Changing the addwei �le does

not a�ect the cache. It only a�ects the +iso_b... �les and the energy shift function. Only the weight

de�nitions of this �le are important not the other settings. For more information see Sec. 8)

Energy shift (expert option) One can chose to de�ne a k-dependend energy shift. This is done by de�ning

a number of terms which consist of a chosen (added) band weight and a numerical factor. The energy

shift is de�ned as

∆εn (k) =
∑
i

fiwn,αi (k)

where fi are the numerical factors and wn,αi are the band weights of band n, where αi numbers the

available weights. This shift is not a simple shift of band n against n + 1 but depends on the band

charachter. The available weights are either the raw weights (if no weight adding �le is de�ned) or the

added weights. The output contains a list of available weights.

number of shift terms Set the number of terms in the shift function.

shift term i give a weight index αi (�rst weight is number 1) and the numerical factor fi.

Figure 13.4: Part of the bandplot sub menu in Fedit.

Additionally, some �elds of the bandplot Fedit submenu are used to control the IS stage (shown in Fig. 13.4)

if the Wannier function option is NOT used.

Lower/Upper energy bound If restrict bands to window is checked (see item below) this de�nes the en-

ergy window, which is used by the IS stage run to produce smaller +isoergcache... �les. Changes to

the energy window will invalidate the cache �le.

Restrict bands to window If checked us the bouds de�ned in the item above to restrict the data written to

the cache �le. Changes to this �ag will invalidate the cache �le.

Weight def file Here one can give a �le which contains (default =.bwdef) weight de�nitions. It is usually

used to to de�ne compound weights. But it can also be used to de�ne a sub set of weights and to

de�ne individual local rotation axes. If this input �eld contains a �le name the resulting raw weights

will be taken according to the de�nitions in this �le. This helps reducing the size of the cache �le. In

full relativistic calculations the default Fplo weights are in njµ basis (spherical spinors). If the non-

relativisitc nlms symmetry is desired the only option is to setup a =.bwdef �le and enter it here in

Fedit. (See the help screens Sec. ?? and ?? and Sec. 9.3)
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Transform quant. axis If =.bwdef is not used the usual old-style transformation of the global quantization

axes is applied for the raw weights delivered form Fplo to the IS stage.

X/Z-axis See item above.

13.1.2 Cache �le

For the interested party the content of +isoergcache... is explained. The �le starts with a header

HEADER

nband=6

ilower=4

iupper=9

weights="Al(001)2s+0","Al(001)2p-1",...

ENDHEADER

There are nband bands stored in the �le, the �rst being original band ilower+1 and the last iupper+1. If

weights is not an empty list there are as many weights stored as there a re weight lables in the list.

The �le body is a list of data for each mesh point (which ever has been used thoughout the re�nement). The

data of one point are in one single line and are structured like this:

spin-index kx ky kz ε1 . . . εnband w1,1 . . . w1,nweight w2,1 . . . w2,nweight . . . wnband,1 . . . wnband,nweight

From this header it should be clear under which conditions the cache �le gets automatically invalidated.

� Changes to Lower/Upper energy bound: this a�ects nband, ilower and iupper

� Changes to Restrict bands to window: this a�ects nband, ilower and iupper

� Changes to Need bandweights: this changes the weights label list in the header

� When the list of weight labels changes. E.g. if ones adds a Weight def file, which has a weight label

list di�erent from the default list.

One can savely change the following input without deleting the cache�le

� iso value

� initial subdivision

� bisections

� spin-up/down band number

� addwei file

� energy shift

The user has to delete the cache �le by hand when the following changes

� When information in the Weight def file changes, which does not alter the weight label list: e.g. the

local axis of the weights. Basically when information is changed, which is NOT re�ected by the weight

header.

� When Transform quant. axis or X/Z-axis changes (if no =.bwdef is speci�ed)

� When the density changes.
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13.1.3 Work �ow

Please note that the weight options are not needed for a standard dHvA spectrum calculation. They are

needed for visualization purposed (if desired) and for the energy shifts (expert option).

� Converged the SCF calculation

� If you need weights, �gure out which ones you will need. If additionally added weights are needed �gure

that out too.

� Setup =.bwdef (prefered option) and enter the �le name into the bandplot submenu of Fedit.

� Setup =.addwei and enter it into the dHvA submenu for later use.

� Use standard band structures/fat bands to evaluate the physics of the problem. (Use Faddwei to

test the weight adding in the band structure step.

� If you use a WF model instead, setup the WFs appropriately and an =.addwei if needed. Add the

+hamdata �le name to the dHvA submenu. =.bwdef cannot be used in this case.

� Optionally, for orientation you can use Xfplo to get a feel for the Fermi surface.

� If weights are needed turn on the corresponding options in the dHvA submenu.

� From a default band structure plot determine the needed energy window. To save disk space and cache

load time set the energy window and switch on �Restrict bands to window� in the bandplot submenu

of Fedit.

� Setup the initial subdivision and a bisection of 0 which is �ne enough to capture all Fermi surface parts.

Make a run and visualize the iso surface.

� Increase the bisections until a desired accuracy is achieved. It might be helpfull to make a dHvA stage

run to judge the quality and then to come back and increase the �neness further.

� If energy shifts are used, some iterations are needed to achieve the desired result. In each re-run of the

IS stage the chache �le should be valid and hence this stage fast (unless the shifts are huge). However

you still have to go through one SCF step for each re-run. (Wannier function model might help)

13.2 Second stage (dHvA spectrum)

The second stage of the dHvA module takes the output of the �rst stage, the �les +iso_b*, and calculates the

dHvA spectrum, i.e. extremal areas versus �eld directions. Although the input for this stage is also accesible

via the Fedit dHvA submenu, the executable to run this step is di�erent form Fplo it is called Fdhva.

The �eld directions are determined by a number of main directions Bi in space. These play a similar role

as the high symmetry points in a bandstructure. In between two consecutive main directions a number of

intermediate �elds is determined by subdividing the angle between the two main directions into a number of

smaller intervals. The user de�nes the main directions and the number of subdivisions of the largest angle

between two consecutive main directions. If more than two main directions are given, each interval between

the main directions is subdivided such that the resulting small intervals have approximately the same size.

This procedure de�nes a set of directions nj for which the extremal areas have to be determined.

For each direction nj the iso surface is subdivided into a series of equidistant parallel planes which are

perpendicular to the current direction nj . On each of these planes all resulting orbits (cuts between the iso
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surface and the plane) are determined. The algorithm can detect open and closed orbits. The open orbits

are discarded. The set of resulting orbits as a function of plane index needs to be sorted into curves which

connect pairs of related orbits on neighboring planes. This is in general a fuzzy task, since we do not have

in�nitesimal information. The code uses the gradient of the iso surface (Fermi velocity) to extrapolate the k-th

orbit Oj,k on plane nj onto plane nj+1. Then it goes through all actual orbits on plane nj+1 and �nds the one

Oj+1,l, which most closely resembles the extrapolated orbit. If the deviation is less than a particulat threshold

(area chain threshold) Oj,k and Oj+1,l are considered to be connected in a continuous way and hence the

two data points in the are curves are linked together. Of course the number of orbits on each plane can vary

depending on the topology of the iso surface. Consequently, the resulting area versus plane index curves can

contain a number of curves, which do not have to be connected and do not have to span the whole plane index

interval. Fig. 13.5 shows an example of such area curves. It can be seen that some curves are connected and

Figure 13.5: Example of areas vs. planes.

some are not. In general the connectivity is probably correct. It might be helpful to check particular cases

by using the output (orbits) described later. One can also see that there are symbols in the graph. These

denote curves of length one. There can be two reasons why they appear. The �rst is that there can be more

than one symmetry related or periodically related orbit in one plane, even if one uses only the iso surface data

from a single unit cell (which we do). The �rst, let's say, is linked to other orbits on other planes to form an

area curve and the second is a left over, which would end up in another area chain if we used the iso surface

data of more than one unit cells. This is actually not uncommon. The second reason for single data curves is

a failure of the extrapolation-comparison algorithm described above. This can have two reasons. The �rst is

that the gradient information of the iso surface is not good enough such that the linear extrapolation is not

very good. The seoncd is that linear extrapolation must fail cloase to points on the iso surface where we have

second order extrema, like the tip of an egg. There the criterion for an exceptable extrapolation error will fail

and hence the orbits do not get linked into a curve. However, the resulting extremal orbits, if they fall into

such a section will have zero area and hence do not matter. This situation is shown in the inset of Fig. 13.5.
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The explanation above should make clear that the dHvA stage depends critically on the accuracy of the iso

surface stage.

The orbit sorting algorithm explained above is potentially slow. It becomes the slower the higher the accuracy

of the iso surface is (it consists of more triangles) and the higher the number of planes and �eld intervals. To

alleviate the pain, approximations are introduced. The �rst is a simple criterion which compares the areas and

midpoints of the pairs of orbits. If the citerion is violated the pair of orbits is considered not to be related.

The control parameter for this comparison is �area radius factor� (α) with default value α = 1. It says

that the midpoint of the two orbits must lay inside a circle of radius αmin (R1,R2). The second simpli�cation

has to do with the comparison of the extrapolated orbit to another orbit. In principle one has to compare each

pair of points of both orbits to �nd which two points are closest to each other. Since an orbit is an ordered set

of points it is enough to make a thorough search of closest points for the �rst point p0 of orbit 1 only (result

is qi0 on orbit 2). The neighboring point p1 on orbit 1 must have its closets partner qi1 on orbit 2 somwhere

close to qi0 . We hence restrict the search of point partners to a certain subset of points on orbit 2, by only

comparing the points qi0−offset . . . qi0+offset. This o�set �orbit comparison search offset� is measured in

percentage of the whole number of points with a defualt value of 0.2 or 20%. The last simpli�cation is to not

compare the whole set of points pi of orbit 1 to establish linked pairs of orbits. It is su�cient to compare every

n-th point only. This is measured by �orbit sample portion� with a default value 0.1 or 10%. This applies

only if the number of points in the orbit exceeds 50.

After the orbits for a particular �eld direction have been sorted into curves (area vs plane index) the extrema

of all these curves are determined. Since, the curves are represented in a discrete manner this is another fuzzy

step. We chose to use 4 consecutive points to establish an extrema. These 4 points must have a monotonous

piecewise derivative and must contain an extremum to be counted as such. If a curve has only 3 points in

total the extremum is counted if the three point contain an extremum.

There are case cases in which the algorithm which links orbits into curves leads to wrong connections (mostly

borderline cases). In generalt this leads to a jump in the now wrongly connected curve. It is however hard to

tell if a large area di�erence in a 4-point interval is due to a jump or due to a large curvature. To rule out

extreme cases a smoothness criterion is introduced (�smoothness threshold�, with a default value of 1) which

measures the ratio of third to second derivative. The default value should basically switch the test o� (owed

to the imprecise nature of the criterion). Sometimes (if used, meaning threshold< 1) this measure discards

proper extrema. However, an increase of the number of planes produces more data points on area curves and

improves the extremum search, thus counteracting the wrong decision with respect to the discarded extrema.

There is a natural limit to the increase of the number of planes which is related to the accuracy of the iso

surface itself. The IS is formed of trianles. If two planes fall into the same triangle the resulting area curve

starts to become a piecewise linear curve, which does not have good extremum conditions. Only experimenting

with the number of planes and the accuracy of the IS will tell in each case what are good settings.

After the extrema are found for each �eld direction a last sorting step akin to the orbit sorting algo above will

be employed to �nd out which extremal orbits of consecutive �eld directions should be connected into curves

of extremal orbits. It uses extrapolation as before, only this time between planes of di�erent inclination and

distance. This sorting algorithm has the same fuzziness as the algo above. The resulting curves (extremal

area vers �eld) are ment to be an orientation. If in doubt consult the visualization of the orbits an correct the

curves by hand. You will �nd that certain parts of certain curves will be resolved better with an increase in

allover accuracy.

In Fig. 13.6 results for the dHvA spectra for ZrB2 are shown using di�erent accuracy settings. It nicely

illustrates the behaviour of the algorithms and their convergence properties. These pictures suggest that even

with the highest settings used, it is not yet fully converged. Well, that's how it is right now.
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Figure 13.6: ZrB2 dHvA spectra for various settings: nx is the initial mesh subdivision, bisec is the number of

bisections angles the maximum number of angles between two main directions and planes the number of planes

for each direction. dHvA accuracy increases from left to right and iso surface accuracy from top to bottom.

One can clearly see that a bad iso surface produces several slightly di�erent copies of the same �nal curve due

to inaccuracies of the iso surface. One can also see how the higher accuracy increases the connectivity and

even �nds more extremal areas, of course for a higher cost.

After all, the explanations above should tell the user that the dHvA spectra will be a bit shaky in their precise

appearance. This is owed to the complexity of the task itself.

The user can decide to treat speci�c iso surfaces by using the Band indices/parts/spin option (see below).

The resulting set of treated iso surface �les is written to the output as in

dHvA: isofiles

dHvA: +iso_b00011_p0001_spin1

dHvA: +iso_b00012_p0001_spin1

dHvA: fields

dHvA: : [0.,0.,1.], "[0001]"

dHvA: : [1.,0.,0.], "[10-10]"

dHvA: : [0.866025403784,0.5,0.], "[11-20]"

dHvA: : [0.,0.,1.], "[001]"

dHvA: nplane : 50 , active range : 0 .. 49

dHvA: max nphi interv : 10 , active range : 5 .. 8

The main output of Fdhva are �les called +area_vs_angle_... and +mass_vs_angle_.... The former

contain the extremal areas as a function of an angular variable, which goes along the path through the

main �eld directions. The latter contains the e�ective cyclotron masses which correspond to the curves in

+area_vs_angle_.... These �les contain comment lines stating the chain number of the corrsponding curves.

The data sets area area in Tesla/mass in elctron masses versus angle in degree. Each data line has a comment at
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the end denoting the index of the corresponding angle for cross reference with other output and for debugging

reasons. Note, that the mass curves are noisier than the area curves due to algorithmic pecularities.

Additionally, the program writes a script �le area_vs_angle.cmd, which can be loaded via

Xfbp area_vs_angle.cmd

It contains read statments for all +area_... �les, which where created during the latest Fdhva run. So,

if you use the Band indices/parts/spin option to treat speci�c iso surfaces at a time the script does not

necessarily contain all +area_... �les in the directory.

For orientation and for checking the soundness of the results additional data are written into tyhe directory

dHvAdata.

For each iso surface which is treated according to the input settings a sub directory is created which is named

according to the b..._p... su�ces of the iso surface �les. The content of these b..._p... directories is

deleted before each run, but only for currently treated iso surfaces. In those a subdirectory is created for each

�eld direction, indexed by a continuous index called iphi.... This is the same index as writen in the data

line comments of +area_.... A list of �eld directions, angles and indices can be found in the output

maximum angle between main directions: 90

B[ 0]= [ 0.00000 0.00000 1.00000] dphi= 0

B[ 1]= [ 0.15643 0.00000 0.98769] dphi= 9

B[ 2]= [ 0.30902 0.00000 0.95106] dphi= 18

B[ 3]= [ 0.45399 0.00000 0.89101] dphi= 27

B[ 4]= [ 0.58779 0.00000 0.80902] dphi= 36

B[ 5]= [ 0.70711 0.00000 0.70711] dphi= 45

B[ 6]= [ 0.80902 0.00000 0.58779] dphi= 54

...

The index is the number in the square brackets. The angular variable is dphi. For a default set of output

options these iphi... directories contain two �les areas (and masses) with the area curves versus plane

index of the corresponding �eld direction. These can be used to check if a certain extremal area in the �nal

result really looks like an extrema.

If the option output_orbits is set additionally data �les for all orbits are written. The names are orbit_plane..._chain....vtk.

The format is legacy Vtk. They should be readable by software, which reads vtk �les, but also by Xfplo.

Since these �les are not speci�c to the Fermi surface mode of Xfplo we need a special calling strategy:

Xfplo -fs dHvAdata/b00011_p0001_spin1/iphi00012/orbit_plane*_chain7*

will load all orbits of planes which belong to chain 7 of angle 12 of isos urface band 122 part 1 spin 1.

Alternatively, if a �le =.xef with proper options exists you can write

Xfplo =.xef dHvAdata/b00011_p0001_spin1/iphi00012/orbit_plane*_chain7*

or together with the iso surface

Xfplo -fs dHvAdata/b00011_p0001_spin1/iphi00012/orbit_plane*_chain7* -raw +iso_b00011_p0001_spin1

Btw, this does not mean that Xfplo can read any legacy Vtk �le ;-)

A more usefull output option (which is checked by default) is output_extremal_orbits, which triggeres the

output of the extremal orbits extrorbit_chain..._iphi....vtk in the b..._p... sub-directories. Load

them together with the iso surface via
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Xfplo -fs dHvAdata/b00011_p0001_spin1/extrorbit_chain00000_*.vtk -raw +iso_b00011_p0001_spin1

You might notice that the extremal orbits seem to be spaced a little uneven at times. This is due to a technical

aspect, which makes us chose the orbit of the plane closest to the extremum for output. Consequently, the

orbits are o� by half a plane distance in the worst case. The visualization of the extremal orbits is helpful for

identifying the origin of certain branches of the dHvA spectrum.

A few warnings:

� Don't try to load the orbits from within their respective sub directories. Xfplo needs to �nd =.in.

� If you are in an iphi... subdirectory while it gets deleted by Fdhva it's �les might no longer be

accessible after the fact. Change back out and in of the directory to remdy this.

� The +area_... and +mass_... �les are never deleted since the user should be able to investigate one

iso surface sheet at a time. The user must take care of old �les!

13.2.1 Input options

The input which controls the dHvA stage is edited via the second part of the dHvA submenu of Fedit shown

in Fig. 13.7.

Number of fields Sets the number of main �eld directions.

No. Label field For each main �eld direction give a label for the �eld and the actual direction (which does

not need to be normalized).

Angle subdiv De�ne the number of angular subdivisions between the two consecutive main �eld directions

with the largest angle between them.

Range (Debugging option) This can be used to narrow the number of resulting angles (�eld directions) to a

certian interval. Negative numbers mean ignore.

No of planes Sets the number of planes with which to slice the iso surface for each �eld direction.

range (Debugging option) This can be used to narrow the number of planes to a certian interval. Negative

numbers mean ignore.

Band indices/parts/spin By default the dHvA spectrum is calculated for each +iso_b... �les present in

the directory. If these values are set, only speci�c iso surfaces are treated.

Numerics: In general we believe that the numerical control parameters (explained above in detail) are chosen

well with their default values.

Area chain threshold The maximum error allowed when linking two orbits into a chain.

Orbit comparison search offset When comparing two orbits only search a certain portion of the second

orbit to �nd a matching point. (Explained in detail above)

Orbit sample portion Only try to match a certain portion of orbit 1, when sorting into linked curves.

(Explained in detail above)

Area radius factor When linking orbits into chains exclude all pairs of orbits, whose midpoint's distance is

larger than �Area radius factor� times the minimum of the two orbit's radii. (Explained in detail above)
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                                        DHVA                                         

 e(X)it                                                            (/) Search (H)elp 

_[...]_______________________________________________________________________________

                                                                                     

 Energy shift                                                                        

 (P) number of shift terms   : 0                                                     

 ___________________________________________________________________________________ 

 No.    weight−index        factor                                                   

 ___________________________________________________________________________________ 

                                                                                     

                                                                                     

 ___________________________________________________________________________________ 

 DHVA                                                                                

                                                                                     

 (N)umber of fields          : 4                                                     

 ___________________________________________________________________________________ 

 No.    Label                 field                                                  

 ___________________________________________________________________________________ 

                                                                                     

 (1)   : [0001]              : 0 0 1                                                 

 (2)   : [10−10]             : 1 0 0                                                 

 (3)   : [11−20]             : 0.866025403784 0.5 0                                  

 (4)   : [001]               : 0. 0. 1.                                              

                                                                                     

 An(G)le subdiv   : 30           (Y1) range : −1         ..   −2                     

 No o(F) planes   : 400          (Y2) range : −1         ..   −2                     

                                                                                     

 B(A)nd indices   :                   par(T)s  : 1            sp(I)n : both          

                                                                                     

 Numerics                                                                            

                                                                                     

 (M1) area chain threshold          : 0.1                                            

 (M2) orbit comparison search offse : 0.2                                            

 (M3) orbit sample portion          : 0.1                                            

 (M4) area radius factor            : 1.                                             

 (M5) smoothness threshold          : 3.                                             

                                                                                     

 (−) Output Options                                                                  

  show_non_closed                    : [ ]  output_orbits                      : [ ] 

  output_extremal_orbits             : [X]                                           

                                                                                     

 (=) Debug Options                                                                   

  determine_area_chain_extrema       : [ ]  sort_area_chains                   : [ ] 

  sort_extrema_chains                : [ ]  extend_periodic_area_chains        : [ ] 

  collect_orbits                     : [ ]  calc_orbit                         : [ ] 

  run                                : [X]                                           

_____________________________________________________________________________________

 STATUS: OK                                                          (18.00−52:M−CPA)

Figure 13.7: Second part of the dHvA sub menu in Fedit.

Smoothness threshold When searching for extrema exclude extrema for which the local 4-point interval has

a smoothness not smaller than this threshold. Zero excludes all extrema and one allows all extrema.

(Explained in more detail above)

Output Options: For an in depth analysis of the results it might be helpfull to create additional output �les.

show_non_closed If output_orbits is checked not only the closed orbits are written to �les but also the open

orbits.

output_orbits Write the orbits of all planes into �les in dHvAdata/b...p...spin.../iphi.../.
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output_extremal_orbits Checked by default. Triggers output of all extremal orbits for all treated is surfaces

in dHvAdata/b...p...spin.../.

Debug Options: These options trigger debug output and are of lesser importance to the user. Hence, we will

not explain them.

determine_area_chain_extrema

sort_area_chains

sort_extrema_chains

extend_periodic_area_chains

collect_orbits

calc_orbit

run
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Chapter 14

Topological insulators

For topological insulators the Z2 invariants ν0; (ν1ν2ν3) can be calculated. There is a Fedit submenu with a

corresponding help screen to explain the input. In the newer version it is possible to calculate the invariants

for systems with and without inversion symmetry. The latter uses Wannier centers to �nd the invariants.

This is a rather involved topic, which requires intent user participation. The essentials are explained in the

context of the pyfplo module elsewhere ../pyfplo/pyfplo.pdf since internally the same code is used. Note,

that if calculated by Fplo the details of the results di�er, since an all-orbital Wannier basis is constructed.

while in pyfplo a user de�ned reduced basis Wannier model is constructed. The topology should not change.

However, the Fplo-version of the algorithm is naturally slower and usually shows more Wannier centers (semi

core and other fully occupied orbitals, ommited in the reudced Wannier model). If surface states are desired

it is always better to �rst construct a Wannier model and to use pyfplo. This is just faster at the end.
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Chapter 15

Band Unfolding

15.1 Citations

When a citation is need it would be [1, 6, 12]. The second is the idea by Wei Ku and the third the �rst FPLO

implementation/application.

15.1.1 Copy right note

The content of this report cannot be used in another publication without contacting the FPLO authors �rst.

15.2 Introduction

15.2.1 Original idea

The idea is due to Wei Ku [6]. Let's assume that we have a normal cell (NC) and a super cell (SC) derived

from it. The NC contains Ns atoms si ∈ [1, Ns] and has Nr lattice vectors r in a de�ned Born von Karman

torus. The SC contains NS atoms Si ∈ [1, NS ] and has NR lattice vectors R in the same BvK torus. The SC

is a �multiple� of NC, meaning NS = fNs, f ∈ N and because of the same BvK torus NR = 1
fNr, such that

both tori contain the same number of sites NsNr = NSNR. The KS states of both cells ful�ll their respective

Bloch theorem

ΨkN (r − p) = ΨKN (r) e−ikp

ΨKN (r − P ) = ΨKN (r) e−iKP

where we denote reciprocal lattice vectors in the NC Brillouin zone (bz) with k and reciprocal lattice vectors

in the SC Brillouin zone (BZ) with K. The Bloch spectral density is de�ned as

Â (ω) = − 1

π
ImĜ (ω)

with the single particle Green's function

Ĝ (ω) =
1

ω+ − Ĥ
and reads in the SC KS basis

AKN,KN (ω) = 〈KN | Â |KN〉
= δKKδNNδ (ω − εKN )
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It is diagonal in the SC quantum numbers. The full Green's function can be written as

Ĝ−1 = Ĝ−1
0 − V̂

where G0 is the Green's function of the NC and V is the perturbing potential, which makes the di�erence

between the exactly duplicated NC and the actual SC. Here, we already assume that only the potential is

di�erent, meaning that all atoms are exactly the same, just moved around a bit. We will discuss this later.

Of course, if V is weak, one can argue that the NC KS states Ψkn are also a good basis to express the Bloch

spectral density. When done so, A will no longer be diagonal in the k indices, since the NC Bloch symmetry

is broken in SC. However, focusing only on the diagonal elements one get's an approximation for A, which will

have approximatly the Bloch symmetry of the NC and hence Akn,kn = 〈kn | Â | kn〉 will be the unfolded Bloch
spectral density. Of course, Ψkn can only be a basis of SC, if SC is a �multiple� of NC (no atom substitution,

see discussion in Section 15.3).

15.2.2 The local orbital connection

Now, one can express the SC ΨKN in terms of Wannier functions (WFs) and claim that the WFs are the

same in NC. Then one can transfer the WFs from SC to NC and build the KS functions in both cells from

the same basis. This allows to express everything in terms of these WFs. In FPLO the local basis forms a

complete WF basis, if Löwdin orthogonalized. (This orthogonalization leads to a new basis Φ̃ = ΦS−
1
2 , which

has the property of being the one �closest� to the non-orthogonal basis. Hence, an L-ortho FPLO basis is very

localized and is a WF basis. To avoid unnessecary complications we work in our non-ortho FPLO basis and

use gross-projection, when needed (1
2 (S ∗+ ∗ S)). Under the assumption that no atom substitution has taken

place in SC we can do the algebra and calculate the following. The KS states are expressed via Bloch sums of

WFs/local orbitals

ΦK
Sµ =

1√
NR

∑
R

ΦRSµeiK(R+S)

where ΦRSµ is the µ orbital at site S in cell R. The KS-state is a simple linear combination of these Bloch

sums

ΨKN =
∑
Sµ

ΦK
SµC

K
Sµ,N

Hence,

Â =
∑
KN

ΨKNδ (ω − εKN ) Ψ+
KN

=
∑
KN

∑
Sµ,Sµ

ΦK
Sµn

KN
Sµ,Sµ

(ω) ΦK
Sµ

which introduces the DOS weight matrix in the local basis

nKN
Sµ,Sµ

(ω) = CK
Sµ,Nδ (ω − εKN )CK∗

Sµ,N

Now, we map the sites of the SC onto the sites of NC. The SC consists of f �copies� of NC, translated by NC

lattice vectors rj , j ∈ [1, f ]. For every site S there is a site s in NC, which is in the NC cell translated by rj .

The SC lattice vector and the translation rj give a NC lattice vector

r = R + rj

and the site mapping can be written by labeling the SC sites according to their construction out of NC sites

and cells (cf. Figure 15.1)

s + rj = Ssj .
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Consequently, absolute site vectors can be written

r + s = R + rj + s = R + Ssj

NC SC

Figure 15.1: Cell mapping: The SC as the �fourfold� of the NC. Some of the open atoms are displaced against

ideal NC positions. The small vectors are NC lattice vectors and show how the 4 SC open atoms are mapped

onto their one NC equivalent.

If we now neglect eventual atom displacements we can form SC Bloch sums out of NC Bloch sums (but at the

SC k-vector)

ΦK
[NC]s =

1√
Nr

∑
r

ΦrsµeiK(r+s)

=

√
NR√
Nr

 1√
NR

∑
Rj

ΦRrj ,sµeiK(R+rj+s)


=

1√
f

 1√
NR

∑
Rj

ΦRSsjµeiK(R+Ssj)


ΦK

[NC]s =
1√
f

∑
j

ΦK
[SC]Ssj

(15.1)

The NC Bloch sum is a contraction of the SC Bloch sums. The KS states behave as

ΨK
N =

∑
Sµ

ΦK
SµC

K
Sµ,N

=
∑
sjµ

ΦK
SsjµC

K
Ssjµ,N

Now, the coe�cients would ful�ll the translational symmetry

CSsj = Crjs = CsU

if rj is strictly a lattice vector. (U denotes a possible unitary transformation, which does not �gure in the

following, where we reverse the argumentation). Thus, if the NC translational symmetry were true, we could

replace

CSsj =
1

fs

fs∑
j=1

CSsj
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Let's do that in the KS state and use Eq. (15.1)

ΨK
N ≈

∑
sjµ

ΦK
Ssjµ

1

fs

fs∑
i=1

CK
Ssiµ,N

≈
√
f
∑
sµ

ΦK
[NC]sµ

1

fs

fs∑
i=1

CK
Ssiµ,N

=

√
f

fs

fs∑
sµ,i=1

ΦK
[NC]sµC

K
Ssiµ,N

Hence, we get the coe�cients in the NC Bloch sum representation

CK
[NC]sµ,N =

√
f

fs

fs∑
j=1

CK
Ssjµ,N (15.2)

and

ΨK
N ≈

∑
sµ

ΦK
[NC]sµC

K
[NC]sµ,N

Now, we can write the Bloch spectral density in terms of these approximate Bloch sums

Â ≈
∑
KN

∑
sµ,sµ

ΦK
[NC]sµ

 f

fsfs

fs∑
j=1

fs∑
j=1

nKN
Ssjµ,Ssjµ

(ω)

ΦK
[NC]sµ (15.3)

The un-approximated Bloch spectral function ful�lls∫ ∞
−∞

AKN (ω) =

∫ ∞
−∞

TrÂKN (ω) = 1

with ÂKN =|KN〉δ (ω − εKN ) 〈KN |. The Bloch sums yield the overlap matrix via

SK
sµ,sµ =

〈
ΦK
sµ | ΦK

sµ

〉
So, we basically get

∫
A =

∫
TrnK (ω)SK , which is nothing but the normalization condition C+SC = 1 for

non-orthogonal eigenvalue problems. Using Eq. (15.2) it is clear that Eq. (15.3) is properly normalized if

the NC Bloch symmetry is exact. (Note, that then fs = f .) If we introduce a symmetrized gross projected

method, where we use contragradient Bloch sums Φ̃K = ΦK
(
SK
)−1

,
〈

Φ | Φ̃
〉

= 1 on one side of A we get the

expression

Â =
1

2

(
ΦnSΦ̃+ + Φ̃SnΦ+

)
and the trace give

TrA =
1

2
Tr (nS + Sn)

Hence, the diagonal part of A = 1
2 (nS + Sn) gives the unfolded weights and is normalized (TrA = 1), if the

NC Bloch symmetry is strictly true. For cases, where atoms got substituted, we have to make a modi�cation

to Eq. (15.1). The f should be the actual multiplicity of the NC site s under consideration f = fs. This is a

de�nition, which is consistent with any possible choice of NC and also with the cases of partial unfolding due

to substitutions. In any case the normalization is proper. Consider the case of perfect NC Bloch symmetry.
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Then n[SC]Ssj = 1
f n[NC]s. Hence (omitting S for simplicity) the diagonal part of Eq. (15.3) reads

As =
f

fsfs

fs∑
j=1

fs∑
j=1

n[SC]SsjSsj

=
f

fsfs

fs∑
j=1

fs∑
j=1

1

f
n[NC]ss

= n[NC]ss

And normalization becomes ∑
s

TrµAsµ = 1

which is ful�lled since it is for the NC expression. If we now have to partially unfold because out of f sites,

which would backfold to a single NC site, several (let's say ms) are occupied by a di�erent atom then the

fs = f −ms other sites, we cannot fully contract over all f sites. But we can contract over fs = f −ms sites

and leave the ms other atoms uncontracted (means not unfolded). This would restrict the contraction sum to

fs 6= f . Let's assume that still approximately n[SC]Ssj = 1
f n[NC]s (just to discuss the normalization) then we

get, letting the �rst parameter f = F be choosen later

As =
F

fsfs

fs∑
j=1

fs∑
j=1

n[SC]SsjSsj

=
F

f
n[NC]ss

Besides this we have the ms un-unfolded weights of the sites sλ, which have substituted atoms

Asλ =
1

f
n[NC]sλsλ , λ ∈ [1,ms]

≈ 1

f
n[NC]ss, (if perfect)

The normalization reads

As +

ms∑
λ=1

Asλ =
F +ms

f
n[NC]ss

and it becomes clear that F = fs gives normalization when summed over all sites. Hence our �nal de�nition is

wKN
sµ (ω) =

1

fs

fs∑
j=1

fs∑
j=1

nKN
SsjµSsjµ

(ω) (15.4)

Or in gross projection and droping the delta function, which was a placeholder for the energy dependence

wKN
sµ =

1

fs

fs∑
j=1

fs∑
j=1

1

2

(
CK
Ssjµ,N

[
C+S

]K
N,Ssjµ

+ [SC]
K
Ssjµ,N

CK∗
Ssjµ,N

)

=
1

fs

fs∑
j=1

fs∑
j=1

1

2

(
CK
Ssjµ,N

[
C+S

]K
N,Ssjµ

+
[
C+S

]K∗
N,Ssjµ

CK∗
Ssjµ,N

)
, j ↔ j, in second term

=
1

fs

fs∑
j=1

fs∑
j=1

Re
(
CK
Ssjµ,N

[
C+S

]K
N,Ssjµ

)
Net projection will be discussed below.
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15.2.3 Alternative considerations

First let's de�ned the normal cell problem and derive some symmetries. The orbitals Φrsµ form Bloch sums

Φk
sµ =

1√
Nr

∑
r

Φrsµeik(r+s)

and wave functions

Ψk
n =

∑
sµ

Φk
sµC

k
sµ,n

where C is determined by (overlap ignored, since it does not change the results derived here)

Hk =
(
Φk | H | Φk

)
HkCk = Ckεk

At a shifted k-vector we get

Φk+g
s = Φk

sµeig(r+s)

= Φk
sµeigs

and hence

Hk+g
ss = e−igsHk

sse
igs

Hk+gCk+g = Ck+gεk+g

Hk
(
eigsCk+g

)
=

(
eigsCk+g

)
εk+g

which says that the expression in parenthese is also an eigenvector for k and hence

εk+g = εk

Ck+g = e−igsCkUk (15.5)

where U mixes only states in degenerate subspaces (degenerate bands along symmetry lines/planes or at band

crossings). Now, one can argue that there is always a way to adjust the phases (gauge freedom) of an actually

calculated Ck+g (solution to the eigenvalyue problem) such that the result of a shift by g is at most a reordering

of band indices, which allows to set U = 1 in our considerations. In essence we are saying that the set over

all band indices
⋃
n Ψk+g

n equals
⋃
n Ψk

n. We have periodicity of the sets of bands with respect to reciprocal

translations. This is strictly only true for the sets, which happen to form continuous and periodic functions of

k (yes functions of sets!). If an individual band is followed smoothly (e.g. by the k · p-method) the resulting
Ψk+g
n can become another band Ψk

n′ .

Now, we describe the same system by introducing a super cell with f copies of the original cell. This leads

to new lattice vectors R and sites Ssj = rj + s, which are formed by shifting the original sites s via a set

of f original lattice vectors rj , j ∈ [1, f ]. Of course, the set of normal cell lattice vectors is obtained from

{r} =
⋃f
j=1 {R + rj}, which also leads to

∑
Rj F (R + rj) =

∑
r F (r). We also have to require that the BvK

torus in both descriptions has the same volume or that the number of normal cell lattice vectors is f -times

the number of super cell lattice vectors: Nr = fNR. Now, we can reformulate the problem in this super cell

description by forming Bloch sums with proper super cell translational symmetry

Φk
[SC]Ssjµ

=
1√
NR

∑
R

ΦRSjsµeik(R+Sjs)
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The corresponding coe�cients are Ck
[SC]Ssjµ,n

.

This description cannot lead to a di�erent result compared to the normal cell description, since we only changed

the arti�cal choice of a supercell. However, by increasing the matrix size (number of sites per unit cell) we

increased the number of eigen solutions or bands per k-point. In order to get the same number of physically

di�erent solutions the size of the reciprocal unit cell must be f -times smaller than the NC reciprocal unit cell.

Well, as everyone knows the excess solutions are bands, which got backfolded into this smaller reciprocal cell.

To understand this mathematically it su�ces to note that we already showed that in every unit cell the sets

of bands form periodic and contiuous functions. Hence, the SC wave functions are periodic with repect to

translations by reciprocal lattice vectors G:
⋃
n Ψk+G

n =
⋃
n Ψk

n. Let's construct the f ·m SC solutions out of

the m NC solutions. The �rst m solutions are just identical to the NC solutions
⋃m
n=1 Ψk

[SC]n =
⋃m
n=1 Ψk

[NC]n.

Now, for every reciprocal vector G the set
⋃m
n=1 Ψk+G

[NC]n is either equivalent to
⋃m
n=1 Ψk

[NC]n (G is a NC vector

g) or forms a new backfolded set in which case there are exactly f − 1 di�erent additional sets. We identify

f − 1 representative vectors Gl /∈ {g}, l ∈ [1, f − 1] and G0 = 0 and de�ne the set of f ·m SC solutions via⋃m
n=1 Ψk

[SC]n+lm =
⋃m
n=1 Ψk+Gl

[NC]n, ∀ l ∈ [0, f − 1]. This is just fancy talk for all the backfolding. Beware,

that in a real calculations all coe�cients C contain random phase factors from the eigenvalue solver, which

means that the construction above deviates in practice from the actual solutions by phases and unitary mixing

of degenerate bands.

However, now we can go a step further by identifying equivalences between coe�cients. Using the construction

of the SC sites discussed above we can write∑
S

Φk
[SC]Ssjµ

=
1√
NR

∑
RS

ΦRSjsµeik(R+Sjs)

=
1√
NR

∑
Rjs

ΦRrjsµeik(R+s+rj)

=

√
f√
Nr

∑
rs

Φrsµeik(r+s)

which leads to the SC expression

Ψk
[SC]n+lm =

∑
Sµ

Φk
[SC]SµC

k
[SC]Sµ,n+lm

=
1√
NR

∑
RSµ

ΦRSµeik(R+S)Ck
[SC]Sµ,n+lm

=

√
f√
Nr

∑
Rjsµ

ΦRrjsµeik(R+rj+s)Ck
[SC]Sjsµ,n+lm

and the NC expression, whose equivalence via backfolding we established in the argument above.

Ψk
[SC]n+lm = Ψk+Gl

[NC]n

=
∑
sµ

Φk+Gl

[NC]sµC
k+Gl

[NC]sµ,n

=
1√
Nr

∑
rsµ

Φrsµei(k+Gl)(r+s)Ck+Gl

[NC]sµ,n

=
1√
Nr

∑
Rjsµ

ΦRrjsµei(k+Gl)(R+rj+s)Ck+Gl

[NC]sµ,n

=
1√
Nr

∑
Rjsµ

ΦRrjsµeik(R+rj+s)eiGl(rj+s)Ck+Gl

[NC]sµ,n
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By comparison with the SC expression we identify

Ck
[SC]Sjsµ,n+lm =

1√
f

eiGlSsjCk+Gl

[NC]sµ,n

=
1√
f

eiGlrjeiGlsCk+Gl

[NC]sµ,n (15.6)

which is (up to unitary mixing, which we neglected) the exact mapping between the solutions of the two

equivalent descriptions. Now, we average the SC coe�cients over the equivalent sites with respect to NC

periodicity (j-sum with fs terms).

1

fs

∑
j

Ck
[SC]Sjsµ,n+lm =

1√
f

1

fs

∑
j

eiGlrj

 eiGlsCk+Gl

[NC]sµ,n

The sum in parentheses runs over all NC lattice vectors rj , which are needed to make the whole NC lattice

from the SC lattice vectors R. We can introduce a basis in the real space lattice via

R =

3∑
I=1

RIAI

r =
∑

rIaI

where in order for the SC to be a commensurate multiple of the NC the relation AI = aJMJI , MJI ∈ N must

hold. The reciprocal lattice then also has a basis

G =
∑

GIBI

g =
∑

gIbI

with the de�ning relation of the reciprocal basis BIAJ = bIaJ = 2πδIJ . Hence BIaKMKJ = 2πδIJ or

BIaJ = 2π
(
M−1

)
IJ

Glrj =
∑
I

Gl,IBI ·
∑
J

rj,JaJ

=
∑
IJ

Gl,Irj,JBI · aJ

= 2π
∑
IJ

Gl,Irj,J
(
M−1

)
IJ

The inverse of an integer matrix M is a matrix of rational numbers. The coe�cients Gl,Irj,J in the equation

above are integer in such a way that if Gl were a reciprocal lattice vector g of the NC Gl,I
(
M−1

)
IJ
∈ N must

be an integer because gr = 2πh, h ∈ N always holds for dual lattices. Hence for the non trivial Gl, which

actually backfold the original bands onto new bands Gl,I
(
M−1

)
IJ

must be rationals. On the other hand rj,J
are also integer but chosen such that they do not represent SC lattice vectors, since otherwise rj,J

(
M−1

)
IJ

must be integer for GR = 2πH, H ∈ N. Altogether, when thinking hard one realizes that Glrj runs over f

fractionals such that the resulting f complex numbers eiGlrj , j ∈ [1, f ] are equally spaced on the unit circle

including the number 1 (for rj = 0). But then a general sum of unity theorem tells us
∑
j eiGlrj = fsδGlg,

where any NC reciprocal vector g will work. If we do partial backfolding, where fs < f the sum of unity is no

longer correct, but one can argue that we get something with fs terms of order one and an approximate delta

function.
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Hence, the average becomes (using Eq. (15.5))

1

fs

∑
j

Ck
[SC]Sjsµ,n+lm =

1√
f
δGlgC

k
[NC]sµ,nU

k (15.7)

The unitary mixing only happens in degenerate subspaces and drops out of the �nal weight expressions if an

average over the degenerate bands is taken.

In words: if the bands are from the non backfolded set, l = 0, Gl = g we get C[SC] = 1√
f
C[NC]. If it is

a backfolded set l 6= 0 and Gl 6= g we get exactly(approximately) zero. Hence, the average de�ned above

is shown to di�erentiate between backfolded and original bands. Of course one can continue this relation to

k-points outside of the �rst SC reciprocal unit cell and hence recover the full band structure of the larger NC

unit cell.

What is left is the normalization condition. We will discuss net weights in order to stay consistent with the

FPLO scheme of things. The sum over all standard SC weights must equal one. Using Eq. (15.6) we can write

1 =
∑
Sµ

wk,n+lm
Sµ =

1

Ω

∑
Sµ

〈∣∣∣Ck
[SC]Sµ,n+lm

∣∣∣2〉
deg n

=
1

Ωf

∑
Sµ

〈∣∣∣Ck+Gl

[NC]sµ,n

∣∣∣2〉
deg n

=
1

Ωf

∑
jsµ

〈∣∣∣Ck+Gl

[NC]sµ,n

∣∣∣2〉
deg n

=
1

fΩ

∑
sµ

fs

〈∣∣∣Ck+Gl

[NC]sµ,n

∣∣∣2〉
deg n

The proposed unfolded weights using the rj averages read (with an undetermined factor Xs)

wkn+lm
sµ = Xs

〈∣∣∣∣∣∣ 1

fs

∑
j

Ck
[SC]Sjsµ,n+lm

∣∣∣∣∣∣
2〉

deg n

= Xs
1

f

〈∣∣∣Ck
[NC]sµ,n

∣∣∣2〉
deg n

δGlg

The normalization sum reads

1 =
∑
sµ

wkn+lm
sµ =

1

f

∑
sµ

Xs

〈∣∣∣Ck
[NC]sµ,n

∣∣∣2〉
deg n

δGlg

Comparing to the sum of SC net weights above assuming that we have an original band (δ = 1) we get Xs = fs
Ω

and the �nal normalized unfolded net weight result is

wkn
sµ =

1
fs

〈∣∣∣∑j C
k
[SC]Sjsµ,n

∣∣∣2〉
deg n∑

Sµ

〈∣∣∣Ck
[SC]Sµ,n

∣∣∣2〉
deg n

(15.8)

Finally, after having discussed everything for the exact supercell, we postulate that the same procedure is also

applicable for slightly distorted supercells, which gives the unfolding procedure.
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15.2.4 Summary:

Band unfolding is a fat-band method. By projecting the Bloch spectral density operator onto Bloch sums

of the NC periodicity, the resulting weights will be strongest for the bands, which belong to the original NC

band structure. The other bands of the SC, which are obtained by backfolding NC bands, will have smaller or

zero weight, depending on the amount of perturbation, which di�erentiates the SC from a perfect duplication

of NC cells. The philosophy of unfolding contradicts atom substitution. However, atom substituion can be

handled too at least formally.

15.3 Perturbations

There are two kinds of perturbations, moving atoms and replacing atoms. Moving atoms means that the

overlap matrix between the NC and the SC orbitals/WFs gets approximated in this unfolding technique and

that the phase factors of the NC Bloch states are only correct on average, which usually is a small thing, if

atoms are moved only slighty. However, one should keep in mind that the projections used assume perfect

matching (which only exists in perfect multiples of NC). Moving physically unimportant atoms (no contribution

to the energy window under consideration, e.g. Fermi level) is o� course a potential-only perturbation for the

important atoms (which contribute to the energy window) and hence unfolding for the important atoms makes

sense.

Replacing atoms comes in two modes. Replacing unimportant atoms (charge donors, bu�er atoms) really

just changes the potential of the important (other) atoms and the unfolding for the important atoms is

rather meaningful. Example: replacing cations in the pnictides while leaving the FeAs planes intact, gives

meaningfull unfolding for the Fe bands around the Fermi level. Replacing the important atoms gives problems

for the following reason. Assume the NC and SC as shown in Figure 15.2a.

NC

a)

1

2

1 3

2 4

SC

NC

b)

1 1 3

2 4

SC

Figure 15.2: Example for replacing atoms

The sites s = 1 gets unfolded by equating sites S = 1, 3. This will lead to nicely unfolded bands. The unfolding

of sites S = 2, 4 cannot be done in the technique used here, since the atoms and hence the basis of these atoms

are di�erent and there is no way of forming approximate Bloch sums of sites S = 2 and S = 4. Instead one has
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to request unfolding with site list S = 2 and S = 4 separately. This just means that the unfolded band weigths

of these two sites are identical to the not-unfolded weights and hence show the SC periodicity (backfolding

in the BZ). This makes some sense, since there really is no approximate NC symmetry for these atoms. The

total unfolded weight (sum over all orbitals) for unfolded S = 2 is half as big as the total unfolded weight

of S = 1, 3 due to the site count. In that sense the unfolding is still visible to a certain extend. In Figure

15.2b the situation is a bit better. Now, unfolded site weights can be de�ned from S = 1, 2, 3 and S = 4. The

weights will now play out better, since only one out of four sites, which form a full NC Bloch sum is missing.

So we can plot the S = 1, 2, 3 unfolded weights and the unfolded=not-unfolded S = 4 bands.

15.4 Brillouine zones

The NC bz is larger than the SC BZ. Example from Figure 15.2a: the bz is shown in Figure 15.3.

NC

Γ
x

y m

SC

Γ
X

Y M

Figure 15.3: bz and BZ of Figure 15.2

In the NC we have the high symmetry points

x =

(
π

a[NC]
, 0, 0

)
=

2π

a[NC]

(
1

2
, 0, 0

)
m =

(
π

a[NC]
,

π

a[NC]
, 0

)
=

2π

a[NC]

(
1

2
,

1

2
, 0

)
y =

(
0,

π

a[NC]
, 0

)
==

2π

a[NC]

(
0,

1

2
, 0

)
In the SC the equivalent points are at the same cartesian coordinates,but using a[SC] = 2a[NC] we get

X =

(
2π

a[SC]
, 0, 0

)
=

2π

a[SC]
(1, 0, 0)

M =

(
2π

a[SC]
,

2π

a[SC]
, 0

)
=

2π

a[SC]
(1, 1, 0)

y =

(
0,

2π

a[SC]
, 0

)
==

2π

a[SC]
(0, 1, 0)

Although, only the x-direction changes in the new BZ, all fedit coordinates change. This is because the

cartesian coordinates are the same in NC and SC, but the unit 2π
a[SC]

scales for all directions.

15.5 Caveats

� The unfolded weights might look much smaller than the weights in the NC along some directions. This

can happen, when the bands are degenerate in the NC and is due to a splitting in the SC combined with
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the way of counting. So, a width 1 band becomes, let's say, 2 width 0.5 bands shifted slightly against

each other. Now, they appear to be half as broad, when the splitting is small and hence the band are

more or less plotted on top of each other.

� Take care, when determining the NC bz in the SC setup.

� Unfolded weights do not show the full information, because the Bloch spectral density is not diagonal in

the approximate NC Bloch states.

15.6 User input/output

The user de�nes unfolding by creating the �le =.unfold. If the �le is detected the fatbands (+bweights_unfolded/

+bweights_kp_unfolded) are created according to formula 15.8.

15.6.1 =.unfold

The �le looks like this

# NCsite SCsites

1 1 2 3

# some comment

2 4

There can be any number of comment lines starting with '#', or lines only containing whitespace. They are

ignored.

Each line, which is not a comment line and not whitespace-only is an unfolding de�ntion.

An unfolding de�nition contains

the NC site number: which has no other use than labeling the contracted atoms in the label information

in +bweights_unfold. Maybe it's best to use the actual site number in the NC.

the SC site list: which is the list of sites in the SC, which get contracted onto the NC site.

The number of SC sites, which are contracted to this NC site (in the formulas above it is fs) is determined

from the input. Usually it equals the number of times the NC �ts into the SC fs = f . In cases where atom

substitutions took place fs < f as in the example �le above: 4 NC cells form one SC, hence f = 4. Atom 4

got substituted and has a di�erent atom than sites 1 . . . 3. So, we contract/unfold sites 1 . . . 3 and leave site 4

by itself. Note, that one can contract di�erent atoms, as long as they have the same basis, i.e. in most VCA

cases and when substituting similar elements (e.g. Fe with Ni).

15.6.2 choosing k-points

Beware of choosing the correct k-points. The unfolded fatbands are calcuated in the SC BZ. So, �rst you

determine the cartesian representation of the special points in the NC bz. Then you �nd the relation between

bz and BZ and �nally transform the bz points int BZ points and put them into the fedit menu in units of 2π
aSC

.

That means that a k-point in cartesian coordinates ~k is entered as k̃ in fedit with ~k = 2π
a k̃, where a is the �rst

lattice constant.
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15.6.3 Fermi surfaces

Fermi surfaces can be created with xfsf. Xfsf uses the symmetry to create an irreducible mesh and hence to

save calculational time. The NC bz is larger than the SC BZ. Therefore, it is impossible to create enough NC

k-points by using the SC BZ. There is a menu input->handmade symmetry, which allows the user to enter

the NC cell and symmetry operations (only some generators are needed). This overwrites the default mesh

symmetry. After this the process is straight forward, except for the �le su�x, of the unfolded fatbands, which

requires to set a non-default �lename in input->�les. Note that the new convention is to name the band �le

+band_kp for the Fermi surface (in general if =.kp was used), in order to not overwrite +band. So, the unfolded

�le is +bweights_kp_unfold.

The bandweights can be used for coloring: plot->coloring: extern, state. The extern checkbox switches from

Fermi velocity coloring to extern coloring from the �le given in input->�les. State selects the data column

from the �le. (Transparent coloring as in Ref. [12] is not o�cially available, since it was a hard coded hack.)

15.6.4 Examples

There are some examples in the FPLO22.00-62/DOC/Unfolding_example directory. Use

fplo22.00-62-x86_64

to calculated +bweights.... Then use

faddwei22.00-62-x86_64

and if the �le =.addwei_unfold exist (supercell sub directories)

faddwei22.00-62-x86_64 -s =.addwei_unfold

to extract +bwsums... and �nally

xfbp bw.cmd

to show the results.
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Chapter 16

Automation, scripting, pipe-mode, pyfplo

The manipulation of input �les via unix commands like ed, sed, awk and similar ones is strongly discouraged.

The format of the input �les follows a syntax and is not �xed in position. To achieve automation the pipe-mode

of Fedit can be used.

NEW: There is a new pyfplo python package, which can be used for input �le manipulation and which is

documented here: ../pyfplo/pyfplo.pdf. It uses the mechanism described below for input creation, but is

rather easy to handle. It also has the ability to read input �les. It is more general.

16.1 Rules

There are only a few rules to be obeyed.

1. The menus/screens/edit-controls of Fedit are operated by ascii hotkeys in interactive mode. For some

actions there are control keys (cursor movement, searching and scrolling). In pipe mode the latter keys

are not needed at all. The ascii hotkeys are replaced by a simple syntax explained below.

2. In interactive mode sometimes only a portion of the menu's form is seen on screen. In pipe-mode allways

the full form is virtually visible. There is no need for scrolling. (In fact there is no need for scrolling in

interactive mode as well, since the currently invisible hotkeys are also active and just typing an currently

invisible hotkey will scroll the form to make the selected edit-control visible.)

3. In interactive mode the edit-controls may be edited to change only part of the controls content. In

pipe-mode the full content/data of the edit-control has to be entered.

4. In interactive mode there are toggling actions, in pipe mode these become normal edit-controls.

5. In interactive mode there will be informational screens displayed after certain actions, which just show

output. In pipe-mode these screens will not occure. (E.g. the Fplo message after symmetry update.)

6. In interactive mode there will be questiones to be answered depending on the context. In pipe-mode

such questions naturally cannot occure.

7. In interactive mode, the user enters information by typing keys, in pipe-mode the user input to Fedit is

read from standard input (stdin). This input may e.g. be stored in a �le or come from a here-script

within a shell/perl-script.
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8. In interactive mode the user feedback is what is seen on the screens, in pipe-mode the feedback is written

to standard error (stderr). So it is good practice to redirect stderr to a �le and to redirect standard

output to /dev/null. (The screens on stdout will change so rapidly that they are useless.) Let us

assume that the input for the pipe-mode is stored in the �le =.pipe. (The pre�x indicates that it is

an essential input �le.) A good way to feed the information contained in =.pipe into Fedit in a shell

environment would be

cat ./=.pipe | Fedit -pipe 2>./+log 1>/dev/null

or

Fedit -pipe < ./=.pipe 2>./+log 1>/dev/null

Both commands have the same e�ect.

(a) The �rst command uses cat to write the content of =.pipe to stdout, which than is redirected

to the stdin of Fedit via the unix pipe command |. (That is the origin of the name pipe-mode.)

The second command uses the unix tool for redirecting the stdin. Here the content of =.pipe is

directly written to the stdin of Fedit.

(b) The editor is given the option -pipe to setup the mode.

(c) The stderr is redirected to the �le ./+log. (The naming is up to the user, however, our choice

follows the rules explained in Chapter 3. The '+' indicates that the �le is not essential and may be

deleted after a succesful run.)

(d) The stdout is redirected to the unix device /dev/null, which just means to discard it. (/dev/null

is a 100% information sink :-)

9. The return code of Fedit should be checked and the script aborted if needed, to intercept input errors.

Fedit sets the shell exit/return code as

1 on success

other on error

The exit/return code must be checked immediately after the command, which returned it. Any shell

action in between changes the exit/return code!

10. The logic of the pipe-mode is such that the user has to feed hotkey-data sequences and menu-hotkey

sequences into Fedit as he would in interactive mode. The user creates key sequences in the pipe-input,

which navigate through the menus as if it would be an interactive session. This includes the x-hotkey to

leave a sub menu. It excludes the x-hotkeys of information screens as described above. (The main reason

is, that those screens are context dependend.) If there is any invalid input in the pipe �le, the editor

will abort unsuccesfully. The reason for the failure is printed to stderr, which is accesible as explained

above. To create pipe input, just use the editor interactively and write down or remember all hotkeys,

which are pressed to complete the desired editing (except the information screens and questions).

Altogether the simple rule is that in pipe-mode there is only navigation to certain positions and entering of

data. Every other user ⇔ Fedit interaction will be absent.

16.2 Syntax

We assume that the pipe input is stored in a �le. Its syntax is as follows.
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1. The �le may contain comments, which are lines whose �rst non-blank character is '#'.

2. The �le may contain empty/blank lines.

3. Every single action goes into a separate line.

4. A hotkey is wrapped into two '@' characters. (If perl is used for the input creation the character '@'

has a special meaning in perl and must be protected '\@'.)

5. An alternate sub menu ('<SPACE>hotkey') is called with a single space followed by the hotkey, wrapped

into two '@' characters

@ hotkey@

6. A hotkey sequence, which activates an edit-control to enter data is mapped onto a line

@hotkey@data

7. A hotkey sequence, which activates N edit-controls is mapped onto

@hotkey@data1@data2@...@dataN

Example: The symmetry menu contains the Wycko� position de�nitions, which consist of an element

name and a vector. The hotkey equals the sort number. A corresponding pipe input to edit the second

sort could look like

@2@ Co @ 2/3 1/4 ,

This sets the Wycko� position de�nition for sort 2. The comma ',' is a duplicator of the value preceeding

it1. Thus
1/4 , 2/3 = 1/4 1/4 2/3

1/4 � = 1/4 , , = 1/4 1/4 1/4

8. An edit-control may be activated by a search command (as in interactive mode). This is done by

!search-string!data

This will look for the �rst occurence of the search string in the current form and if this markes an editable

control, it is activated and data is used as the control's new data. Multiple edit-controls, selected by

search are mapped onto

!search-string!data1@data2@...@dataN

(Note: As in the previous point, the '@' replaces the '<ENTER>' key used in interactive mode.) As in

interactive mode, the parentheses enclosing the hotkeys on the Fedit-screens are ignored in search mode.

Example: the screen entry �Conver(G)ence condit� is searched for as �convergence condit�.

9. An edit-control, which is a toggle in interactive mode is not toggling in pipe mode. So, if such data shall

be edited in pipe mode one needs to set the value explictely. This assures a de�ned state of the input

after completion.

(a) Old: logical values may be 't' or 'f'. Now, the values are no longer di�erently represented

on screen compared to options and can be set by 't', 'f' or '+', '-'.

(b) binary values take there values as they are written on screen in interactive mode. (Example:

spin sorts may be '1' or '2')

(c) Options (marked as selected by [X] on screen) are selected or deselected with the values '+'

or '-' in pipe mode

Example:

To select the option NO_SYMMETRYTEST in the options submenu we may use the search tool

1The comma also works in interactive mode.
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!NO_SYMMETRYTEST!+

or to deselect it use

!NO_SYMMETRYTEST!-

The search string must be choosen to be unique in the way that it really selects what you want. It is

best used only in options menus and in select boxes.

It is strongly discouraged to activate options (the things marked with '[X]') via the related
hotkey, since these hotkeys are created automatically by Fedit and thus may change if
the version changes2. The search utility is designed exactly for the purpose of changing
options. In select boxes the hotkeys will not change. However, the search utility gives better readable

pipe-�les.

2In fact, there is a list of all possible options. Fedit takes this list and creates hotkeys for all of them. If the order of options

in this list changes between di�erent Fplo versions, the mapping of hotkeys to options will naturally change as well. The authors

try to avoid a change of the options order. However, there are thinkable cases when this will be nessecary!
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10. The alternative choices in a select box are selected by a single hotkey command as in

...

# we assume we are in the main menu here

# we enter the relativistic select box (hotkey 'r' in the main menu)

@r@

# we select the full relativistic mode, by searching for

# 'full relat', which is uniqe in this select box

!full relat!

# We equally could use the hotkey, off course.

# Let us select it again:

@f@

# Now we leave the select box and go back to the main menu

@x@

# continue

....

Please observe that the parentheses indicating the hotkey ( '(F)ull relativistic' in this
case) are not visible in search mode, interactive or not.

11. The last key sequence in the pipe mode must be

@q@

and must be called being in the main menu. (So, you need to virtually navigate back to the main menu.)

This is to assure proper cleanup.

16.3 How to set up automation

There is one pecularity. Suppose you created a series of input �les and converged all related calculations.

Now, you want to change some settings, for instance increase the number of k-points, since it turned out

that you had to few of them. You could do this with a minimal script, which only changes the number of

subdivisions in k-space. Later you recognize that you need to change other settings. Again you could do it

with a minimal script. The main drawback of this approach is, that you loose control over the changes, which

have been done. Another point is that after a change of certain symmetry parameters some input data are

reset to default values. For these reasons it is advisible, to set up the pipe �le(s) always such that the input

�les are completely determined by the content of the pipe �le.

If Fedit is called within a directory containing input �les it o�ers the content of these �les for editing. This

means that the state of input �les depends on the previous editing. The following sequence of actions will

assure a state that does not depend on previous editing.

1. Go to the symmetry menu and enter all symmetry parameters explicitely. (These are not so many data,

so it is not a big task.)

2. Call update with the '+' hotkey! This will reset certain data of the =.in (and =.basis) �les. Never
forget this point! Most of the settings will remain unaltered. All calculations of a series should belong

to the same symmetry type. That means, the Wycko� positions should at most change their parameters

but the spacegroup should stay the same.

3. Go back to the main menu (hotkey 'x')

4. Call the alternate submenu action Recreate (hotkey '<SPACE>e'). This will reset the �le =.in to default

values, which belong to the current symmetry setup. Remember that in pipe mode the corresponding
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question (Really rebuild default content ? (y/n):) will not be asked, so you must not type 'y'

or 'n' in pipe mode. Following the answer 'y' an informational screen will appear in interactive mode,

which will be left with 'x'. This screen will be absent in pipe mode, due to the general rules above. That

means that in interactive mode you would type the sequence '<SPACE>eyx' to perform the rebuild, but

in pipe mode the action is achieved with a single line

# assume we are in main menu

# next line will call the reset action

@ e@

# we are back in main menu now, haveing default settings

5. Now, enter all input data, which di�er from default input, except symmetry data.

A setup for a series of calculations may be done as follows.

1. Create interactively an initial input for your compound. Perform a self consistent calculation. Check if

everything is �ne. Converge the number of k-points (may already be done with the help of scripts, o�

course).

2. Set up the scripts, which create the input for the series. Make sure to perform every calculation in a

seperate directory! After creating a new directory for a particular calculation of the series and before

invoking Fedit copy =.dens (=.basis for older Fplo versions) from the initial calculation directory

into the new directory. This has the advantage that the preconverged density will be available. As a

result convergence will be much faster (in many cases) than in a calculation from scratch. This procedure

makes sense as long as the parameter variation in the series is not to large. But even if so, the proposed

procedure will not hurt.

(In calculation series, (e.g. search of the minimum of an energy surface using e.g. a steepest decent

algorithm) where the input paramters depend on previous calculations, one may copy one of the latest

previous calculations into the new directory instead using the inital calculation.)

Make sure that the '=.'-�les are copied only, if a new directory has been created. (Do not overwrite

converged basis or density.)3. If the script is re-run with some paramters changed, the density of the

previous self consistent calculation should be retained!

If other input �les are used (e.g. =.basdef) make sure that they are copied too or that they are created

by the script.

3. Run the script to create the directories with the proper input. Check the created input interactively,

especially when new scripts are developed!

4. Launch all calculations in the various directories and wait for self consistence. Redirect output into a

�le, best is to allways use the same �le name (for instance 'out'). Check from time to time if everything

runs �ne.

You may modify your script such that it serves the input creation and the starting of the calculations.

Or you create a separate script to launch the calculations. Use the speci�cs of your platform (may be

there is a job queue).

5. Check if all calculations realy converged. There is a �nal message on completion of a calculation4. Check

this. The �nal message has the structure

TERMINATION: Keyword : explanation

where keyword may be

3This means that the script, which creates the directories and the input should test the existence of the directory.
4Except a bug occured.
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Finished The calculation run to self consistence or a single step calculation �nished.

Normal The calculation did what it was ment to do and achieved the goal. Some actions terminate

the program before self consistency, and this triggers a normal termination.

Error Something happend. In many cases there is a cure for the problem.

Crash This is really a bad case.

The Keyword may be checked automatically with the help of unix tools. The explanation string gives a

rough idea, what happend.

6. Have a look at example scripts in the distribution on how to extract certain data from the output.

7. Now, you are ready and may modify the script to change some settings and re-run the series if nessecary.

Take care of all points mentioned so far.

16.4 Advanced features

16.4.1 Initial polarization, inital spin split

Some times, you may encounter a situation where it is nessecary to repeat an initial spin split for a series of

calculations, since for example, the calculations were started spin polarized with an insu�cient split and run

back to a non magnetic state. Instead of discarding all calculations done so far, it is better to force a new

inital split on the pre-converged density. But, we face the situation that there are already 2 spin sorts in the

density �les and thus another inital polarization would urge Fplo to pose the question

Do you want to skip the possibly repeated initial spin splitting ?

Normally, the answer would be 'y' since mostly one just forgot to switch o� the inital polarization.

But in our situation the answer would be 'n', which forces another split. (What we really want is to restart

the calculations in a new attractor basin.)

Now the problem is that usually the Fplo jobs are started in a background mode. In such a case there is no

user to answer the question and so the job will crash (due to the fact that it tries to read from stdin, which

is not present in background mode). If the job is not running in background it will hang and wait for the

answer. Imagine, you started the script before weekend and come back at Monday and it still is waiting for

the answer, or crashed.

There is a way to circumvent the problem: One provides Fplo with the nessecary input on stdin. If the

program is not reading from stdin (since the question did not arise) the stdin will just be ignored and no

problems occur. But if the question arises the proper answer is available and the program continues. There is

an easy way to do this.

In the script which actually lauches the job there will be a line like

Fplo 2>/dev/null >out

We have to change it into

Fplo < ./+yes 2>/dev/null >out
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or

cat ./+yes | Fplo 2>/dev/null >out

where the �le +yes has to be created before (by the script) in the directory, where Fplo is running. This �le

contains a single line with the proper answer ('y' to skip the split in allmost all cases or 'n' in the particular

situation, which we discussed above.). The �le may be created with a here-script like in

cat <�<EOF > ./+yes

n

EOF

or with echo like in

echo "y" > ./+yes

So, comming back to our situation. To enforce the repeated spin split we would (in the script) switch on

the inital polarization and we would put an 'n' into the �le +yes. After a succesful split (means after

the re-started calculations passed the splitting), we should imediatly replace the 'n' by an 'y' and and switch

o� the inital polarization in the script, to avoid an unwanted destruction of the now hopefully correctly

converged results.

In fact one should allways use this construct, just in case, that one forgot to switch o� the inital polarization.

Some people will know the unix command yes, which will do a similar job as the �le construct. However,

in practical applications we often met the situation, where this command was not available in a job-queue

environment. Therefore, we decided to use the �le trick.

16.5 Example

We give an example script here, which uses basic features explained above. It is contained in the distribution

directory (in case of default installation something like FPLO/FPLO22.00-62) under DOC/Scripting_example/.

#! /bin/sh

#

# Example script to create a series of calculations for varying lattice

# constant for fcc Al.

#

# We use the so called here-script mechanism to create the pipe input

# on the fly.

# This script works with bash at least. For other shells part of the syntax

# may be different. Consult your man pages.

#

# We assume that the script is exectuted in a directory, where there is

# an inital calculation sub directory called SC containing a converged

# calculation of the same compound (fcc Al).

#

########################################################################
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# Always use fully qualified names, to assure proper program version.

# Store the exec names in variables, so we do not need to scan the script

# to replace the version later on.

FEDIT=fedit22.00-62-x86_64

FPLO=fplo22.00-62-x86_64

# Give all directories a name prefixed with the name of the parameter,

# which is running, followed by the parameter itself

prefix='a0='

# Remember the current directory.

# Be aware of the back quote syntax, on some unix systems you need a different

# construct to cast the output of a command (pwd here) to a string.

ROOT=`pwd`

########################################################################

# some functions

usage() {

echo "usage: $1 [-r] [-h[elp]]"

}

########################################################################

# Check the command line flags.

#

RUN_IT=0

while :

do case $1 in

-r) RUN_IT=1

shift 1

continue

;;

-h*)

usage `basename $0`

exit

;;

-*) usage `basename $0`

echo 'wrong options'

exit

;;

*) break

;;

esac

done
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#

# security questions

#

if [ x$RUN_IT = x1 ]

then

echo "Shall I run the jobs: [y/n]" ; read YN

# The next test is a little trick to circumvent problems with

# empty variable. We first form the concatenation x$YN, which

# has the value of $YN prefixed with a single x.

# Then we compare it with the teststring (y in our case) prefixed by x.

# So, if $YN=y than also x$YN=xy. Disturbing?

if [ "x$YN" != "xy" ] ; then

echo "abort"

exit

else

echo "Will run jobs now."

fi

else

echo "Shall I (re)create the input: [y/n]" ; read YN

if [ "x$YN" != "xy" ] ; then

echo "abort"

exit

else

echo "Will (re)create input now."

fi

fi

########################################################################

# loop over the running parameter, in our case the lattice constant

for xx in 6.50 7.00 7.50 8.00 8.50

do

# make sure we are in the root directory of our data directory tree

cd $ROOT

# create the directory name as described above (example 'a0=6.00')

dir="$prefix$xx"

# check, if input creation or job running shall take place

if [ x$RUN_IT = x0 ] ; then
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# input creation branch

# if the directory does not yet exist, create one

if [ ! -d $dir ]

then

mkdir $dir

echo "directory $dir created"

# copy the essential files from the inital calculation

# which is assumed to be in the directory SC

cp ./SC/=.dens $dir

echo " =. files copied"

else

echo "directory $dir exists allready"

fi

# change into the directory of paramter $xx

cd $dir

# Now create the pipe file content, with the help of a here-script.

# For the sake of book keeping we will save the pipe info into a file.

# (One could equally pipe directly into fedit.)

# The next command is the here-script ( <<EOF ), whose stdout is

# redirected ( > ) into the file ./=.pipe.

# Every thing which comes between the <<EOF line and the line below,

# starting with EOF, will go into ./=.pipe. The main advantage of this

# approach is, that we may use shell variable replacement

# (interpolation) to put the information of the running variable

# $xx at the proper position

cat <<EOF > ./=.pipe

########################################################################

# this is the beginning of the pipe file

# go to symmetry menu

@+@

# title

@c@Al, a0-variation

# enter spacegroup select box

@s@

# select space group

@225@

# leave selectbox

@x@

# structure type
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@t@

# crystal

@c@

# leave select box

@x@

# lenth units

@u@

# bohr radii

@b@

# leave select box

@x@

# lattice constants; Here we put our running variable.

# We enter as first lattice constant the value which is in $xx,

# then we use the fedit-','-syntax to repeat the value

@l@ $xx , ,

# set axis angles

@a@90.,,

# setup Wyckoff positions

# number is one in our case

@n@1

# Now, give list of ALL !!! Wyckoff positions.

@1@ Al @ 0.,,

#

# NOW CALL UPDATE, NEVER FORGET THIS!!!

#

@+@

# leave symmetry menu

@x@

# back in main menu

# This was the symmetry setup, and now we follow our advise to create

# the default =.in input by using the REBUILD-action.

# (The space before the 'e' opens the alternative menu bar.)

@ e@

# now we have the default input, and are still in the main menu

# Let us set the number of k-points to a non default value:

@k@ 16,,

# Let us set the xc-potential version now:

# first enter select box

@v@

# select via search

!Perdew Wang 92!

# leave select box, go back to main menu

@x@

#Let us set the relativistic mode:

@r@
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# Select by search, please note that the parentheses indicating the hotkey

# are not considered in search mode.

# (Have a look at the select box interactively.)

!scalar relativistic!

# leave select box

@x@

# Let us set some options:

# enter options menu

@-@

# Good habit is to select all options explicitly

# This includes the options, which are selected by default.

# here an example for deselecting

!PLOT_BASIS!-

# here an example for selecting,

!NO_SYMMETRYTEST!+

#leave menu

@x@

# Let us select spin=1 explicitly:

@s@1

# Let us switch off inital polarization explicitly:

@i@f

# last action must be

@q@

# this is the end of the pipe file

########################################################################

EOF

# Now execute fedit in pipe mode and use the information of the file

# =.pipe just created in $dir.

# We made sure that we are in $dir, since fedit shall act there!

# We no longer explicitely tell fedit which fplo executable to use!
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$FEDIT -pipe <./=.pipe 2>./+log 1>/dev/null

# Check exit/return code of fedit, there must not be any command

# in between the check and the command, which produced it (fedit here).

# The return code is stored in the variable $? in shell.

# exit=1 means success

if [ $? -ne 1 ]

then

cat<<EOF

Content of log file:

------------------------------------------------------------------------

EOF

cat ./+log

cat <<EOF

------------------------------------------------------------------------

There was an error in the pipe input. Check logfile above or in $dir/+log.

Be aware that the line numbers refere to the file $dir/=.pipe!

EOF

exit 2;

fi

# If we are here, the input was created in $dir according to our setup

# Now we continue with the next parameter

# change back to where we started

cd $ROOT

# end of input branch

else

# job-run branch

# change into the directory of paramter $xx

cd $dir

echo "$FPLO running in $dir ..."

# now execute, whatever is nessecary to launch job in the current

# directory (name $dir)

#START: example

# We just run the jobs sequentially on a single machine

# and redirect stdout to file out and stderr to /dev/null.

# (In this way there will be no dangling output and the job could run
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# savely in background, which is not done in our example here.)

# Furthermore, we use the +yes-file mechanism to avoid a crash

# due to repeated inital polarization (spin split).

# The "y" below enforces fplo to continue in such situation

# without a repeated split and does nothing otherwise. See manual.

echo "y" > ./+yes

cat +yes | $FPLO 2>/dev/null > out

#END: example

# change back to where we started

cd $ROOT

fi

# end of xx-loop

done

if [ x$RUN_IT = x1 ] ; then

grepfplo -p 'a0=' -m EE | tee e

fi

#

# After the input creation run we should have a directory structure like

#

# ./SC/

# ./a0=6.00/

# ./a0=6.50/

# ./a0=7.00/

# ./a0=7.50/

# ./a0=8.00/

# ./a0=8.50/

# ./script

#

# where every directory contains the same setup, except for the

# lattice constant.

# We may now perform converged calculations (option -r) in all directories.

# If we want to change, say, the number of k-points, we edit this number

# in the pipe-section above, re-run that script to change the input and

# re-converge the calculations (option -r).

#
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To test the script, copy the directory Scripting_example (including the subdirectory SC) to an appropriate

place, change into the copy and edit the variables FPLO and FEDIT in fscript to point to the fully quali�ed

executable names of your instalation. Make sure that the PATH is properly set, so that the executables may be

called in your environmet.

Then execute

./fscript

and answer 'y'. The directory structure described at the end of the script should have been created now. Next

execute

./fscript -r

and answer 'y'. Now the calculation is running in sequence. Wait for it to �nish. Test convergence via

grepfplo -p a0= -m it

Check termination status via

grepfplo -p a0= -m term

Collect total energies in �le named 'e' via (done in the script with option -r)

grepfplo -p a0= -m EE | tee e

Plot �le 'e' with e.g. Xfbp if you want to.

The old scripts 'gr..' are part of the installation and should be available if your installation procedure

succeeded. But now you can use Grepfplo instead.
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Appendix

A Summary of Changes

FPLO22, Release 62: 1. General:

(a) A bug in the optics module was found and �xed, which leads to too few tensor components

(Imεij (ω)) being written to the �le +imeps. This bug a�ected monoclinic and triclinic lattices,

in which case the error was quite obvious.

(b) For broadening BZ-integration methods the free energy and the extrapolated energy are addi-

tionally printed to the output now. See Sec. 5.3.

(c) The (modi�ed) Becke-Johnson xc-potential has been implemented, Sec. 5.5.1.

(d) An option to adjust the accuracy of the numerical three-center-integrals was added to the Fedit

Numerics submenu (see Sec. 5.4).

(e) The total gap, the mBJ-parameters (gmBJ, cmBJ) and the broadening-corrected and free energy

are grep-able via grepfplo. Sec. 5.3 and 7.

2. Input:

(a) The basis can be extended/modi�ed in the Fedit menu Basis. See Chapter 4. The �le

=.basdef is no longer the standard way of extending the basis. For non-standard modi�cations

=.basdef can be manipulated via pyfplo.fploio.Basis (../pyfplo/pyfplo.pdf).

(b) A new Fedit submenu XC-options was added for setting adjustable parameters of xc-functionals.

The mBJ-like potentials (Sec. 5.5.1) have parameter cmBJ, which is determined self-consistently.

For pre-converging calculations or for other reasons this parameter can be set constant in this

submenu.

3. pyfplo (see ../pyfplo/pyfplo.pdf)

(a) We added pyfplo.fploio.Basis and related classes to manipulate the basis on low level

(b) We added pyfplo.fploio.OutGrep to grep Fplo output from scripts, including the list of

sites.

(c) We added the list of elements: pyfplo.common.c_elements and pyfplo.slabify.c_elements.

(d) We added pyfplo.fedit.basis related to the corresponding new Fedit submenu.

(e) We added pyfplo.fedit.xcoptions related to the corresponding new Fedit submenu.

(f) We added the THCI-settings to pyfplo.fedit.numerics related to the corresponding new

Fedit Numerics submenu settings.

(g) Several pyfplo examples were added.

FPLO19, Release 60: 1. General

(a) A bug in the creation of high symmetry points has been �xed. This a�ects simple trigonal

systems, which unfortunately where showing the high symmetry points of simple tetragonal.
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2. Input:

(a) In Z2 mode the symmetry operator eigenfunctions are written to output.

(b) A new k-mesh creation routine has optionally been added. It allows to pick isotropic subdivi-

sions for centered lattices (of course still with symmetry restrictions, where they apply, e.g. in

bct: Na=Nb but now Nc!=Na is possible) The option is in the main Fedit menu, hotkey M.

See Sec. 5.1.

(c) In both k-mesh creation routines a subdivision of 0 triggers automatic subdivision. See main

Fedit menu help screen for explanation. See Sec. 5.1.

3. Xfplo

(a) The export button in the symmetry menu of Xfplo has now a cif-export option.

(b) The symmetry operations can be visualized in structure mode.

(c) The high symmetry points in the Fermi-surface module are classi�ed according to symmetry.

Points, lines and optionally planes and general points are available.

(d) A multitude of zooming, moving and rotation features have been added in the View menu.

4. pyfplo

(a) pyfplo can now be create as a python3 package. In FPLO/PYTHON execute:

make python3

to make it.

(b) The Berry curvature in pyfplo is now corrected for lack of symemtry. This is achieved by

adding an approximation of the position operator matrix elements. The result for the periodic

gauge has proper symmetry and does not change topological properties. hamAtKPoint can be

forced to return the relative gauge (gauge='forcerelative') if makedhk==True. The pyfplo

interface for Wannier centers (TI) has now an option to use the relative gauge with proper

correction terms, which yields properly symmetric Wannier center curves. The topological

indices should not be a�ected.

(c) The whole =.-�le content can be scanned into a json �le. See ../pyfplo/Examples/fploio/

equaldot2json.

(d) Mirror Chern numbers are implemented. See ../pyfplo/pyfplo.pdf.

(e) The symmetry operators of Wannier function Bloch sums and operators are accesible. See

../pyfplo/pyfplo.pdf and the example script ../pyfplo/Examples/slabify/symmetryops

, which checks symmetries and demonstrates usage.

(f) The pyfplo module FPLOInput has a cif-�le import option with optional symmetry determi-

nation function called structureFromCIFFile. See ../pyfplo/pyfplo.pdf.

5. Wannier function module

(a) There is an automode option in the wanniertools to create automatically all Wannier functions

for the valence sector or for all semi-core and valence orbitals. See ../pyfplo/pyfplo.pdf and

Sec. 6.2.2.

(b) The xc-�eld (option makexcfield in hamAtKPoint and savebfield in WanDefCreator) can be

obtained as a separate operator in +hamdata and hence pyfplo. See ../pyfplo/pyfplo.pdf

and Sec. 6.2.2.

(c) The position operator (basis connection and curvature) (option makebasisconnection in hamAtKPoint

and option

savepositionoperator in WanDefCreator) can be obtained as a separate operator in +hamdata

and hence pyfplo. See ../pyfplo/pyfplo.pdf and Sec. 6.2.2. Example: ../pyfplo/Examples/

slabify/Fe/SP/slabify/AHC/README.
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FPLO18: 1. Input:

(a) The �le =.sym has been removed. All functionality including symmetry updates are based on

=.in now.

(b) Fedit is now tightly bound to the Fplo version. This means that it is hard linked against the

input management libraries of the corresponding version. The option -p has been removed.

(c) The new symmetry treatment is more general. Old projects and new projects may not be

compatible. Especially site coordinates might be di�erent (although equivalent), which matters

for difvecs in =.wandef and =.bwdef.

This should not a�ect completely new projects.

Topological invariants for inversion symmetric systems might look di�erent: we print the in-

variants after each Kramers pair. The new symmetry module can contain trivial shifts in the

non-symmorphic translations (compared to the old symmetry module). Such shifts can lead

to sign changes of the δi at the TRIM points. If the changes take place inside a fourfold de-

generate manifold with mixed parities (for some non-symmorphic space group irreps on the

zone boundary) this sign change is not applied in the old order. Hence, the printed invariants

change. However, in this case they do not have a meaning (no gap). So, no harm done.

2. Wannier function module:

(a) spin-mixed relativistic Wannier functions are possible

(b) individual local spin axes can be de�ned for each projector (see Sec. 6.2.2)

(c) real space representation of WFs can be loaded into Xfplo (see below).

(d) new output �le +hamdata for use in pyfplo.slabify (see below).

3. dHvA module added. See Sec. 13.

4. Z2 invariants for non-centro symmetric topological insulators added. See examples section in ..

/pyfplo/pyfplo.pdf.

5. Python module to manipulate input added (useful for scripting). ../pyfplo/pyfplo.pdf

6. Slabify added. This is a python interface, which allows to map a Wannier function model (or

hand written tight binding model) onto an ideal �nite or semi in�nite slab (or other less important

structures). It can calculate the band structure (�nit slab) or surface spectral density (semi in�nite).

It also has options for Weyl semi metals and topological invariants. See Sec. 14.

7. Xfbp

(a) python bindings for scripting of Xfbp. (The old native scripting is still there.) See Sec. 10.

(b) a dens-plot mode which plots things like spectral densities (pixelized data).

8. Xfplo

(a) More space group settings.

(b) A global cell rotation to keep a certain cell orientation after cell transformations.

(c) Symmetry/cell manipulation tools.

(d) A cif-�le importer.

(e) Atom labels via the Plot . Labels dialog.

(f) It can now load Wannier functions and grid-plot data. For this purpose the wfdata... �les

have a header now. Similarily, the grid-output �les grid_...have a di�erent name (no leading

plus) and a header. The opendx �les are now only created when special options are set. See

e.g. ??, on page 29 and on page 29.
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FPLO14: 1. Internally a correction for diverging non-spherical density parts in scalar relativis-
tic calculations was added, which leads to slightly changed total energies as compared
to previous Fplo versions.

2. Multiple compilation branches possible (install/MMakefile 1). See Sec. 17.

3. New tools, see Sec. 14.

4. The basis can be changed. 21

5. Density mapping: Sec. 9.4

6. New input �les, some changes of old input �les into Fedit menus: Sec. 3

7. Band unfolding: Sec. ??, Chap 15

8. Molecular/Individual band weights: Sec. 9.3

9. Optics: Sec. 12

10. Output of energy and band resovled real space densities/wave functions for plotting. (See Fedit

GRID OUTPUT submenu)

11. Z2 invariant for topological insulators with inversion centers. This can be found in an Fedit

submenu.

12. Reduced exchange �eld (LxSDA, GGAx). This can be found in the Fedit menu.

13. Fixed-spin-moment works now in full-relativistic mode. Note, that this is not as stable as in non-

full-relativistic settings due to the fact that spin is not a good quantum number in full-relativistic

mode, which requires an iterative scheme for full-relativistic FSM.

14. The charging has enhanced options. Now, one can use Virtual Crystal Approximation (VCA),

molecular ionicities (for molecules) and a jellium model for 3D-solids. The old �les =.atcharge

and =.mol_charge have been removed and placed into an Fedit submenu. Data of these �les are

transfered to =.in on version update.

15. The production of bravais.ps and primitive.ps is discontinued, due to the availability of Xfplo.

16. The �le =.coeff has been turned into the switch Output +coeff file in the Fedit bandstructure

submenu.

17. Full relativistc LSDA+U (but still very bad convergence)

18. Note, that we changed the table for the onsite orbital momentum to show entries for each site not

each sort. This is repetitive information, but more consistent with other tables.

2009: 1. Geometry optimization of internal parameters (Wycko� positions) via forces.

2. Flexible grid output of density, spin-density and potential for visualization. (Now, in an Fedit

sub-menu and with opendx output.

3. Increased performance for larger cells and heavier atoms.

2008: 1. Generalized Gradient Approximation (GGA).

2. Scalar relativistc version in Koelling Harmon style

3. Finite nucleus has been implemented for upcoming use with EFG calculations.

4. Re-implementation of VCA.

5. Test version of Wannier functions implemented.

2007: 1. Currently the basis is prede�ned. The user is not expected to have to change the basis.

2. The basis is �xed, therefore the old basis optimization is discontinued.
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3. New potential construction and local orbital integration with higher accuracy.

4. Molecule/Cluster extension.

5. Major rewrite of the code.

6. Forces, but not geometry optimization modeul yet

01.07.2005: 1. �le =.ldos is obsolete now, added to Fedit menu

2. automatic Ewald parameter and Fourier component choice implemented

3. Orbital moment output for full-relativistic calculations

4. Experimental: Core-con�nement for 4f -systems

5. minor changes in atom potential to increase stability.

01.07.2004: 1. Full relativistic mode implemented (not for CPA and LSDA+U).

2. New internal mesh settings for increased accuracy.

3. Accuracy improvements in various places.

4. CPA and LSDA+U work together (not full relativistic).

5. Basis orbital grouping implemeted for enhanced stability and avoiding of �xed x0.

6. Large-scale code restructuring in symmetry treatment in order to implement the full relativistic

mode.

7. Format of =.dens hanged.

03.03.2003: 1. New shape function implemented, which should make voronoi cell merging obsolet. This

has an in�uence on the total energy within the mHartree range.

2. New spherically averaged crystal potential (orbital calculation) introduced, which now is the default.

This changes the basis de�nition and therefore the values of the optimum x0. It results in a change

of total energies. For 3d metals the new basis is a bit worse than the old. However, inclusion of 4d

polarization states will, as before, converge the basis to a high degree. For more open structures

like oxides the new basis scheme is more stable and in many cases better.

3. CPA implemented.

4. LSDA+U implemented.

31. Oct. 2002: 1. A single step calculation (niter=1) will not overwrite the =.dens and =.basis �les

2. A bug in the symmetrytest is �xed.

3. Enhanced accuracy in the twocenter integrals.

10. Jun 2002: 1. Change in scalar relativistic de�nition. (Tiny total energy di�erences < 1 mHa expected.

)

2. Kinetic energy correction due to �nit radius of orbitals added. Changed results expected, if the

basis contains orbitals with large non-vanishing derivative at the outermost mesh point.

06. May 2002: 1. Bug�x for COMPAQ-fort Linux-alpha compiler in bzone.f90.

12. Mar 2002: 1. De�nition of empty sites changed: The addition of empty sites to a normal structure

will no more change the basis de�nition of the normal atoms. Thus, the addition of empty sites has

to lower the total energy (which was not the case before)!

2. Total crystal density may be output using a grid de�nition �le =.densgrid. See Section 3.
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B FAQ

Q: How can one use existing input �les with di�erent versions of Fplo?

A: Updating is simple, just call the newer Fedit. It will update the input �les. Then continue with the

corresponding Fplo.

For downgrading see Chapter 2.

Q: I started Fedit and got the message

error(ReadPCTable): Cannot find entry definition file

'+fedit'!

It should be in the local tmp directory '+tmp'!

One can overwrite the location using option -ef filename.

Possible reason:

1) the executable '...fplo...' is not running correctly

or just does not exist!

....

A: Make sure that the Fplo executable (of the same version as Fedit) is within the PATH (shell environment

variable). Another possible source of the error is that the directory or some of the relevant �les are write

protected. If the Fplo executable is really not running (some linked libraries not found), just run Fplo

by hand on command line and see what happens. Be aware of the fact that Fedit will automatically try

to execute the Fplo executable using the fully quali�ed name (with the 'version-release' and architecture-

su�x, like fplo22.00-62-x86_64). It will not use the generic name fplo.

Q: How can I save memory?

A: 1. The number of occupied bands can be speci�ed in the Fedit main menu. Read the help screens

for this variable. This does not work for CPA.

2. For large compounds the number of k-points in the Brillouin zone may be reduced. (Convergence

with the number of k-points has always to be testet!)

Q: I want to make an antiferromagnetic calculation. . .

A: You will need two spin sorts and have to set the initial polarization to 't'. Then there is a submenu

(press <SPACE> i), which allows to set the value of the inital spinsplit. Choose the same absolute

value with opposite sign for the atoms, which are antiferromagnetically ordered. Set zero for atoms, which

by symmetry must have zero moment. To assure zero total moment you may use the FSM method with

a total spin moment of zero.

Note, that in the current implementation equivalent atoms with opposite magnetic moments have to be

put on di�erent Wycko� positions. This is one of the rare occasions where the code does not make full

use of symmetry.

Q: I want to plot the real space density or potential. . .
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A: Use the grid-oputput sub-menu.

Obsolete since version 9.00. See description of �le =.densgrid in Chapter 3. The output is performed
after the potential calculation in each iteration cycle (otherwise the potential is not yet de�ned). Use a

plot program of your choice to visualize the data (e.g. opendx).

Q: Fplo cannot allocate memory.

A: Ask the system administrator to increase the limits of stack, heap and data size of a user job. Fplo

jobs like other band structure programs need a lot of memory. The memory consumption is proportional

to the number of k-points in the irreducible Brillouin zone, which in turn usually is proportional to the

inverse of the number of atoms. You should check the number of k-points you really need to solve the

physical question.

Use number of occupied bands to decrease memory usage!

Q: How can I see the progress of the calculation?

A: Assumed that you re-directed the Fplo output into a �le, use the unix command:

grep "last deviation" fplo_outfile (for the self consistency)

grep "dev=" fplo_outfile (for the force iteration)

Xfplo -oi (set output �le name in interface if needed)

Q: I want to use less, grep, vi or other unix tools to work with the Fplo-�les having a name '+...'. It

does not work!

A: Many (new) unix tools will interprete the '+' sign as an option �ag. To use these tools with '+'-�les,

specify ./+file instead +file on command line!

Q: I have started a spinpolarized calculation but the result is not spin polarized.

A: The symmetry between both spin directions has to be broken by hand. Set the initial polarization

to 't'. You can set the amount of the initial split in the alternative submenu Initial spinsplit.

Attention: If there are already two spin sorts in the density �le, the program will ask if the splitting shall

be skipped (which is correct in most cases). However, in the case discussed in paragraph 16.4.1 a resplit

was intended. If the job runs in background, it will abort as soon as the question has to be answered

since a background job has normally no standard input to read from.

Q: I have started a spinpolarized calculation with initial spin split and the iteration jumps around.

A: May be the attractor regions for the polarized and for the non polarized solutions are selected in consec-

utive iteration steps and so it jumps. Depending on the given situation

1. one may try to increase the initial spin split.

2. the iteration-mixing may be too large. Got to alt-submenu iteration and decrease it.

3. use FSM to preconverge near the expected moment and release the FSM condition after convergence

of the FSM calculation.

4. use FSM to scan to whole E (M) curve (expensive, but sometimes the only way).
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+atpot..., 27

+band..., 19, 21, 26, 95

+basis, 24
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+coe�, 25, 26

+dens..., 27

+dos..., 24, 25

+error, 26

+fcor..., 27

+fedit..., 16, 28

+fkval..., 27

+fval..., 27

+grid..., 28

+hamdata, 99, 102

+har..., 27

+idos..., 25

+imeps, 19, 25, 87�89, 140

+iso_..., 96

+iso_b*, 102

+iso_b..., 15, 19, 95, 97�100, 107

+iso_b..._p..._spin..., 25, 95

+isoergcache..., 19, 25, 94, 95, 98, 100, 101

+(i)ldos.site.nl, 25

+loi, 24

+mass_vs_angle_..., 25, 105

+plasmon, 28, 87, 88

+points, 27

+run, 26

+symmetry, 27

+tmp, 30

=.addwei, 21, 78, 97, 102

=.atcharge, 22, 143

=.basdef, 21, 36�38, 40, 41, 129, 140

=.basis, 26, 128, 129, 144

=.bwdef, 21, 26, 77, 78, 82, 97, 100�102

=.cmd, 22

=.coe�, 22, 143

=.dens, 19, 20, 26, 82, 83, 129, 144

=.densconvert, 18

=.densgrid, 23, 29, 144, 146

=.densmap, 21, 82, 83

=.dirac, 16

=.dmat_init, 20, 85, 86

=.in, 18, 20, 82, 107, 128, 142, 143

=.kp, 21, 26

=.ldos, 144

=.mol_charge, 143

=.pipe, 125

=.sym, 20, 142

=.unfold, 21

=.wandef, 99

=.xef, 22, 81, 96, 106

=.xfp, 22

=.xstr, 22, 81

area_vs_angle.cmd, 25, 30, 106

bravais.ps, 143

dHvAdata, 30, 106

dmatedit.ini, 30, 86

extrorbit_chain..._iphi....vtk, 106

grid_..., 29, 142

grid_...[net/general/cfg], 30

orbit_plane..._chain....vtk, 106

primitive.ps, 143

tmp, 30

wfdata..., 29, 142

getting help, 1, 15, 83, 84

initial spin polarization, 130, 145, 146

mBJ, 45
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optics, 15, 25, 28, 87, 91

programs

dirac, 15, 16, 28

dmatedit, 15, 20, 30, 44, 85, 86

faddwei, 15, 21, 77, 78, 99, 102

fdhva, 15, 25, 30, 94, 96, 102, 105�107

fdowngrad.pl, 18

fedit, 15

foptics, 15, 87, 89, 90

fout2in, 19, 21

fpiotest, 1, 15, 16

fplo, 15

grepfplo, 15, 44, 45, 73, 139

pyfplo, 36, 41, 110, 124, 140, 141

xfbp, 3, 15, 19, 22, 25�27, 30, 84, 87, 89, 90,

106, 139, 142

xfplo, 6, 15, 16, 20�22, 25, 26, 29, 56, 59, 61�
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TI, 110

topological insulator, 110

unfolding, 21, 26, 111
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