pyfplo Documentation
Release 22.00-62

Klaus Koepernik

Jul 05, 2022

1 Introduction

2

BandWeights
WeightDefinitions
WeightDefinition
OptionSet
Site
Watch L.
Version
Vievel o
Constants

Slabify oo
BoxMesh
EnergyContour

DensPlotContext
GreenOptions
WeylPoint L L.
BfieldConfig
WESymOp
BerryCurvatureData
Site

1.1 General

1.2 Installation

Modules

2.1 pyfplo.fedit
2.1.1
2.1.2

2.2 pyfplo.fploio
2.2.1
222
223
224
225
2.2.6
2.2.7
2.2.8
229

2.3 pyfplo.common
2.3.1
232
233
234
235
2.3.6
2.3.7
2.3.8
239
2.3.10
2.3.11
23.12

2.4 pyfplo.slabify
24.1
24.2
243
2.4.4 FermiSurfaceOptions
245
2.4.6
24.7
24.8
249
2.4.10
24.11
24.12

Functions
Fedit.
INParser
PObj
FPLOInput
OutGrep« o . oo il
Basis
BasDef
BasDefSection
MultiOrbital
Data,
BandFileContext
BandPlot
BandHeader

CONTENTS

2.5 pyfploowanniertools Ll e e
2.5.1 WanDefCreator v v v i e e e e e e e e e e e e e e
2.5.2 SingleOrbitalWandef L
2.5.3 MultipleOrbitalWandef o o
254 Wandef e e e e e e e
2.5.5 Contrib e e e e e e e e e
3 Examples
3.1 Abasictutorial e e e e e e e e e e e e e
3.1.1 Thebulkband structure e e e e e e e
3.1.2 Thebulk Fermisurface e
3.1.3 Fermisurfacecuts. oL e e e e e e
3.14 Bulkprojectedbands L
3.1.5 Finite slab with 10 unitcells e
3.1.6 Finite slab with 10 unit cells (doubled in-planecell)
3.1.7 Finite slab with 10 unit cells (doubled in-plane cell), one atom removed
3.1.8 Finite slab with 10 unit cells (doubled in-plane cell), 3 atoms removed
3.1.9 Semiinfiniteslab L e
3.1.10 Semi infinite slab, doubled planarcell
3.2 2Dtopological insulator L. e e
3.2.1 Thetopological phase
3.2.2 Thetrivial insulator phase e
3.3 3Dtopological insulator e
34 Weylsemimetals oL e e e e e e e e
3.5 FEDIT scripting examples ittt i e e e e e e e e e
3.5.1 Setbandplot points e e e e e
3.5.2 Simplefeditexample e e e e
353 BCCIrono e e e e e e
354 BCCandFCCIron i e e e e e s e
3,55 SetExtendedbasis
356 BCCIron,extended basis v v v i e e
3,57 mBJXC-potential e e e e e e e
3.6 FPLOIO examples o o v it e e e e e e e e e e e e e
3.6.1 Reading=.nfiles
3,62 =flestojson e e
3.6.3 Readingcif-files.
3.6.4 Write =.in with low level routines,
3.6.5 Write =.in withmid level routines
3.6.6 Extract default basisinto=.basdef
3.6.7 Userdefined basis (in=.basdef)
3.6.8 Extract =.basdef fromoutputfile
3.6.9 Grepresults e e e
Bibliography
Python Module Index
Index

101
101
107
108
117
130
130
131
133
137
142
144
148
151
152
153
155
158
159
161
163
168
170

175

177

179

CHAPTER
ONE

INTRODUCTION

1.1 General

The python extension pyfplo exposes some of the functionality of the FPLO package to python. Among the main
features are input management (write and read of =. in), the easy creation of FPLO band/bandweight type files,
the python version of faddwei and the slabify module, which allows to map Wannier function models onto larger
unit cells, finite slabs and semi infinite slabs. Band structure and spectral densities can be calculated for these
super structures. The Berry curvature for Weyl points can be calculated.

There are examples under /FPL022.00-62/DOC/pyfplo/.

Attention: Many data objects which are returned by the pyfplo classes are copies of the underlying c++
objects, which means that:

bp=sla.BandPlot ()
bp.points.append(...)

will modify the temporary object returned by pyfplo.common.BandPlot.points (page 32) and then
discard it. In general, the only supported operation is assignement:

1=[1]
l.append(['S$S~G',[0,0,0]11)
1l.append(...)
1l.append(...)

bp=sla.BandPlot ()

bp.points=1

1.2 Installation

Prerequisites: numpy must be installed on your system. You need to know how to link to lapack, if you want to
use it or you use our own copy (which might not as effective).

Prepare Make: As with the other fplo make files we need some preliminary setup. This is done by install/
MMakefile together with the default setup procedure.

Make: Go to PYTHON under your fplo source tree and run make for a python2 package and make python3
for a python3 package. Note that the example scripts need to be run via python3 script.py in the
latter case. Answer all questions. As a first trial just hit enter, unless a number is required and see if the
installation works. Later try to refine the installation, if needed. The result should be a new directory called
pyfplo. If you want you can copy the whole py fplo directory somewhere else.

Setup: The standard installation procedure of python often requires admin rights, which is inconvenient. We
decided to let py fplo reside inside the FPLO source tree. To use it we need to set environment variables.
If one copies pyfplo somewhere else, one need to adapt pyfplopath in the code below. This way

pyfplo Documentation, Release 22.00-62

different versions can be managed. Use export statements in your batch scripts or local shell environment.
(The actual syntax for exporting environment variables depends on the shell you use. There are most
certainly already examples in your local shell configuration file.) Add

Define the pyfplo path here. The last directory in this path
must be the one under which pyfplo resides.

pyfplopath=.../FPLO/FPL0O22.00-62/PYTHON

Now export the environment variables.
export PYTHONPATH=Spyfplopath:SPYTHONPATH

uncomment this if you get dynamic link issues
#export LD_LIBRARY PATH=Spyfplopath/pyfplo:SLD_LIBRARY PATH

to your script or .bashrc (or similar config files) where . . /FPLO/FPL022.00-62/PYTHON is re-
placed by the actual directory your pyfplo sits in. It is important that these variables are set before the
python script is executed.

If more than one pyfplo versions exist (which is often the case) it is absolutely necessary to either set
the environment via .bashrc (and the like) or in job-queue scripts or to wrap pyfplo into a shell script
which sets PYTHONPATH (and perhaps LD_LIBRARY_PATH) first and then executes the python script. If
LD_LIBRARY_PATH is need both variables need to be set correctly otherwise python will import modules
from one version and the library from another, which obviously is not good.

There is yet another possibility, which might work. You could explicitely specify the pyfplo version path
in the beginning of the script before you import any py fplo modules:

import sys
sys.path.insert (0, "PATH_UNDER_WHICH_TO_FIND_pyfplo");

where PATH_UNDER_WHICH_TO_FIND_pyfplo isa path under which your desired pyfplo version sits.
This method requires to modify your python scripts, but has its own charm.

You might want to find out, which version was used. Do this:

import pyfplo.fedit as fedit
print '\npyfplo version=: \nfrom: \n'.format (fedit.version, fedit. file

)

2 Chapter 1. Introduction

CHAPTER
TWO

MODULES

2.1 pyfplo.fedit

» Functions (page 3)

» Fedit (page 3)

The fplo editor fedit has a pipe mode, which is documented elsewhere. Read the documentation in fedit help
screens and in the fplo manual (FPLO. .../DOC/MANUAL/doc.pdf). This module allows to use fedit pipe
mode from python scripts. It is recommended that this class is used to manipulate =. in files. The low level
classes in module pyfplo. fploio (page 15) can be used as well, but do not ensure data consistency. E.g. one
can set relativistic.type to a certain number (if one knows, which one) but the corresponding relativistic.descriptor
would not be set automatically. Consequently the resulting =. in file would be correct from fplo point of view
but a human will be mislead when perusing the file.

Checkout the examples delivered with fplo.

2.1.1 Functions

fploExecutable (suffix=")
Parameters suffix (str)— for convenience, suffix is appended to the exec name

Return the name of the fplo executable as st r, which fits the pyfplo version. This is an educated guess.
There is no garantee that it is correct. If you compiled with a non-default build branch, this function does
not return the name including the build branch suffix but just the generic name. Use suffix to select the
correct executable or just write it out explicitely anyway.

2.1.2 Fedit

class Fedit (recreate=False)
Use this class as an interface for fedit pipe mode. There are general routines and specialized routines for a
lot of possible input. Altogether arbitrary input can be created. To find out valid search strings or hotkeys
consult fedit itself.

recreate: please consult resetPipelnput (page 4).

Most routines take keyword arguments. One only needs to specify the keyword explicitely if a selected
subset of the arguments is used. Not all arguments need be given. If all are used the keywords can be left
out (however the order of arguments does).

Many options are bool-like. In these cases the possible values are True, 1, 't"', '+' orFalse, 0, 'f',

Arguments like defs in 1sdau (page 9) can be either a list of items, whose syntax is explained in each
functions documentation, or an empty list [], which basically resets defs to an empty list. In other words

pyfplo Documentation, Release 22.00-62

there are no explicit counters for lists-like input. The number of list items in defs and the like is the counter.
Have a look at the fedit LSDA+U submenu. There you have under CORRELATED STATES the item
“(N)umber of definitions :” followed by the list of Wyckoff positions, states and FO. ... To set this counter
to zero use defs=[]. If recreate or resetPipeInput (recreate=True) is used properly this is
however rarely needed.

[lustrative example:

import pyfplo.fedit as fedit
fed=fedit .Fedit (recreate=True) # if ‘True’, reset to default input
(except symmetry)

fed.relativistic('s') # set to scalar relativisitc
or
fed.relativistic('scal') # is the same

or using the full explicit hotkey sequence

note that the individual hotkey-value pairs are separated by newline
(\n)

fed.addToPipeInput ('@r@\n!scal!\n@xQ")

which is short for

fed.addToPipelInput ('@r@') # enter relativistic submenu
fed.addToPipeInput ('!scal!') # use search string

fed.addToPipelInput ('@x@') # leave submenu

fed.pipeFedit (prot=True) # do the actual piping and show details

The simplest (old-style) way to create input is the following:

import pyfplo.fedit as fedit
fed=fed.Fedit ()
fed.pipeFedit ("'’

reset to default

@ e@

vxc

@v@

196!

@x@

#k-mesh

@k@ 1e6,,

#done

Qg

""", prot=False)

or with variable options:

import pyfplo.fedit as fedit
fed=fed.Fedit ()
fed.pipeFedit ('"'

reset to default

@ e@

vxc

@v@

! !

@x@

#k-mesh

@k@ 00

#done

@g@
'"'".format (16, 'Zunger'),prot=False)

resetPipelnput (recreate=False)
Reset all pipe input. If recreate is True the default-input- creation flag is set, which triggers non-
symmetry input to become default after symmetry input. This way we start from a default input,

4 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

which avoids a buildup of unwanted input from former manipulations.

addToPipeInput (#xt)
Add any hotkey sequence to the fedit pipe input. This routine can be used for arbitrary sequences and
in fact is underlying all the specialized routines. Example:

A1l in one go. (Note the use of newline \n)
fed.addToPipelInput ('@r@\n!scal!\n@x@")

which is short for

fed.addToPipelInput ('Qr@') # enter relativistic submenu
fed.addToPipelInput ('!scal!') # use search string
fed.addToPipeInput ('@x@"') # leave submenu

pipeFedit (text=None, prot=None)
Execute the pipe mode of fedit. Use text if not None. Note that fext must end in @q@ for success. If
text is None, use the internal pipeinput collected so far. If prot is True, show verbose output about
what is going on internally. See examples in Fedit (page 3).

symmetry (compound=None, units=None, type=None, latcon=None, angles=None, atoms=None,

spacegroup=None, setting=None, globalaxes=None, generators=None)
This function (like most) can be called with different key words, also sequentially, as in:

fed.symmetry (latcon=[4,5,6])
fed.symmetry (spacegroup=221)

or in a single call:

fed.symmetry (latcon=[4,5,6],
spacegroup=221)
units can be a search string or a hotkey.
type (structure type) can be a search string or a hotkey.
spacegroup (int or str) is the group number
setting (str) is the setting. Consult fedit itself for proper values.

Example:

fed.symmetry (spacegroup="'"74",setting="a-cb")

latcon can be missing or a list or string containing 3 lattice constants.
angles can be missing or a list or string of 3 axis angles.
atoms canbe [[element, position], ...] where

element (str)is the element

position(list or str)isalistor astring of the positions X,y,z coordinates. The comma
repeater can be used. in the same way as in fedit itself.

Example:

fed.symmetry (atoms=[["'Sm' ,['0.123",'3/4","',"'11]

#or

fed.symmetry (atoms=[["'Sm' ,[0.123,3./4,","11]

#or

fed.symmetry (atoms=[['Sm' ,'0.123 3/4,"']1]]

Note that in python 3/4 equals O (integer arythmetic) while 3./4=0.75.
globalaxes canbe [active, xaxis, zaxis] where

active (bool-like) says, if the axes are active.

xaxis and zaxis (list or str) are a list or string of 3 numbers.

2.1. pyfplo.fedit 5

pyfplo Documentation, Release 22.00-62

Example:

fed.symmetry (globalaxes=[True, [1,1,0],[-1,1,211)
or

fed.symmetry (globalaxes=[1,"1 1 0","-1 1 2"])

generators (1ist) is a list or string of int and represents the list of valid subgroup generators. Use
the fedit symmetry-information submenu in the symmetry menu to find out the desired numbers.

options (oplist=None)

oplist can be [[OPTION, True_or_False],...] or simply [OPTION, True_or_False]
for a single option, where

OPTION is one of fedits options-menus options.

True_or_False canalsobe 0 or 1

Examples:

fed.options ([['FULLBZ',1], ['CALC_DOS',False]])
or

fed.options (['FULLBZ',1])
fed.options (['CALC_DOS',False])

spin (spin=None, initialspinsplit=None, initialspin=None, fsm=None)
spin can be missing or 1 or 2.
initialspinsplit can be missing or True or False or equivalent values.
initialspin canbe [[sort, spinmoment], ...] where
sort (int) is a sort/Wyckoff postition number and
spinmoment (float) is the initial spin moment
fsm can be missing or a list: [True_or_False, fsmmoment]

Example:

fed.spin(initialspin=[[1,2]1,1[2,0]1,[3,011)
fed.spin(spin=2,initialspinsplit=True)

fed.spin (fsm=[True, 2.4])
xcoptions (cmBJ=None)
cmBJ can be None ora float

Example:

fed.xcoptions (cmBJ=None)
fed.xcoptions (cmBJ=1.1)

relativistic (mode=None, quantaxis=None)
mode can be a search string or a hotkey.

quantaxis (List or str):e.g. [1,1,0]or'l 1 O

Example:

fed.relativistic('scal')
or
fed.relativistic('s")

set full relativisitc and quantization axis
fed.relativistic('full',quantaxis=[1,1,0])

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

bzintegration (nxyz=[12, 12, 12], temperature=None, method=None, mpparam=None)
nxyz (List or str): alist or string with 3 int.

temperature (£1oat or str): temp for molecules.

method (str): can be a hotkey (' T' or 'M'") or a search string (e.g. 'tet' or 'pax'). Note that
'meth' will select the tetrahedreon method because 'meth' matches ‘method’

mpparam: can be alist [width, order] (width in Hartree)

Example:

nxyz 1s the first argument to bzintegration. Hence
we can leave out the keyword

fed.bzintegration([6, 9, 12])

or we do it explicitely and use strings
fed.bzintegration (nxyz=' 6 9 12')

choose method

fed.bzintegration (method="pax',mpparam=[0.005,1])

or all together
fed.bzintegration([6, 9, 12],method="pax',mpparam=[0.005,117)

optics (active=False, bounds=None, Ne=None, jointdos=None, stopafter=None)
active (bool-like): is optics active?
bounds: can be a list with the content [1bound, ubound] where 1bound... are float
Ne (int or str): number of energy points
Jjointdos (bool-like): see fedit help screens.
stopafter (bool-like): obvious.

Example:

fed.optics (True,bounds=[0,10],Ne=2000, stopafter=True)
charges (vca=None, charges=None)
vca: can be a list: [active, Z1ist] where
active is bool-like
Zlistis [] or [[sort,Z],...] where
sort (int): is a Wyckoff position number
Z (float or str): is the nuclear charge
charges can be [mode, ionicity] where
mode (str): is a search string ('none', 'jel', 'mol") or a hotkey (1, 2, 3)
ionicity (float or str): is obvious

Example:

fed.charges (vca=[True, [
[1,25.2],
[2,27.9]1]
1)

vxc (version=None, xfactor=None)
version (str): a hotkey or search string (e.g. '5' or 'Ernzerhof 96')
xfactor (float or str): xc-field scaling

Example:

2.1. pyfplo.fedit 7

pyfplo Documentation, Release 22.00-62

fed.vxc (version=5)
verbosity (level=None)
level (str): a hotkey or search string (e.g. '2' or 'basic')

Example:

fed.verbosity (level="basic')

ti (z2=None, homooffset=None, forcewanniercenters=None, integrationintervals=None, kyparam-

intervals=None)
z2 (bool-like): switch on/off the calculation of Z2 invariants.

homooffset (int): The code will determine the likely highest occupied valence band (assuming a real
gap exists). Then it calculates the invariants for a set of bands from -offset to +offset around this band.

forcewanniercenters (bool-like): the Wannier center algo will additionaly be executed for centro
symmetric systems.

integrationintervals (int): The Wannier centers are functions of a paramter (ky-parameter), which
are obtained by “integrating” along a second direction. Here you specify the number of integration
intervals.

kyparamintervals (int): This determines the number of intervals along the ky-parameter axis.

Example:

fed.ti (z2=True, homooffset=4, forcewanniercenters=False,
integrationintervals=40, kyparamintervals=100)

finuc (mode=None)
Finite nucleus settings.
mode (str): hotkey or search string (e.g. 3 or 'linear")

Example:

fed.finuc('linear")
opc (active=True, functional=None, defs=None)
Orbital polarization correction.
active (bool-like): active or not?
functional (str): hotkey or search string (e.g. 1 or 'spin dependend')
defs (list): may be [] or [[sort, state—-label], ...] where
sort (int) is a wyckoff position number and
state-label (str) is something like '3d"' or '4f"'

Example:

fed.opc (True, 'spin independend', [[3, "4f"'],[7,'4£']])

bandplot (active=True, points=None, ksteps=None, weights=None, transaxis=None, xaxis=None,
zaxis=None, bwdeffile=None, ldossites=None, interval=None, restrictbands=None,
idos=None, ndos=None, coeff=None)
Bandplot options.

active (bool-like): is bandplot active?
weights (bool-like): is bandweights active?

points (List): canbe [] or [[label, [kx,ky,kz]] , ... 1] alternatively the point can be
written [label, "kx ky kz"]

8 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

kstep (int): steps between sym-points
bwdeffile (st r): file name for band weight definitions (=.bwdef)
transaxis (bool-like): transform axes?
xaxis (List or str): xaxis for band weights
zaxis (List or str): xaxis for band weights
ldossites (11st): list of 1dos sites
idos (bool-like): plot idos?
ndos (bool-like): plot netdos?
interval (1ist): dos-energy interval: [ne, 1bound, ubound] where
ne (int) is the number of energy points
1bound (float) is the lower energy bound
ubound (float) is the upper energy bound
coeff (bool-like): trigger output of +coeff
restrictbands (boo1l-like): restrict bands to window

Example:

let's do it in two steps: general settings
fed.bandplot (active=True, ldossites=[2,17],
weights=True, transaxis=True, xaxis='1 1 0',zaxis=[-1,1,0],
restrictbands=True,
interval=[2000,-2,3])
high symmetry points
fed.bandplot (points=][
['S~GY, 10,0, G,
('x',[1,0,0117,
[('M',[1,1,011,
1)

1sdau (active=True, functional=None, projection=None, defs=None, tol=None, occumode=None)
LSDA+U settings.
active (bool-like): is LSDA+U active?
functional (str): hotkey or search string (e.g. 2 or 'atomic limit')
projection (str): hotkey or search string (e.g. 4 or 'gross"')
tol (f1oat): the inner occu-matrix loop convergence tolerance
occumode (str): hotkey or search string (e.g. 2 or ' fixed")

defs (list): can be [] or [[sort,state-label, [£0,£f2,£f4,£f6]],...] or [[sort,
state-label, [], [U,J,F40F2,F60F2]], ...]. The second option with an empty F-list is
for convenience. The list elements are

sort (int) is a sort
state-label (str)ise.g. '3d' or '4f"
£0, £2, £4, £6 (float) are obvious

U, J, F4oF2, F60oF2 (float) are U, J, F4/F2 and F6/F2. If not needed, J, F40F2 and
F60F2 can be left out. Also, if F4oF2 and/or F60F2 are not given but needed, default
values are used. If only U is given all Fi, i>0 are zero and hence J is zero:

2.1. pyfplo.fedit 9

pyfplo Documentation, Release 22.00-62

s: only U is needed

p: only U and J make sense

d: U, J and F4oF2 (default 5.5/8.5)

f: U, J, F4oF2 and F60F2 (default 2./3 and 1./2)

Example:

explicit F2,F4, two sorts
fed.lsdau (True, functional="atomic',projection="gross',
,defs=][
[3,'3d',[8,9,5,0]11,
[5,'3d',1[8,9,5,0]1,
1)
implicit F2, F4, explicit U and J, two sorts
fed.lsdau (True, functional="atomic',projection="gross"',
,defs=[
[3,'3d",[1,[8,1]11,
[5,'3d",[],[8,1]11,
1)

gridoutput (active=None, stopafter=None, defs=None)

Define the grid output settings.

active (boo1l-like): do we want it?

stopafter (bool-like): obvious

defs (1ist): canbe [] or a list of dicts one for each grid definition, with the following structure:

[{ # first grid definition

'basis': basis,

'dirl': list_or_str,
'dir2': list_or_str,
'dir3"': list_or_str,

'origin':list_or_str,
'subdiv':1list_or_ str,
'includeperiodicpoints': True_or_False
'createopendx': True_or_ False
'scfenergywindow': list_or_ str_of_two_float
'quantities':quantdict,
'outputdata':outputdatadict,
'kresolved':kresolvedlist,
'eresolved':eresolvedlist},

{ # second grid definition

soalp

where not all dict keys need to be present! The individual values are
list_or_str: alist or string of 3 numbers. In case of subdiv these must be int.
basis (str): "prim' or 'conv' or 'cart'
quantdict (dict): {quantityname:True|False, ...}
quantityname (str): 'dens', 'pot', 'scf', 'coul"', 'xc', 'ewald'
outputdatadict (dict): {outputdataname:True|False, ...}

outputdataname (str): index, points, 'total', 'spin', 'up'
'down', 'comp'

>

kresolvedlist (list): [] or [kresdict, ...]

10

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

kresdict (dict): {"name' :some_name, 'point':1list_or_str,
'bands': list_of_int, 'ewindow': [lbound, uband]}

eresolvedlist (1ist): [] or [eresdict, ...]
eresdict (dict): { "name' :some_name, 'defs': defslist}
defslist (list): [[emin,emax,de, 'up'|'do'|'bo'],...]
Example:

fed.gridoutput (True, stopafter=True,defs=|
{
'basis':'prim', 'dir1':(1,1,0], 'dir2"':[-1,1,0], 'dir3':'0 O 1",
'origin':[-0.5,-0.5,"'2/3"'], 'subdiv':'10 20 30°',
'quantities':{'pot':True, 'dens':True},
'outputdata':{'points':True, 'total':True, 'spin':True},
'kresolved': [
{"name':'Gamma', 'point':[0,0,0], 'ewindow':[-1.1,2.4]},
{'name':'X', 'point':[1,0,0], 'bands':'23 24 25'}
]I
'eresolved': [
{'name':'rl', 'defs':[[-7,9,0.01, 'b"']1}
{'name':'r2','defs':[[-1,1,0.01,"'u'll},
{"'name':'r2','defs':[[-1,1,0.01,'d"']]1}
1

4

1)
coreoccupation (defs=None)
Define the core occupation. (Experimental option)

defs (1ist): []J or [[sort,state-label, [occ,0cc,...], [occ,o0cc,...]1] ,
] where

sort (int)is a sort number
state-label (str)ise.g. '4f"

end where the last two lists (for spin up and down) are the occupation numbers for the 2*1+1 orbitals.
Normally the occus should all be the same per spin channel. One only gives as many occupation
numbers as indicated by the shell degeneracy (2*1+1). Example:

fed.coreoccupation (defs=][
(2,'2p',11,1,11,10.2,0.2,0.2]1
1)

A fancy example to avoid typing: we set all orbitals to 4/14 in order to get a homogenous non-
polarized 4f shell with 4 electrons. For illustration we also add some polarized example for p-states:

fed.coreoccupation (defs=][
[2,"4F", ['4/14"]1%7,["'4/14"1%7],
[3,'"3p", [1]%3,['2/5"]1%*3],
1)

dhvaiso (active=None, isovalue=None, subdiv=None, bisections=None, upbands=None, down-
bands=None, wanhamfile=None, deleteoldfiles=None, needbandweights=None, ad-

dwelifile=None, shifts=None)
Settings for the iso-branch of the dHvVA module.

active (bool-like): activate the preparation active.
isovalue (f1oat or str): obvious
subdiv (1ist or str): alist or string of 3 int.

bisections (int): obvious

2.1,

pyfplo.fedit 11

pyfplo Documentation, Release 22.00-62

upbands (1ist): [] or alist or string of band numbers
downbands (1ist): [] or a list or string of band numbers
wanhamfile (st r): a wannier hamiltonian file name (+hamdata).
addweifile (str): a=.addwe1i type file

deleteoldfiles (boo1-like): obvious

needbandweights (bool-like): obvious

shifts (1ist): [] or [[weight-index, factor], ...]
Example:

fed.dhvaiso (active=True, isovalue=-0.1,subdiv="10, ',bisections="4")

special shift input (see FPLO..../DOC/MANUAL/doc.pdf)
fed.dhvaiso(shifts=[[76,0.02], [77,-0.02] 1)

dhva (fields=None, nangles=None, anglerange=None, nplanes=None, planerange=None,

bands=None, areachainthreshold=None, orbitsearchoffset=None, orbitsampleportion=None,
arearadiusfactor=None, smoothnessthreshold=None, outputoptions=None, debugop-

tions=None)
Settings for the dHvA-branch of the dHVA module.

fields (1ist): canbe [] or [[label, [bx,by,bz]], ...] alternatively a field can be written as
[label, "bx by bz"]

nangles (int): number of angles

anglerange (1ist): canbe [from, to], where fromand to are int.

nplanes (int): number of planes

planerange (1ist): canbe [from, to], where fromand to are int

bands (1ist): can be [bandnumbers, parts, spins] where
bandnumbers (1ist or str) mustbe [] or alist or string of int
parts (list or str) mustbe [] or a list or string of int

spins (str) mustbe "up' or 'down' or '"both"' orshorter 'u', 'd' or 'b"'

areachainthreshold (f1oat): see FPLO..../DOC/MANUAL/doc.pdf
orbitsearchoffset (f1oat): see FPLO. .../DOC/MANUAL/doc.pdf
orbitsampleportion (f1loat): see FPLO. .../DOC/MANUAL/doc.pdf
arearadiusfactor (£loat): see FPLO. . ../DOC/MANUAL/doc.pdf
smoothnessthreshold (f1oat): see FPLO..../DOC/MANUAL/doc.pdf

outputoptions (1ist): canbe [[OPTION, True|False], ...] see fedit screens for OPTION
debugoptions (List): canbe [[OPTION, True|False], .. .] see fedit screens for OPTION

Example:

#first we set the fields (note, we could do all of it in one call)
fed.dhva (fields=[
('rfoioj', o ,1 ,011,
('riooj', 1 ,0 ,011,
[rr1111','1 1 1']
1)

focus on particular bands, all parts and spins.
fed.dhva (bands=[[52,53],[], 'b'])

(continues on next page)

12

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

(continued from previous page)

increase accuracy
fed.dhva (nangles=50,nplanes=200, noewaldcor=True)

basis (version=None, extensionlevel=None, add3d=None, addf=None, coredf=None,

coredfNoValenceF=None, multicore=None, multisemicore=None)
Here some standard basis settings can be defined. If you want to switch to an extended basis in a

pre-existing =. in use:

fed=fedit.Fedit (recreate=False)
fed.basis (extensionlevel=2,add3d=True, addf=True)
fed.pipeFedit (prot=True)

If you want to switch to an extended basis in a pre-existing =. in and make sure that the rest of the
basis is default use:

fed=fedit.Fedit (recreate=False)
fed.basis (extensionlevel=2,add3d=True, addf=True,
multicore=[],multisemicore=[],
coredf=[],coredfNoValenceF=[])
fed.pipeFedit (prot=True)
version (int or str): hotkey or search string of basis version
extensionlevel (int): the level of extended basis,
e default: extensionlevel=1,
* single->double, double->tripple ...: extensionlevel=2
* double->tripple, tripple->quadruple ...: extensionlevel=3

add3d (bool-like): if True add 3d if no d-orbital in defautl basis. Applies to H and He.

addf (bool-like): if True add an f-orbtial if none exists in the valence section. If the semicore
section contains a 4f-state a Sf-valence orbital is added. In other words this option only consideres the
valence section.

coredf (1ist of str and/or int): a list of element names and/or sort numbers for which to shift an
existing valence 4f-orbital into the core. The list can be a mix of names and sorts. To delete existing
coredf definitions use:

coredf=1[]

To leave this setting alone use:

core4f=None

coredfNoValenceF (1ist of str and/or int): a list of element names and/or sort numbers for which
to shift an existing valence 4f-orbital into the core and remove remaining f-polarization orbitals from
the valence section completely. The list can be a mix of names and sorts. To delete existing core4f
definitions use:

cored4fNoValenceF=[]

To leave this setting alone use:

core4fNoValenceF=None

multicore (1ist-like: [[Q0,S0],[Q1,S1]....]): the length the list defines the multiplicity of all core
orbitals. The individual list members need to be 1ists of two float, the first is the Q-parameter
and the second the S-parameter. Example:

2.1. pyfplo.fedit 13

pyfplo Documentation, Release 22.00-62

multicore=[[0,0],[2,10]] # double core with Q[0]=0, S[0]=0, Q[1]=2, S[1]=10

To delete an existing multicore definition use:

multicore=1[]

To leave this setting alone use:

multicore=None

multisemicore (1ist-like: [[Q0,S0],[Q1,S1],...]): the length the list defines the multiplicity of all
semicore orbitals. The individual list members need to be 1ists of two float, the first is the
Q-parameter and the second the S-parameter. Example:

multisemicore=[[0,0],[2,10]] # double core with Q[0]=0, S[0]=0, Q[1l]=2,
—S[1]=10

To delete an existing multisemicore definition use:

multisemicore=[]

To leave this setting alone use:

multisemicore=None

numerics (maxL=None, thci_nr=None, thci_angmin=None, thci_angmax=None,

thci_use_symmetry=None)
A subset of numerics menu options.

maxL (int): cutoff for angular momentum expansion in the potential.

thci_nr (int): number of radial mesh mesh points for three center integrals.

thci_angmin (1nt): smallest angular mesh type (for small radii) for three center integrals.
thei_angmax (int): largets angular mesh type (for large radii) for three center integrals.

thci_use_symmetry (bool-like): use only irreducible mesh.

iteration (n=30, acc=None, eacc=None, method=None, mixing=None, progress=None, sub-

dim=N0ne,. occuratio=None, criterion=None)
n (int): number of iterations

acc (float or str): accuracy of density

eacc (float or str): accuracy of etot

method (str): can be missing or a search string or a hotkey (e.g. ' lciterat')
mixing canbe a float

progress can be a float

subdim (int or str): maximum subspace dimension

occuratio (f Lloat or str): occu-mat/density ratio

criterion (str): hotkey (e.g. 2 for ‘density’). Note that the search strings are not very usefull here,
due to their similarity (historical bad design).

Example:

fed.iterations (n=100,method="lciterat',mixing=0.1)

forces (forcemode=None, n=None, acc=None, subdim=None, vary=None, noewaldcor=None,

eachstep=None)
forcemode (str): canbe 'no', 'opt', 'single’

14

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

n (int): number of force iterations
acc (float or str): accuracy criterion in eV/Ang
subdim (1nt or str): maximum subspace dimension

vary (list of int or string of int): a list/string of sorts/Wyckoff position numbers to be varied. Empty
list means ‘vary all’.

noewaldcor (bool-like): disable the expensive (marginally more accurate) nonspherical Ewald cor-
rection for forces.

eachstep (bool-like): calculate forces in each step.

Example:

fed.forces ('opt',acc=le-2,vary=[5,91])

2.2 pyfplo.fploio

* [NParser (page 16)

* PObj (page 17)

» FPLOInput (page 20)

* OutGrep (page 22)

* Basis (page 24)

* BasDef (page 25)

* BasDefSection (page 25)
* MultiOrbital (page 26)

* Data (page 27)

This module contains the parser interface to read data from =. in type files. It can also be used to change data
in the file. WARNING: it is better to use pyfplo. fedit (page 3) for changing input. The fedit interface is
kept reasonably clean, while the naming conventions in =. in which is accessed directly by the parser is at times
chaotic. Furthermore, there are semantic dependencies in the file, as e.g. descriptors which are for readability only.
If the user changes the underlying value but not the descriptor the idea of having descriptors is lost. Furthermore,
there are data which depend on the symmetry. fedit takes care of all of that.

Please note, that the underlying data representation is in str format. This allows to use '1/3" insted of O.
33333... for real values. Hence, the natural return value of the data is str. If however an explicite int
or float representation is wanted and if the type of the specific data conforms to these types an int value is
returned by POb j. L (page 19) and a £1oat by POb 7. D (page 20).

Logicals are handled as 'f£' or 't ' internally. Hence, POb 7. S (page 20) returns these values. However, if
returned by POb j. L (page 19), True and False are represented by 1 or 0 respectively. When writing a logical
via POb7j.S (page20) 't ', 'T' and '+"' are considered to be True any other string as False. When writing
a logical via POb j. L (page 19) 0 and any nonzero int represent False and True, respectively.

Character variables defined as ‘char some_char="x"; ‘ in the =. file (which are not used currently) are returned as
str by PObj. S (page 20) and as int by PObj. L (page 19). The latter interpretation is machine dependend
and not recommended. Similarily, the variable can be written in both ways.

fploExecutable (suffix=")

Parameters suffix (str) - for convenience, suffix is appended to the exec name

2.2. pyfplo.fploio 15

pyfplo Documentation, Release 22.00-62

Return the name of the fplo executable as str, which fits the pyfplo version. This is an educated guess.
There is no garantee that it is correct. If you compiled with a non-default build branch, this function does
not return the name including the build branch suffix but just the generic name. Use suffix to select the
correct executable or just write it out explicitely anyway.

2.2.1 INParser

class INParser
This class is a low-level class for reading the =. in files. For manipulating =. in use the pyfplo. fedit
(page 3) class. This is safer, since it ensures data (semantics) consistency.

To see how to use some of the low-level routines consult Reading =.in files (page 152), Write =.in with low
level routines (page 158) and =.files to json (page 153).

Create an instance of the FPLO parser for files of type =. in in the following way:
import pyfplo.fploio as fploio
p=fploio.INParser ()
parseFile (filename)
Parameters filename (str) — the filename of an existing file in FPLO =.-format

This opens and reads the file given in filename. Safe use:

import os
import pyfplo.fploio as fploio
p=fploio.INParser ()

if not os.path.exists('=.in'):

raise RuntimeError ('cannot find the file')
try:

p.parseFile("=.1in")

except RuntimeError,ex:
print (ex)
pass # do whatever to handle the error or quit the program
writeFile (filename)
Parameters f£ilename (str) — the filename of the new file in FPLO =.-format
Write the parser content to a file called filename.

__call ()
Return the root of the data tree. The returned object is an instance of class POb j (page 17), which can
be used to access individual data.

varExists (varname)
Parameters varname (str) — the name of the queried variable
Returns existence of variable definition
Return type bool

Check if a variable definition exists in the parse table. Return True if it does. This function tests the
struct array definition not the actual elements. Example:

d=p() # p is a INParser object and d is parser root

d2=d ('wyckoff_positions')# d2 is node wyckoff positions (struct array)
print d2[0].varExists('element') # —-> True

print d.varExists ('wyckoff positions.element') # -> False but

print p.varExists ('wyckoff positions.element') # —-> True

#also
print d.varExists ('wyckoff positions[l].element') # -> True
print d('wyckoff positions') [l].varExists('element') # -> True

16 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

Compare this to PObj. varExists (page 17).

2.2.2 PODj

class PObj
This class is a low-level class for reading the =. in files. For manipulating =. in use the pyfplo. fedit
(page 3) class. This is safer, since it ensures data (semantics) consistency.

To see how to use some of the low-level routines consult Reading =.in files (page 152), Write =.in with low
level routines (page 158) and =.files to json (page 153).

Usually POb j (page 17) instances are returned by other methods. One does not create a POb j (page 17) by
itself.

fullName ()
Return the full node name. This includes element access (e.g. nkxyz [3]).

varExists (varname)
Parameters varname (str) — the name of the queried variable
Returns existence of variable definition
Return type bool

Check if a variable exists under the current node. Return True if it does. This function tests struct
array elements in detail. Example:

d=p() # p is a INParser object and d is parser root

d2=d ('wyckoff_positions')# d2 is node wyckoff positions (struct array)
print d2[0].varExists('element') # —-> True

print d.varExists ('wyckoff positions.element') # -> False but

print p.varExists ('wyckoff positions.element') # -> True

#also
print d.varExists ('wyckoff_ positions[l].element') # —-> True
print d('wyckoff positions') [l].varExists('element') # -> True

Compare this to TNParser.varExists (page 16).
size (dim=1)
Parameters dim (int)— dimension
Returns size of the dimension
Return type int
If POb 7§ (page 17) is array-like return its size*
For struct arrays and rank-one arrays size () returns the array size.
For rank>1 arrays size (dim) returns the size of the dim-th dimension.
sizes ()
Returns a 1ist of all array sizes, such that rank==len (n.sizes ())
Return type list of int
resize (size)

Parameters size (int or 1ist) — can be a scalar int or a list of int in case of multi-
dimensional arrays.

If PObj (page 17) is an array or struct array, resize it. Note, that for multidimensional arrays only
the last dimension can be resized in the moment. But =. in does not use multidimensional arrays.
(=.dens does though, which however should not be touched.)

__call_ (name)

2.2. pyfplo.fploio 17

pyfplo Documentation, Release 22.00-62

Parameters name (str)— name of the node

Return a new POb j (page 17) which references the node called name under the current PObsparse

tree node:
d=p() # parse tree root
ds=d ('spin')

print ds('mspin') .L

Compound names are possible:

d=p() # parse tree root
print d('spin.mspin') .L

__getitem__ (*args)
If the node pointed to by POb j (page 17) represents a 1d array type the operator [1] returns the POb j
(page 17), which represents the i-th element. For flag arrays the operator [flagname] returns the
POb 7 (page 17), which represents this flag (if it exists). Use S (page 20) to print the full flag name
and use L (page 19) to read or set the flags value. If POb j (page 17) represents a multidimensional
array (up to 5d) the operator [1, j, ...] returns the corresponding POb j (page 17) of the element.

args can be:

indexl, index2,. . .: between one and five int indices:

dw2=d ('wyckoff_positions') [2]

flagname: a single st r which names a flag in a flag array:
d('options') ['FULLBZ'].L=True
name ()
Return the node name. This excludes element access (e.g. nkxyz [31]).
first ()
Returns first node on the current level. See =.files fo json (page 153)
Return type POb j (page 17)
next ()
Returns the next node on the current level. See =.files to json (page 153)
Return type POb 7 (page 17)
hasNext ()
Returns True if next node exists. See =.files to json (page 153)
Return type bool
isScalar()
Returns True if node is a scalar. See =.files fo json (page 153)
Return type bool
isArray ()
Returns True if node is an array. See =.files fo json (page 153)
Return type bool
isStruct ()
Returns True if node is a srtuct. See =.files to json (page 153)

Return type bool

18

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

isStructArray ()
Returns True if node is a srtuct array. See =.files fo json (page 153)
Return type bool

isInt ()
Returns True if node is a scalar int. See =.files fo json (page 153)
Return type bool

isReal ()
Returns True if node is a scalar int. See =.files fo json (page 153)
Return type bool

isLogical ()
Returns True if node is a scalar int. See =.files fo json (page 153)
Return type bool

isString()
Returns True if node is a scalar int. See =.files to json (page 153)
Return type bool

isChar ()
Returns True if node is a scalar int. See =.files to json (page 153)
Return type bool

isFlag()
Returns True if node is a scalar int. See =.files to json (page 153)
Return type bool

__str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob3j)

lists
If POb j (page 17) refers to a 1d array, return it’s elements as a list of st r or assign a list of st r to the
array elements. On assignment to a fixed size array the list must have the proper length On assignment
to a variable size array, the array is resized accordingly. One can assign a list of str to integer and
real arrays as long as the list’s elements represent the correct type:

d('wyckoff positions')[1l] ('tau').listD=[1./2,2./3,1./4]
d('wyckoff_positions') [1] ('tau').listS=['1/2",'2/3"','1/4"]

Note, the dot in 2. /3, which is needed to have f1loat division while in the string version it is not
allowed.

listD
If POb j (page 17) refers to a real 1d array, return the elements as a list of £1oat or assign the list
(see 1istS (page 19)).

listL
If POb j (page 17) refers to an integer 1d array, return is elements as a list of int or assign the list
(see 1istsS (page 19)).

If the current node refers to an integer type, return it as int. If it refers to a flag, 1 is returned if the
flag is switched on, 0 otherwise. Assignment is possible:

2.2. pyfplo.fploio 19

pyfplo Documentation, Release 22.00-62

d('spin.mspin') .L=2

If the current node refers to a real type, return it as £1oat. Assignment is possible:

d('wyckoff positions') [0] ('tau') [1l].D=5.4

The current POb j (page 17) instance sits at a certain node of the data tree, depending on the history
of calls, which created it.

If the current POb j (page 17) instance refers to a node, which represents a single value (scalar) the
value is returned as st r representation.

If POb j (page 17) refers to a flag the flagname followed by (+) or (—) is returned.

A new str value can be assigned to S. The user must ensure the correctness of the data, e.g. that a
str representing an underlying f1oat is actually a valid float.

Let us assume there is a real tolerance=1le-12; in =.in. Then one can set this value as:

d is assumed to be the PObj under which the node tolerance sits.
d('tolerance') .D=1e-13

or

d('tolerance') .S5="'le-13"

2.2.3 FPLOInput

class FPLOInput (fname=None)

FPLOInput (page 20) is used to manage the manipulation of =. in files. It creates new files or reads
existing files. The symmetry update functionality of fedit is hidden in this class. This is a low level interface.
It is strongly recommended to use pyfplo. fedit (page 3) for manipulating data instead.

An example of proper usage is found in Write =.in with mid level routines (page 159).
Parameters fname — the name of an existing =. in file or None or nothing

Create a fresh FPLOInput (page 20) object via:
import pyfplo.fploio as fploio

fio=fploio.FPLOInput ()

Create a fresh FPLOTnput (page 20) object and read a file and update the version, if needed, or create
fresh input if the file does not exist via:

import pyfplo.fploio as fploio

fio=fploio.FPLOInput ('=.in")

which is equivalent to the following code:

import os
import pyfplo.fploio as fploio

fio=fploio.FPLOInput ()
if os.path.exists('=.in"):
fio.parseInFile (True, '=.1in")
else:
fio.createNewFileContent () # make fresh content
or handle this case differently

20

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

parselInFile (forceupdate, fname="=.in’, newifnonexistent="False)
Read the =. file called frame into an internal parse tree and optional update version or create fresh
content. If something goes wrong an exception is raised.

Parameters
e forceupdate (int) - If True, convert older version files into new ones
e fname (str)—=. in-type file name

* newifnonexistent (int) — If True and the file called fname does not exist,
create fresh content in the parse tree (does not cretae a file).

symmetryUpdate ()
After changing symmetry settings call this to update the rest of the data. A message is returned.

resetNonSymmetrySections ()
Reset all data in the internal parse table except for the symmetry section. This is used to reset all non
symmetry data to default values.

writeFile (name)
Parameters name (str) - filename of =. in-type file
Write the parser content to the file called fname.

structureFromCIFFile (ciffilename, wyckofftolerance=1e-06, symblockindex=0, symoptionin-

dex=0, determinesymmetry="False, keeprotation="False)
Read the cif-file called ciffilename and import the structure data into the parse tree.

To see how to use this consult Reading cif-files (page 155).

wyckofftolerance is used to convert approximations like 0.3333 into 1/3. If the round off error (as
in 0.3333) is smaller than wyckofftolerance all numbers which are approximate fractionals n/d, d in
[1,12] are replaced by the fractional. This is especially necessary for hexagonal structures where an
approximation like 0.3333 for 1/3 leads to trouble (doubling of atoms, missing symmetry operations
and such).

Some cif files contain more than one data block. If several blocks are present and if several of these
contain symmetry information symblockindex selects the corresponding symmetry block. By default
symblockindex is 0, which selects the first such block. The available blocks are written to the output.
An example could produce the following output:

Blocks contained in cif file 'cg0497820s120040706_123518.cif':

symmetry block No. name
global
0 cu2as2o’7
1 cuasbeta
profile

There are four blocks of which two contain structure/symmetry information. Possible values for sym-
blockindex are 0 or 1.

In principle it is possible that a symmetry containing block has contradicting group information. Often
the cif files contains a Hall-symbol, the xyz-operation symbol table and the space group number (or
combinations of these). The space group number is not a good indicator, since it does not encode
settings. Hence, we analyse the Hall- and xyz-symbols to determine the group. Only if both are
missing we rely on the space group number. If, however, Hall- and xyz-symbols lead to different
groups (rare but possible), we can select, which of the two to use. The possible symmetry options are
written to the output and symoptionindex selects the corresponding option. By default symoptionindex
is 0, which selects the first such option. The output of symmetry options could look like this:

2.2. pyfplo.fploio 21

pyfplo Documentation, Release 22.00-62

Symmetry information for datablock: data_1

Space group number: 227

Name—-Hall : F 4d 2 3 -1d

xXyz—symbol : gives hallsymbol -F 4vw 2vw 3

Hall symbol: OK
xyz symbols: OK but not equivalent

The following symmetry options are available:
0 'Hall symbol'
1 '"xyz-symbols'

You can see that the xyz symbols give a different setting than the Hall symbol. Hence, we have to
chose symoptionindex from 0 or 1. You also understand that 227 is not a complete description.
If determinesymmetry is True the cif data are symmetry analysed before creating =.in.

If determinesymmetry is True and keeprotation is True the orientation of the cell is retained during
symmetry analysis.

A possible way of importing a cif file works like this:

import pyfplo.fploio as fploio
import pyfplo.fedit as fedit

fio=fploio.FPLOInput ('=.in")

fio.structureFromCIFFile ('data.cif',wyckofftolerance=1le-4,
symblockindex=0, symoptionindex=0)

fio.writeFile('=.in') # now we have created or update =.in from the cif_

—~file

fed=fedit .Fedit (recreate=True) # reset default input (except symmetry)
fed.iteration(n=100) # ... and more settings
fed.pipeFedit () # apply the settings

reset ()
Reset the internal parse tree to nothing. The resulting FPLOInput (page 20) object is like a newly
created one.

createNewFileContent ()
Create a completely new default file in the internal parse tree.

parser ()
Returns the underlying TNParser (page 16)

Return type INParser (page 16)

2.2.4 OutGrep

class OutGrep (outfilename="out’, dir=".")
OutGrep helps to grep results from fplo output files directly into python variables.

Parameters
* outfilename (str)—the name of the fplo output file
* dir (str) - the directory in which it sits
This reads the whole output file, so that using grep (page 23) in a loop is more efficient.

* Example: grep last total energy and gap:

22 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

import pyfplo.fploio as fploio

og=fploio.OutGrep ('out')
print ('etot="',o0g.grep('EE') [-1],"', gap=',og.grep('gap')[-1])

e Example: show iteration progress:

import os
import pyfplo.fploio as fploio

og=fploio.OutGrep('out')
with open('res','w') as fh:
res=og.grep('it"')
for i, r in enumerate (res) :
fh.write (' \n'.format (i, r))
os.system('xfbp res')

* Example: grep all atom spins (as a function of iteration) and write them to file res:

import os

import pyfplo.fploio as fploio
og=fploio.OutGrep('out')
si=og.sites ()

with open('res','w') as fh:
for i,s in enumerate(si):
site=i+1
res=o0g.grep('SSat',site)
fh.write ("# \n'.format (s.element, site))
for it,r in enumerate (res):
fh.write (' \n'.format (it, r))
fh.write('\n")
os.system('xfbp res')

More exmples in Extract =.basdef from output file (page 168)
modes

Type dict of mode:long-name

class variable of all available OutGrep (page 22) modes as in grepfplo -h

for k in fploio.OutGrep.modes.keys () :
print ('mode: g '.format (k, fploio.OutGrep.modes[k]))

sites ()
returna 1ist of pyfplo.common. Site (page 37), which contains info for sites in output file.

grep (mode, site=1, orbital=0)
Parameters

* mode (str) — one of the modes defined as keys in dict OutGrep.modes
(page 23)

* site (int) - some modes need a site number (one-based, as in fplo output)

* orbital (int) - some modes (population analysis modes) need an orbital number.
orbital is the one-based number of the wanted orbital in the order as printed in the
population analysis. If orbital is out of range (e.g. 0) the total site population number
is printed. For the mode N_gros there is one more number than for N_net and
S_ ..., which is the number of excess electrons of the site.

2.2. pyfplo.fploio 23

pyfplo Documentation, Release 22.00-62

return a 1ist of str of mode-dependend results for all iterations found in the output file. Some
modes return a single result since it is not iteration dependend. If you need float results, convert
like float (og.grep ('EE'") [-1]) or list (map (float,og.grep('EE"))).

See, examples under Out Grep (page 22).

2.2.5 Basis

class Basis (version=None, elementsoratomicnumbers=None, basdeffile=None)
Basis (page 24) gives a low-level access to the basis definition. The basic operations are:

* Create a default basis for all sorts via input: basis-version + list of elements/atomic numbers.
* Optionally, read basis definitions from =.basdef (overwrites the default).

* Modify the basis thusly obtained.

* Write file =.basdef.

Consequently, at minimum one needs to know the list of elements. See examples Extract default basis into
=.basdef (page 161) and User defined basis (in =.basdef) (page 163). If a =. in already exists one can
obtain this list via:

import pyfplo.common as com
import pyfplo.fploio as fploio
p=fploio.INParser ()

p-parseFile('=.in")
d=p () ('wyckoff positions')
elements=[d[i] ('element').S for i in range(d.size())]

optionally:

atomicnumbers=1ist (map (lambda x: com.c_elements.index (x),elements))
print (elements)

print (atomicnumbers)

To create an FPLO9 default basis in =.basdef do this:
import pyfplo.fploio as fploio
b=fploio.Basis ('default FPLOY9 basis',elements)

modify b if needed, then
b.writeFile('=.basdef'")

To read and modify =.basdef do this:
import pyfplo.fploio as fploio

b=fploio.Basis ('default FPLO9 basis',elements,basdeffile="'=.basdef')

modify b if needed, then
b.writeFile('=.basdef'")

Note: Note, that you always need to provide the default version and the element/atomic number list,
because some adjustments take place internally based on the elements.

Parameters

* version (int or str)—ID (int) or unique search string (case sensitive) into version
table. The version table is obtained via the class variable pyfplo. fploio.Basis.
versions (page 25), which is a list of available basis versions, where each list member
has two members: a unique ID (int) and a st r, which can be used for searching.

* elementsoratomicnumbers (1ist of str and/or int) — list of element names
or atomic numbers for each sort

24 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

* basdeffile (str or None) —read (and overwrite default) from file basdeffile if not
None!

versions
class variable of all available Basis versions
Type list of 2-lists of structure [ID,versionname]
writeFile (filename="=.basdef’)

Parameters filename (str)— the basis definitions file name. For use with fplo this needs
to be =.basdef.

Write the basis definitions to file filename.

__getitem__ ()
basis[1i] returns basis (BasDef (page 25)) of sort i

2.2.6 BasDef

class BasDef
BasDef (page 25) contains the basis of a particular atom. This class is return by pyfplo.fploio.
Basis.__getitem _ (page 25) and cannot be instantiated otherwise.

__str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)
core

semicore

valence

2.2.7 BasDefSection

class BasDefSection

append (nl, Q=None, P=None, S=None)
Parameters
* nl (str) - multiorbital name, e.g. '3d"
e Q(float or list of float-s)—
e P(floatorlist of float-s)—
e S(floatorlist of float-s)—

append a double 4f-orbtial like D4f Q= (gl, g2) P=(pl,p2) via:

basdef.valence.append ('4f',Q=[qgl,q2],P=[pl,p2])

or a single 4f-orbtial like s4f Q=(gl) P=(pl) via:

basdef.valence.append('4f',Q=ql,P=pl)

remove (i)

Parameters i (int)-—

2.2. pyfplo.fploio 25

pyfplo Documentation, Release 22.00-62

len_ ()
len (b) returns the size of the Basis section (number of multi-orbitals).

__getitem__ ()
BasDefSection [1] returns the i-th MultiOrbital

__str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob3j)

2.2.8 MultiOrbital

class MultiOrbital
This class is return by pyfplo. fploio.BasDefSection.__getitem _ (page 26) and such

append (Q=0.0, P=1.0, §=0.0)
Parameters
e Q(float)-
e P(float)-
e S(float)-
removelast ()
removeFirst ()
ans (mult)
Parameters mult (int)—
Returns

Return type str

Q (mult)
Parameters mult (int) -
Returns
Return type float

S (mult)
Parameters mult (int) -
Returns
Return type float

P (mult)

Parameters mult (int) -
Returns
Return type float
set (mult, Q=None, P=None, S=None)
Parameters
e mult (int)-
e Q(float or None) —

e P (float or None)—

26 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

* S(float orNone) —

str__ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)

name

multiplicity

2.2.9 Data

For convenience:

version
copy of pyfplo.common. version (page 40)

Version
copy of pyfplo.common. Version (page 39)

c_elements
copy of pyfplo.common.c_elements (page 40)

2.3 pyfplo.common

* BandFileContext (page 27)
* BandPlot (page 29)

* BandHeader (page 32)

* BandWeights (page 33)

» WeightDefinitions (page 34)
o WeightDefinition (page 35)
* OptionSet (page 36)

* Site (page 37)

» Watch (page 37)

* Version (page 39)

» Vlevel (page 39)

* Constants (page 40)

This module contains a collection of usefull objects related to FPLO band/bandweights routines. You can easily
write these files and read them into numpy . ndarrays for further processing. Have a look at /FPL0O22.
00-62/DOC/pyfplo/Examples/bandplot/model . py for better understanding.

2.3.1 BandFileContext

class BandFileContext
This class wraps data to easily manage the creation of FPLO band/bandweight files. This class cannot
be instantiated directly. It only is produced and returned via a call to BandPlot.openBandFile ()
(page 30)

2.3. pyfplo.common 27

pyfplo Documentation, Release 22.00-62

Example:

A simple band structure plotting using low level routines
based on slabify.

import pyfplo.slabify as sla

import numpy as np

import numpy.linalg as LA

s=sla.Slabify()
s.dirname="."
s.object="3d"'
hamdata="'+hamdata'
s.prepare (hamdata)

bp=sla.BandPlot ()
bp.points=|[
['s~G', [0, 0,011,
['X' ,[0.5,0,01]1
]
bp.ndiv=100
bp.calculateBandPlotMesh (s.dirname)
dists=bp.kdists
kpts=bp.kpnts

with bp.openBandFile (s.dirname+'/+b',s.nspin, len (kpts), \
progress='"bandplot') as fb:

now fb 1is an instance of ‘BandFileContext’

for ik,k in enumerate (kpts) :
for ms in range (s.nspin):
Hk=s.hamAtKPoint (k+xs.kscale, ms)
(EV, C)=LA.eigh (Hk)
fb.write (ms,dists[ik], k,EV)

close ()
Explicitely close the file. Usefull, if multiple files are used in the same loop, in which case the with-
statement is not usefull. The underlying file gets closed when this object gets garbage collected (after
its scope is exited). For cleanliness it is a good measure to always close files.

Method1:

with bp.openBandFile(...) as f:
doseomthing with £
here f is closed

Method2:

f=bp.openBandFile(...):

do something with £

f.close ()

here f is closed

write (ispin, dk, k, energies, weights=None)
Parameters

e ispin (int) - spin number (NSP or FREL: 0, SP: O or 1)
* dk (float) — scalar path length along k-path

* k(3-vector of float)-k-point

28

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

* energies (sequence (list,tuple,..)) — sequence of energies for all
bands at this k-point

» weights — all weights for all bands at this k-point

Write the energies for spin component ispin and k-vector k and scalar path-length variable dk to the
file. ispin must be O if there is only one spin. It must loop over [0,1] if there are two spins. See
the nspin argument in BandPlot .openBandFile () (page 30). The spin loop must be inside the
k-loop!

If a weight file is writen (weightlabels argument in BandPlot . openBandFile () (page 30)) a ma-
trix like argument (e.g. a numpy . ndarray) must be given as last argument to write () (page 28)
whose rows correspond to the weights and the columns to the bands.

2.3.2 BandPlot

class BandPlot
This is a helper class for data which control the path through the BZ for routines creating band struc-
ture or energy distribution cut plots. After setting the data (points (page 32) and ndiv (page 31))
calculateBandPlotMesh () (page 29) must be called before using BandPlot (page 29). Alterna-
tively readBandPlotMesh () (page 30) can be called to import from =. kp.

This class is used by certain methods of pyfplo.slabify.Slabify (page 41).
Usage:

import pyfplo.slabify as sla
import pyfplo.common as com
s=sla.Slabify ()

bp=com.BandPlot ()

bp.points=[['$~G',[0,0,01],... 1
bp.ndiv=100
bp.calculateBandPlotMesh (s.dirname)

s.calculateBandStructure (bp)

This class also allows to read +band type files for further processing:

bp=com.BandPlot ()

[bh, kdists, kptns,erg]=bp.readBands ('+band")

print 'bandheader +b: nkp= nband= nspin= "\
.format (bh.nkp, bh.nband,bh.nspin)

print 'kdists2 shape :',dists2.shape

print 'kptns2 shape :',6 kptns2.shape

print 'erg shape :',erg.shape

now do something with the information

Create a new BandP 1ot (page 29) instance via:

import pyfplo.slabify as sla
bp=sla.BandPlot ()

or:

import pyfplo.common as com
bp=com.BandPlot ()

calculateBandPlotMesh (pointsfileoutputdir)

Parameters pointsfileoutputdir (str)— directory in which to create +points

2.3. pyfplo.common 29

pyfplo Documentation, Release 22.00-62

Finalize the bandplot definition. This actually calculates the k-points for the BZ-path from the input
settings (points (page 32) and ndiv (page 31)). pointsfileoutputdir usually should be S1abify.
dirname (page 54):

import pyfplo.slabify as sla
s=sla.Slabify ()

bp.points=[...]
bp.calculateBandPlotMesh (s.dirname)

It serves to put the file +points in the right place.

readBandPlotMesh (kpfilename)

Parameters kpfilename (str)—name of an xfplo =. kp-type file

Read file =.kp (from xfplo) for mesh definition. BandPlot (page 29) restrictions (see
setOutputRestrictions () (page 31)) are still applied and restrictions inside =. kp are ig-
nored. IMPORTANT: do not use =. in... files from the Slabify output in context of visualizing the
Fermi surface with xfplo. It will not work! Use the =. in files from the underlying FPLO calculation
instead.”

openBandFile (filename, nspin, nkpts, weightlabels=None, progress=None)

Parameters
* filename (str)— the name of the +band-type file
* nspin (int)— number of spins
* nkpts (int)— number of k-points
* weightlabels —a list of labels (str) or None
* progress — a progress message (str) or None
Returns band file context
Return type BandFileContext (page 27)

Low level routine. Return an object of type BandFileContext (page 27) for creation of FPLO
band files.

The returned object will open the file and organizes the proper file format. Its BandFileContext.
write () (page 28) method can be used to write the actual data. If the object gets deleted (automatic
if the scope is left) the file gets closed. The BandFileContext.close () (page 28) method can
be called explicitly.

The best way to use it is in a with-statement. Then it is closed automatically after the with-block is
exited:

with bp.openBandFile(...) as f:
EOTNN-
f.write(...)
pass # now the file is closed.

If multiple files are written at the same time one can do the following:

fl=bp.openBandFile (filenamel, ...)
f2=bp.openBandFile (filename2, ...)
for ...:
fl.write(datal,...)
f2.write(data2,...)
fl.close()
f2.close ()
pass # now the files are closed.

30

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

nspin is the number of effective spins:
not full relativistic:
* nspin=1 for non spin polarized
* nspin=2 for spin polarized
full relativistic:
* nspin=1
nkpts is the number of k-points.
If weightlabels is given and is a list of weight lables the resulting file will be a bandweight file.

If progress is set to a string a progress message is written in subsequent calls to BandFileContext.
write () (page 28).

see help of BandFileContext (page 27).
readBands (filename)

Parameters filename (str)—name of a +band-type band structure file
Returns (bh, kdists, kpnts, erg), see below
Return type tuple

Read the bandfile (NOT bandweight file) called filename and return (bh, kdists, kpnts, erg) where
bh is an instance of BandHeader (page 32)
kdists is a 1d numpy . ndarray containing the k-path variable.

kpnts is a C-ordered 2d numpy . ndarray containing the k-vectors with dimension [nkp,
3].

erg is a 3d numpy .ndarray of energies, which is C-orderd, meaning that the last di-
mension is the innermost dimension. The three dimensions are BandHeader.nspin
(page 32), BandHeader . nband (page 32) and BandHeader . nkp (page 32).

on ()
Activate bandstructure creation.

off ()
Deactivate bandstructure creation.

setOutputRestrictions (active, ewindow=[-20, 20], offset=[0, 0])
Parameters
* active (int) —restrictions are active
¢ ewindow (sequence (list,tuple,..))—afloat list: [emin,emax]
* offset (sequence (list,tuple,..))—anint list: [lower,upper]

Convenience function: To reduce the size of the resulting files output restrictions can be set. If ac-
tive (equivalent to outputpartoccubands (page 32)) is True, ewindow determines the energy
interval of bands which are considered for output. This is a relatively crude algorithm, which usually
only checks the band energies at the first point of the path. If more bands are needed it is often eas-
ier to additionally define a lower and upper band index offset (partoccuoffset (page 32)) which
widens the interval of considered band indices. Positive numbers for both lower and upper offset make
the interval wider. Negative numbers make it narrower. Be carefull with these restrictions you might
remove bands from the output without realizing it!

active
Make band structure routines active.

2.3.

pyfplo.common 31

pyfplo Documentation, Release 22.00-62

ndiv
Maximum number of points between two high symmetry points along the path in the Brillouin zone.
The actual number in a path segment is adjusted such that the individual points are placed as equidistant
as possible.

lowerdepthdatalimit
Limit the weight data written to files to the layers with depth<=lowerDepthDatalLimit mea-
sured from the lower end of the finite (two-sided) slab. Beware that the default for both (lower/upper)
limits is 1.0e30. So, if only one side’s datalimit is set the other side’s limit likely will still be big
enough to enable all layers. Simply put, define both limits unless it is a semislab.

upperdepthdatalimit
Limit the weight data written to files to the layers with depth<=upperDepthDatalimit mea-
sured from the upper end of the finite (two-sided) slab or semi-finite (one-sided) semislab. Beware
that the default for both (lower/upper) limits is 1.0e30. So, if only one side’s datalimit is set the other
side’s limit likely still will be big enough to enable all layers. Simply put, define both limits unless it
is a semislab. For semislabs the upperdepthdatalimit determines which layers are used for the spectral
density.

outputpartoccubands
See setOutputRestrictions () (page 31)

partoccuoffset
See setOutputRestrictions () (page 31)

ewindow
See setOutputRestrictions () (page 31)

points
A list of high symmetry points. Example:

bp.points=|[
['s~¢'" , [0,0,0] 1,
['X" , [0.5,0,0] 1,
]
print bp.points

kpnts
Return a numpy . ndarray of the k-points along the path. The first index runs over the k-points. The
number of points in each segment is proportional to the length of the intervall. The max number is
ndiv (page 31).

kdists
Return a numpy . ndarray of the scalar path-length variable along the path.

2.3.3 BandHeader

class BandHeader
The class is returned by BandPlot . readBands (page 31) or BandWeights. readBandiWeights
(page 34) and contains information about the header information in fplo +band or +bweight s like files.

str__ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)
nkp
The number of k-points.

nband
The number of bands.

32 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

nspin
The number of spins (full-relativistic — 1, otherwise — 1 or 2).

norb
The number of weights (if present)

ilower
The index of the lowest band present in the data.

iupper
The index of the highest band present in the data.

labels
A list of labels.

2.3.4 BandWeights

class BandWeights (infile)
Use this to sum up weights contained in a bandweigths file or to read the content of a weights file into
numpy arrays. The resulting weigths will be written to another bandweights file.

Example:

import pyfplo.common as com

wds=com.WeightDefinitions ()

add a new state (a single sum of certain weights)

w=wds .add (name="all")

add labels

w.addLabels (labels=["Al1(001)3s+0","A1 (001)3p-1","A1(001)3p+0",
"Al(001)3p+1"], fac=1)

or add via orbital info, if the bandweights file contains

default weight labels.

w.addAtoms (atom="Al',sites=[1],orbitals=['3s"', '3p'], fac=1)

S

print wds # want see what we did

read a bandweights file (more general file example)

bw=com.BandWeights ("+bweights")

add weights and write to +bwsum

bw.addWeights (wds, '+bwsum")

For further information see: WeightDefinitions (page 34) and WeightDefinition (page 35)

BandWeights (infile) creates anew BandWeight s (page 33) object with the input bandweights file
name set to the string infile.

header ()
Returns header information
Return type BandHeader (page 32)
Return the header information of the underlying file.
addWeights (weightdefs, outfile, ewindow=[], vievel=100)
Parameters

* weightdefs (WeightDefinitions (page 34))— the definitions for the resulting
weights.

* outfile (str) - the name of the output file with resulting weights.

* ewindow (sequence (list,tuple,..)) — optional, list of two
“float: [emin, emax]: the energy interval to which to restrict the output bands

* vlevel (int)— optional: verbosity level.

2.3. pyfplo.common 33

pyfplo Documentation, Release 22.00-62

Take state definitions for resulting weights from the weightdefs (instance of WeightDefinitions
(page 34)) which is similar to the definitions in the file =.addwei for faddwei. .. and create a

new weights file outfile, with the weights added up according to the weightdefs.
Restrict number of bands in outfile according to the energywindow ewindow.
readBandWeights ()
Returns (bh, kdists, erg, wei), see below

Return type tuple

Read the bandweights file given as argument to Bandieight s (page 33) and return (bh, kdists, erg,

wei) where
bh is an instance of BandHeader (page 32)
kdists is a 1d numpy . ndarray containing the k-path variable.

erg is a 3d numpy .ndarray of energies, which is C-orderd, meaning that the last di-
mension is the innermost dimension. The three dimensions are BandHeader.nspin
(page 32), BandHeader.nband (page 32) and BandHeader . nkp (page 32).

wei is a 4d numpy . ndarray of energies, which is C-orderd, meaning that the last dimen-
sion is the innermost dimension. The four dimensions are BandHeader . nspin (page 32),
BandHeader.nband (page 32), BandHeader.norb (page 33) and BandHeader.
nkp (page 32).

This function does not return the list of k-vectors, since these are not part of the weights file. If
you need them and have a corresponding band file you could get them from there via BandPlot.

readBands (page 31).

2.3.5 WeightDefinitions

class WeightDefinitions

Helper class to collect input for BandiWeights.addWeights () (page 33) or for usage in some

Slabify (page 41) routines. This is the python equivalent of faddwei. . ..

Example:

import pyfplo.common as com

wds=com.WeightDefinitions ()

get a new state

w=wds.add (name="all")

add labels

w.addLabels (labels=['Al1(001)3s+0', 'A1(001)3p-1"',"A1(001)3p+0"', "A1(001)3p+1"'],
—fac=1)

or add via orbital info

w.addAtoms (atom="Al"',sites=[1],orbitals=["'3s"', '3p'], fac=1)

print wds
bw=com.BandWeights ('+bweights")
bw.addWeights (wds, '+bwsum")

#fictitious more efficient example

wds=com.WeightDefinitions ()

w=wds.add ('plaquette')\\
.addAtoms ('Cu', [9,10], ["3d"])\\
.addAtoms ('O'", [1,2],['2p"])

For further information see WeightDefinition (page 35) and Bandweight s (page 33)

WeightDefinitions () (page 34) creates anew WeightDefinitions (page 34) object.

34

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

add (name="")

Parameters name (str) — name of the new weight sum (WeightDefinition
(page 35))

Returns a new weight definition
Return type WeightDefinition (page 35)

Add a new state definition (weight sum) called name to the collection of states and return an instance
of WeightDefinition (page 35), which can be used to add specific input weights.

str ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob3j)

2.3.6 WeightDefinition

class WeightDefinition
This collects information for a single weight (state) definition. This object cannot be created directly. Rather
itis returned by WeightDefinitions.add () (page 34).

addLabels (labels, fac=1)
Parameters

* labels (1ist of str) — a list of existing weight labels (as found in the input
bandweights file header)

* fac (float) - the weights enter the weight sum with this factor
Returns current instance of WeightDefinition
Return type WeightDefinition (page 35)

This routine adds the labels to the current WeightDefinition (page 35) and returns the current
instance of WeightDefinition (page 35), in order to allow constructions like:

w.addLabels (...)\
.addAtoms (...)
addAtoms (atom, sites, orbitals, fac=1, spin="")
Parameters
¢ atom (str)— element name
e sites (sequence (list,tuple,..))—listof site numbers (int)

* orbitals (1ist of str)-listof orbitals (e.g. ‘3d’ or ‘3d+1’ or ‘3d5/2-1/2’ or
‘all”)

» fac (float) - the weights enter the weight sum with this factor.
e spin (str)- ‘up’, ‘dn’, or ‘both’

Returns current instance of WeightDefinition

Return type WeightDefinition (page 35)

Defines a set of single orbital weights to be added to this state. Note, that in the full relativistic case
spin must be specified if the orbitals in the input weight file refer to pseudo non-relativistic symmetries
(e.g. ‘Pt(001)5d+1 up’).

It returns the current instance of WeightDefinition (page 35), in order to allow constructions
like:

2.3. pyfplo.common 35

pyfplo Documentation, Release 22.00-62

w.addAtoms (...)\

.addAtoms (...)\

.addLabels (...)
str ()

return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob3j)

2.3.7 OptionSet

class OptionSet
A collection of options for debugging output. This class cannot be instantiated directly. It only is re-
turned from objects, which have an OptionSet (page 36) member variable (see S1abify.options
(page 55)). Example usage:

s=sla.Slabify()
op=s.options # a possible way to get an OptionSet object

print op # print the option list including their values
print op.names # print the available option names

for n in op.names: # python loop for option print
print n,opln]

for n in op.names: # python loop to set all options
if n.startswith('prep'):
op[n]=True

or let us suppose there is an option called prep_pairs
op|'prep_pairs']=True

__getitem__ (self,n)
Parameters n (str)— option name

Return the value of the option n as int:

op=s.options # just an example
print op['some_option_name']
__setitem__ (self, n, value)
Parameters
* n (str) - option name
* value (int ot bool) — the options value (on or off)

Set the value of the option called n:

op=s.options # just an example
op['some_option_name']=True

str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)

36 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

names
Return a list of available options:

s=sla.Slabify ()
op=s.options # just an example
print op.names

2.3.8 Site

class Site
A list of instances of this class is returned by pyfplo.slabify.Slabify.layerSites (page 42) or
pyfplo.fploio.OutGrep.sites (page 23).

__str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)
element
the atom name
Type str

type
the atom’s type

Type int

sort
the atom’s sort (Wyckoff position)

Type int

tau
the position of the atom

Type 3-vector

2.3.9 Watch

class Watch (name, decimals=2)
Measure time with this or print progress reports.

Example:
import pyfplo.common as com

nk=100
wa=com.Watch ('task') .setProgress(nk,0.02)
for ik in range (nk) :
wa.printProgress (ik)
do_something ()
if ik%50 == 0: print (wa.status('50 steps done'))

print (wa.status ('total'))

Parameters
* name (str)— aname for the task

* decimals (int)—how many decimals of time to print

2.3. pyfplo.common 37

pyfplo Documentation, Release 22.00-62

stop ()
Returns
self to allow call chaining as in
Watch.stop(...) .setSomethingElse(...)
Return type watch (page 37)
Halt the clock.
go ()
Returns
self to allow call chaining as in
Watch.go(...) .setSomethingElse(...)
Return type watch (page 37)
Let it run/continue.
reset ()
Returns
self to allow call chaining as in
Watch.reset (...) .setSomethingElse(...)
Return type Watch (page 37)
Reset the clock to zero.
status (txt="total’, prefix=", suffix="")
Parameters
e txt (str) - some additinal information
e prefix (str) - some additinal information
e suffix (str) - some additinal information
Returns status — a printable version of the ellapsed time
Return type str
Return a printable string of the time which ellapsed while the clock was running (not stopped).
setProgress (steps, delta=0.1)
Parameters
* steps (int) - total number of steps in the taks to be progrss reported on

e delta (float) — print progress information if this amount of time of the estimated
total has passed. delta=0.1 means every 10%.

Returns
self to allow call chaining as in
Watch.setProgress(...) .setSomethingElse(...)
Return type watch (page 37)
Set the parameters of a progress report.
printProgress (istep, prefix="\t’, text=", suffix="")
Parameters

* istep (int) - the current step of the running task

38 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

* prefix (str) - some additional info
e text (str) - some additional info
e suffix (str) - some additional info

Print the progress with an estimate of the total time needed to complete the task.

2.3.10 Version

class Version
This class manages the version numbers of pyfplo. The easiest use is:

import pyfplo.common as com

print 'pyfplo version ',com.version
one can protect scripts in the following way:
if com.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')

version is also bound as a module variable in pyfplo, pyfplo.slabify (page 41) and pyfplo.
fploio (page 15) such that the example above could read:

import pyfplo.slabify as sla

print 'pyfplo version '+str(sla.version)
one can protect scripts in the following way:
if sla.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')
release ()
Returns release number
Return type str
mainVersion ()
Returns main version number

Return type str

—eq ()

Compare the main version (for code sanity purposes). Example:

if com.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')
ne ()

Compare the main version (for code sanity purposes). Example:

if com.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')

__str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)

2.3.11 Vlevel

class Vlevel
This class merely defines the verbosity level constants (Silent, Info,. .., All). You can use any int where ever
a vlevel is needed as an argument. For an arbitrary int N as argument the actual vlevel is set to the largest
constant (defined below), which is <= N or to 0 (Silent) if int<0; One can use the constants:

2.3. pyfplo.common 39

pyfplo Documentation, Release 22.00-62

print com.Vlevel.All

Silent = 0
Info = 100
More = 200
Many = 300
All = 1000

2.3.12 Constants

A collection of physical constants.

c_abtoang
Bohr radii / Angstroem

c_hatoev
Hartree/eV

c_speed_of_ light_mpers
speed of light in m/s

c_hbar_Js
Planck constant/2pi in Js

c_me_kg
electron mass in Kg

c_angstroem m
angstroem in m

c_echarge_C
electron charge in C

c_elements
all elements

Predefined:

version
instance of Version (page 39)

2.4 pyfplo.slabify

* Slabify (page 41)

* BoxMesh (page 56)

* EnergyContour (page 59)

» FermiSurfaceOptions (page 60)
* DensPlotContext (page 63)

* GreenOptions (page 63)

* WeylPoint (page 64)
* BfieldConfig (page 65)
* WFSymOp (page 66)

40

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

* BerryCurvatureData (page 67)

* Site (page 67)
* Data (page 67)

This is a collection of routines to map Wannier Hamiltonians onto larger structures, create Fermisurfaces, cuts,
spectral densities and more. Some objects which are needed are defined in pyfplo.common (page 27) but are
also accessible from this module via aliases of the same name.

To get help on all of those objects use:

import pyfplo.common as com

help (com)

or if pydoc is installed: pydoc pyfplo.common
Please have a look at the Examples (page 75).

To better understand the structure manipulation performed consult Structure Manipulation Algorithm (page 85).

2.4.1 Slabify

class Slabify
The main object to access all procedures. There are low level procedures to extract the tight-binding Hamil-
tonian directly as well as high level routines, which perform various tasks.

Note: donotuse=.in_. .. filesfrom S1abify (page 41) output in context of xfplo fermi surfaces.

Here is how S1abify (page 41) works.

The structure is taken from the Wannier Hamiltonian file, which usually is called +hamdata. It also
contains the Hamiltonin matrix elements and optionally spin operator matrix elements.

There are several options to change the structure into something new. After the structure setup the Hamilto-
nian matrix elements are mapped onto this new structure.

Three structure types are available (see ob ject (page 55)):
'3d" (bulk), 'slab' (finite slab) and 'semislab' (semi inifinite slab).

Depending in the structure type various operations can be performed to obtain the new structure. The
resulting structure after each particular operation is saved in =.in_ . . . files in the local result directory
(stored in Slabify.dirname (page 54), default 'slabifyres'). The operations available for the
different structure types are listed next:

¢ 3d/slab/semislab
enlargement Use the matrix in enlarge (page 55) to construct a larger 3d lattice basis.
* slab/semislab:

layering Define zaxis (page 55) to determine the direction perpendicular to the surface.
The 3d cell will be transformed such that the a- and b-axis are perpendicular to zaxis
(page 55). Note, that the c-axis might be inclined towards the zaxis after this step.

anchoring Define anchor (page 55) in relative z-coordinates of the layered cell. At this
position the 3d-solid is cut (vaccum being inserted). Load the =.in. . . files into xfplo
to orient yourself and to find a proper anchor.

¢ slab

cutting layers After anchoring the third (z) coordinate is in absolute units. Define
cutlayersat (page 55) as the lowest and highest z-coordinate of the slab. Every-
thing outside will be removed. If the interval is inverted cutting will not be applied.

2.4. pyfplo.slabify 41

pyfplo Documentation, Release 22.00-62

cutting atoms Supply a list of atoms (sites) in cutatoms (page 55) to be removed from
the result of cutting layers.

(see Structure Manipulation Algorithm (page 85))

Note: All data members can be set by simple assignement. A returned data member is returned as copy:

s=sla.Slabify ()
a=s.zaxis # a copy of s.zaxis
s.zaxis=[1,1,0] # set s.zaxis

Note: Donotuse=.1in_. .. files from the Slabify output in context of the xfplo fermi surfaces.

hamdataCell ()
Returns cell — The individual vectors are the columns of the returned matrix.
Return type 3x3 numpy.ndarray
Return the primitive unit cell vectors of the underlying data (see prepare (page 42)).
hamdataCCell ()
Returns cell — The individual vectors are the columns of the returned matrix.
Return type 3x3 numpy.ndarray

Return the conventional unit cell vectors of the underlying data (see prepare (page 42)). For rhom-
bohedral lattices the conventional lattice is the trigonal (hexagonal) cell if the spacegroup setting is
hexagonal or the same as the primitive rhombohedral cell if the spacegroup setting is rhombohedral.

hamdataRCell ()
Returns cell — The individual vectors are the columns of the returned matrix.
Return type 3x3 numpy.ndarray

Return the primitive reciprocal unit cell vectors of the underlying data (see prepare (page 42)). The
vectors are in units of kscale (page 56).

For better understanding the following code does the same thing:

assume s is a Slabify instance, LA is numpy.linalg, np 1s numpy
A=s.hamdataCell ()
Next the reciprocal cell is the inverse-transpose of A times 2xPi

Use internal scale though
G= LA.inv(A.T) * (2*np.pi) / s.kscale
now G is equal to s.hamdataRCell ()
layerCell ()
Returns cell — The individual vectors are the columns of the returned matrix.
Return type 3x3 numpy.ndarray
Return the primitive unit cell vectors of the primary layer.
layerSites ()
Returns sites
Return type a 1ist of Sites (page 67)
Return a copy of the list of Sites (page 67) of the primary layer.

prepare (hamdatafilename)

42 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

Parameters hamdatafilename (str) — name of (WF) Hamiltonian data file (usually
+hamdata)

Setup structure and map hopping data.

printStructureSettings ()
Print a summary of all structure settings.

calculateBandStructure (bandplot, suffix="")
Parameters

* bandplot (BandPlot (page 29)) — see help of pyfplo.common.BandPlot
(page 29)

e suffix (str) - afile suffix for convenience

Calculate the bandstructure for 'slab' and '3d' along the path defined by bandplot and produce
corresponding files with a file suffix appended.

calculateBulkProjectedEDC (bandplot, energymesh, zaxis=[0, 0, 1], nz=30, kzs=None, suf-
fix=", query=False)

Parameters

* bandplot (BandPlot (page 29)) — see help of pyfplo.common.BandPlot
(page 29)

* energymesh (EnergyContour (page 59)) — see help for EnergyContour
(page 59)

e zaxis (3-vector of float) — a vector in cartesian coordinates, which de-
scribes the projection direction along which the spectral density is k-integrated. This
direction must be parallel to a reciprocal lattice vector, since we need periodicity in
the projection direction in order to define a proper integration interval.

* nz (int) — the number of integration intervals

* kzs (sequence of f1oat) — specify this instead of nz to build your own non-uniform
integration mesh. You could for instance have a fine mesh in some region and a course
one in the rest of the integration interval.

e suffix (str) - a suffix to alter the file name.

* query (bool) — if this is True the function returns a float without calculat-
ing much, indicating the length of the integration interval in units of kscale
(page 56). Use this to build your own non-uniform integration net. Call
calculateBulkProjectedEDC (page 43) with kzs set to a list or numpy ndarray
of kz-values in the desired interval. You can do what you want. The queried interval
length just indicates the periodicity in the zaxis direction in said units.

Returns kzlength — The length of the integration interval along the projection direction
Return type float

Calculate bulk projected band energy distribution curves. This is the 1d-integral of the spectral density
over a single period in k-space along a direction, indicated by zaxis. The bandplot input defines a set
of high-symmetry points, which should be in a 2d-projection plane perpendicular to the zaxis. (The
latter restriction is not really needed.)

The integration interval is from O to some number, which is determined by inspecting the zaxis and
the lattice. If a user defined mesh is given in kzs the integration goes from k+zaxis+kzs[0] to
k+zaxisxkzs[len (kzs)-1], where k is a k-point along the path spanned by the high symmetry
points in bandplot.

calculateBulkProjectedFs (fso, zaxis=[0, 0, 1], nz=30, kzs=None, suffix=", query=False)

Parameters

2.4. pyfplo.slabify 43

pyfplo Documentation, Release 22.00-62

e fso (FermiSurfaceOptions (page 60)) - see help for
FermiSurfaceOptions (page 60)

e zaxis (3-vector of float) — a vector in cartesian coordinates, which de-
scribes the projection direction along which the spectral density is k-integrated. This
direction must be parallel to a reciprocal lattice vector, since we need periodicity in
the projection direction in order to define a proper integration interval.

* nz (int) — the number of integration intervals

* kzs (sequence of £1oat) — specify this instead of nz to build your own non-uniform
integration mesh. You could for instance have a fine mesh in some region and a course
one in the rest of the integration interval.

e suffix (str)— asuffix to alter the file name.

* query (bool) — if this is True the function returns without calculating much
with a float indicating the length of the integration interval in units of kscale
(page 56). Use this to build your own non-uniform integration net. Call
calculateBulkProjectedFsS (page 43) with kzs set to a list or numpy ndar-
ray of kz-values in the desired interval. You can do what you want. The queried
interval length just indicates the periodicity in the zaxis direction in said units.

Returns kzlength — The length of the integration interval along the projection direction
Return type float

Calculate bulk projected Fermi surface projections. This is the 1d-integral of the spectral density
over a single period in k-space along a direction, indicated by zaxis. The fso input defines a 2d
mesh in a plane perpendicular to the projection axis, a Fermi energy and an imagnary energy part.
The integration interval is from O to some number, which is determined by inspecting the zaxis and
the lattice. If a user defined mesh is given in kzs the integration goes from k+zaxisxkzs[0] to
k+zaxisxkzs[len (kzs)-1], where k is a k-point in the 2d mesh (from fs50).

calculateFermiSurfaceCuts (fso, wds=None, bandplot=None, suffix=", forcerecalcula-
tion=Fualse)

Parameters

e fso (FermiSurfaceOptions (page 60)) - see help for
FermiSurfaceOptions (page 60)

e wds (WeightDefinitions (page 34)) — see help for pyfplo.common.
WeightDefinitions (page 34)

* bandplot (BandPlot (page 29)) — see help for pyfplo.
common.BandPlot (page 29) Only lowerdepthdatalimit and
upperdepthdatalimit and bandplot restrictions (pyfplo.common.
BandPlot.setOutputRestrictions (page 31)) are used

* suffix (str) — a string which is appended the the end of the output file
+cuts_spinl (and +cuts_spin2) basename.

* forcerecalculation (bool) — If a re-calculation is wanted use this argument
or follow the file deletion hint of the program output.

Construct Fermi surface cuts. The cuts are calculated in two steps.

diagonalization For each point of the grid defined by Fermi SurfaceOpt ions (page 60)
the Hamiltonian is diagonalized. The results are written to files +cut_band_sf and
+cut_bweights_sf. This step is costly.

iso line determination In this step the files mentioned above are read back in and from it
the iso-lines corresponding to the current Fermi energy (FermiSurfaceOptions.
fermienerqgy (page 62)) are determined. The results are written to +cuts_spinl
(and +cuts_spin?2), suffix is appended to these files basename. One can change

44

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

the fermi energy or the weights definitions and re-run the iso line step without diag-
onalization by just running calculateFermiSurfaceCuts (page 44) again with
forcerecalculation=False

calculateEDC (bandplot, energymesh, penetrationdepth=-1.0, greenoptions=None, suffix="")
Parameters

* bandplot (BandPlot (page 29)) — see help for pyfplo.common.BandPlot
(page 29)

* energymesh (EnergyContour (page 59)) — see help for EnergyContour
(page 59)

* penetrationdepth (float) — define to which depth the spectral density is col-
lected. penetrationdepth is measured from the atom closest to the vacuum. When
interpreting output messages: orbital indices are increasing with the z-coordinate of
the atom:

Positive values mean depth in +hamdata length units (usually Bohr radii).

Negative values mean depth in number of blocks. A block is the cell in =.
in_final_PLlayer

* greenoptions (GreenOptions (page 63)) — see help for GreenOptions
(page 63)
* suffix (str) - the output file suffix

Calculate energy distribution curves (EDC) along the path defined by bandplot. These are k,energy
resolved surface spectral densities.

calculateFermiSurfaceSpectralDensity (fso, penetrationdepth=-1.0, greenop-
tions=None, suffix="")
Parameters
e fso (FermiSurfaceOptions (page 60)) - see help for

FermiSurfaceOptions (page 60)

* penetrationdepth (float) — define to which depth the spectral density is col-
lected. penetrationdepth is measured from the atom closest to the vacuum. When
interpreting output messages: orbital indices are increasing with the z-coordinate of
the atom.

Positive values mean depth in +hamdata length units (usually Bohr radii).

Negative values mean depth in number of blocks. A block is the cell in =.
in_final_PLlayer

* greenoptions (GreenOptions (page 63)) — see help for GreenOptions
(page 63)

* suffix (str) - the output file suffix
Calculate the surface Fermi surface (k,k resolved spectral density) for a particular Fermi energy.
orbitalIndicesByDepth (lowerdepthdatalimit=1e+30, upperdepthdatalimit=1e+30)
Returns list of orbital indices
Return type numpy.ndarray

Return a list of orbital (WF) indices for orbitals which belong to layers of maximum depth lowerdepth-
datalimit and upperdepthdatalimit measured from the lower (upper) end of the slab.

orbitalNames (orbitalindices=None)

Parameters orbitalindices (sequence of int) — a sequence of valid orbital indices
as e.g. returned by orbital IndicesByDepth (page 45).

2.4.

pyfplo.slabify 45

pyfplo Documentation, Release 22.00-62

Returns list of orbital names
Return type list

Return a list of orbitalnames. Optionally, give a list of orbital indices to narrow down the returned list.

Example

import pyfplo.slabify as sla
s=sla.Slabify ()
s.prepare ('+hamdata')

This is a list of all orbitals upto a depth of 5 Bohr radii
at the upper side of a slab.

upper=s.orbitalNames (s.orbitalIndicesByDepth(-1,5))

or simply

upper=s.orbitalNamesByDepth (-1, 5)

This is a list of all orbitals upto a depth of 5 Bohr radii
#at the lower side of a slab.

lower=s.orbitalNames (s.orbitalIndicesByDepth (5,-1))

#

Here comes the rest of the orbitals.

(A nice python trick to get the rest list)

rest=1list (set (s.orbitalNames ()) -set (upper)-set (lower))
this can also be done with index 1lists
iupper=s.orbitalIndicesByDepth (-1, 5)
ilower=s.orbitalIndicesByDepth (10, -1)
iall=s.orbitalIndicesByDepth ()

irest=1list (set (iall)-set (iupper)-set (ilower))

print 'the orbital indices lists:',ilower,irest, iupper
upper=s.orbitalNames (iupper)

lower=s.orbitalNames (ilower)
rest=s.orbitalNames (irest)

print 'the orbital lists:', lower,rest,upper

orbitalNamesByDepth (lowerdepthdatalimit=1e+30, upperdepthdatalimit=1e+30)
Returns list of orbital names

Return type list

Convenience function which is equivalent to:

orbitalNames (orbitalIndicesByDepth (lowerdepthdatalimit,
—lowerdepthdatalimit))
orbitalIndicesBySite (isite)
Parameters isite (int) - the site number
Returns list of orbital indices
Return type numpy.ndarray
Return a list of orbital (WF) indices for orbitals which belong to site number isife.
wannierCenterMatrix ()

Returns a list of 3 matrices each containing the cartesian component of the Wannier centers
(site vectors) in the diagonal.

Return type 1ist of 3 numpy.ndarray

46 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

If 5'is the site in the unit cell on which the Wannier function w e sits, wannierCenterMatrix

(page 46) returns M sn’.5n = 0z 50n/ »,§ Where n’, n are orbital indices.
calculateBerryCurvatureOnBox (box, homo, suffix=", fullF=False, toldegen=1e-10)
Parameters
* box (BoxMesh (page 56)) — see help for BoxMe sh (page 56)

* homo (int) — The berry curvature is calculated for a set of bands. This sets the band
number of the highest band included in this set.

* suffix (str) - the output file suffix

e fullF (int)-if the position operator (basis connection) is contained in +hamdata
the full Berry curvature is calculated if fullF is True

* toldegen (float) —levels closer than this tolerance are considered to be a degen-
erate subspace in the non-Abelian correction to the Berry curvature

Output of the Berry curvature on a box mesh (optionally integrated over the third box direction).
The non-Abelian expression is used for degenerate subspaces and a symmetry-restoring correction in
periodic gauge is applied. The curvature corresponds to A% = —i (u | Vu).

Now, a correction for the non-Abelian Berry curvature is applied for degenerate subspaces. Which
levels are considered degenerate is controlled by toldegen. If it is too small, spurious results can be
obtained. If it is very large, some of the actual curvature will be mising. foldegen should be smaller
than the smallest physical gap in the band structure.

See berryCurvature (page 52) for details about the Berry curvature calculation.
calculateChernNumberInSphere (center, radius=0.1, nsubdiv=20, homo=1, suffix=", nra-
dius=1, fullF=False, toldegen=1e-10)
Parameters
* center (3-vector of float) - the sphere center
e radius (float) — the sphere radius
e nsubdiv (int) — the mesh subdivision level

* homo (int)— The berry curvature is calculated for a set of bands. This sets the band
number of the highest band included in this set

* suffix (str) - the output file suffix

* nradius (int) —if given and >1 include a radial-mesh in the output of the Berry
curvature. The result is volumetric instead of 2d-on-sphere data.

e fullF (int)-if the position operator (basis connection) is contained in +hamdata
the full Berry curvature is calculated if fullF is True

* toldegen (float) —levels closer than this tolerance are considered to be a degen-
erate subspace in the non-Abelian correction to the Berry curvature

Calculate the Chern number within a sphere. If you suspect the presence of a Weyl point first it is good
to find its position. Then a small sphere can be put around the Weyl point position. The integral of
the Berry curvature over this sphere gives the associates Chern number (Chirality). The output shows
the Chern numbers for the set of the lowest n bands if it is larger than some tolerance, where n runs
over all bands. This means that it is not the band wise Chern number but the Chern number for various
sets of occupied bands with corresponding homo. If the shown number is far from integer try a finer
nsubdiv. The number will converge to an integer eventually. Usually these spheres have to be rather
samll, especially if the Berry curvature is very structured. Note, that center and radius are in units of
kscale (page 56).

Now, a correction for the non-Abelian Berry curvature is applied for degenerate subspaces. Which
levels are considered degenerate is controlled by toldegen. If it is too small, spurious results can be

2.4. pyfplo.slabify 47

pyfplo Documentation, Release 22.00-62

obtained. If it is very large, some of the actual curvature will be mising. toldegen should be smaller
than the smallest physical gap in the band structure.

See berryCurvature (page 52) for details about the Berry curvature calculation.

calculateZ2Invariant (gamma0O, gammal, gamma2, Nint, Nky, homos, efhomo=0,
xmesh=None, ymesh=None, suffix=", gauge="periodic’)

Parameters

e gammal (3-vector of float)— marks the center of the 2D plane in units of
kscale (page 56)

* gammal (3-vector of float)—inunits of kscale (page 56) The integration
directionis I'g — I'y

e gamma2 (3-vector of float) — in units of kscale (page 56) The ky-
parameter of the Wannier centers runs along I'g — I's.

* Nint (int) — gives the subdivision for the integration direction
* Nky (int) — the subdivision of the ky-parameter direction.

* homos (1list or single int) — the band indices, which form the highest occuied
bands.

* efhomo (int) — One can specify the band below the Fermi energy as efhomo which
is only used in output for orientation.

* xmesh (sequence of f1oat) — if given it must contain a grid in [-1,1], which will be
used as integration grid instead of the default equidistant one. If given Nint is ignored.

» ymesh (sequence of £1oat) — if given it must contain a grid in [0,1], which will be
used as ky-paramter grid instead of the default equidistant one. If given Nky is ignored.
If the first point equals O and/or the last equals 1, the points are slightly shifted inwards
to avoid particular problem cases.

* suffix (str)— aconvenience suffix to be appended to the created files.

* gauge (str) — Can be 'periodic' (default) or 'relative'. The relative
gauge seems to preserve the symmetry of the Wannier center curves, while the pe-
riodic does not. In pyfplo version <= 18.00 the periodic gauge was implemented.
Formally, the relative gauge should be correct. This option was not tested a lot. The
topological invariants should NOT depend on the gauge choice though, unless there
is no gap. It seems that the Wannier center curves spread out more evenly in relative
gauge, which makes the automatic index determination less reliable. So, visual checks
should always be performed.

Calculate the Z2 invariant for a plane spanned by the TRIM points I'g, I'; and I'y via Wannier centers.

All TRIM points must be actual points in the BZ (not directions). The plane spanned by the TRIMS
shall only contain I'y in the center and the other TRIMS at the corners and mide-edges. No other
TRIMS shall fall inside the planar cell. It is neccesary that the whole plane is gapped for the results
to make sense. The TRIM points are always given with respect to the default 3d cell as defined by
the data in +hamdata. In other words if you use enlarge (page 55) the TRIM points must not
be given with respect to the enlarged cell! See calculate3dTIInvariants (page 49) for more
explanations.

Example with xmesh/ymesh:

import numpy as np
s=sla.Slabify ()

Gp=s.hamdataRCell ()
G=[0,0,0]
Z=Gp.dot (np.array ([0,0,1]1)/2.)
(continues on next page)

48 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

(continued from previous page)

X=Gp.dot (np.array ([1,0,0])/2.)

Nint=20
Nky=200
xmesh=map (lambda x: np.sign(x)*x**2,np.linspace(-1,1,Nint))
if False: # or
xmesh=map (lambda x: x**3,np.linspace(-1,1,Nint))

ymesh=np.append (np.linspace (0,0.2,int (0.7xNky), endpoint=False),
np.linspace(0.2,1.,int (0.3xNky)))
if False: # or
ymesh=map (lambda x: np.sign(x)*x**2,np.linspace (0,1,Nky))

s.calculateZ2Invariant (G,X,Z,Nint,Nky, [14,16,18,20], xmesh, ymesh)

calculate3dTIInvariants (Nint, Nky, homos, efhomo=0, gauge="periodic’)
Parameters
* Nint (int) - the number of intervals along the integration direction.
* Nky (int) - the number of intervals along the ky-parameter direction.

* homos (1list or single int) — a list or a single homo can be given. A homo is
the number of the highest band, assumed to be occupied. To find out the band num-
bers (homos) first make a 3d band calculation using calculateBandStructure
(page 43) and load the resulting +band. . . into xfbp: right click on a desired band
and the set numbers and band numbers of the bands nearby are displayed. The band
number is the important one, not the set number!

* efhomo (int)— One can specify the band below the Fermi energy as efhomo which
is only used in output for orientation.

¢ gauge (str) — Can be 'periodic' (default) or 'relative'. The relative
gauge seems to preserve the symmetry of the Wannier center curves, while the pe-
riodic does not. In pyfplo version <= 18.00 the periodic gauge was implemented.
Formally, the relative gauge should be correct. This option was not tested a lot. The
topological invariants should NOT depend on the gauge choice though, unless there
is no gap. It seems that the Wannier center curves spread out more evenly in relative
gauge, which makes the automatic index determination less reliable. So, visual checks
should always be performed.

Use Wannier centers to calculate the Z2 invariants for a 3d TIL.

For the whole thing to make sense the bulk band structure must be gapped above the band numbered
by the homos throughout the whole BZ. The output will be a set of files, which have to be inspected by
the user to decide how many Wannier centers cross a chosen horizontal reference line. There is also
an automatic algorithm to determine the invariants (printed to output) This is, however, not always
correct: a sufficiently large number of integration (Nint) and parameter points (Nky) are needed to
obtain a valid result. Especially, if the wannier center curves vary fast in some parameter regions Nky
must be sufficiently high for the automatic algorithm for the determination of the Z2 invariants to be
correct. The reason are many small gaps and/or highly fluctuating Berry curvature.

The programm creates data files +Z2_homo. . ._. .. containing the Wannier centers where the last
suffix indicates in which plane we are: _z0 is a (1/2 1/2 0) plane through the origin in primitive
reciprocal basis, while _x1, _yl and _z1 denote (0 1/2 1/2), (1/2 0 1/2) and (0 1/2 1/2) planes through
(1/2 0 0), (0 1/2 0) and (0 0 1/2) as also printed to the output. If the invariants for z0 and z1 differ it
is a strong TI. The x1, y1, z1 invariants give the three weak indices 1/ 2 3. Note, that the weak indices
depend on the chosen planes.

Additionally files +zgap_homo_..._ containing a reference line which follows the largest
gap [A. A. Soluyanov, PRB 83, 235401 (2011)] are created together with convenience files
72_3dTI_homox .cmd which load all data into xfbp:

2.4. pyfplo.slabify 49

pyfplo Documentation, Release 22.00-62

xfbp Z2_3dTI_homolé6.cmd

The reference line is printed with blue weights if the number of centers crossed so far is even and in
red weights if the number is odd. If the last data point is odd the invariant is non-trivial. This algorithm
only works for a sufficiently large grid although it is much better for smaller number of points when
humans might not yet see how the centers are connected. Since this algo does not always work as
wished we modified it such that some of the larger gaps are followed in separate curves (only one
is shown in Z2_3dTI_homo. ..cmd). At the end we call the invariant odd if a majority of these
gap-following curves indicate odd-ness. The reliability of the results are printed in the output table.
Afterall, it is always better to check how the results converge with the grid spacing.

hamAtKPoint (kpoint, ms, gauge="relative’, opindices=None, makedhk=False, makesigma=False,
makexcfield=False, makebasisconnection=False, makewfsymops=False)

Parameters
* kpoint (3-vector of float) - The k-pointin absolute cartesian coordinates.
* ms (int) — The spin component. Full relaticistic: ms=0 else: ms in [0, nspin-1]

e gauge (str) — Can be 'relative' (default) or 'periodic' or
'forcerelative'. There are two possible phase choices for the un-
derlying Bloch sums. The default is the relative-distance gauge H f,s =
>R etk(Rts—s') (wos | H | wrs) The second is the periodic gauge which is needed
if derivatives with respect to k are required: HY, = >, e*F (woy | H | wps)
If the velocity matrix is requested (makedhk=True) the gauge will be set to
'periodic' automatically unless the gauge is setto 'forcerelative' (this
is new and allows to overwrite the old behaviour).

* opindices (sequence of int) — A list of operation indices can be given to restrict
the list of returned WFSymOp (page 66). See also makewfsymops. These indices
are unique identifiers independend of the structure and are printed when prepare
(page 42)-ing the structure.

* makedhk (int) — Return dH/dk in the wannier basis additionally to H. The return
value will be a tuple (H, dhk, ...) if this option is True. The actual type of dhk
is BerryCurvatureData (page 67).

* makesigma (int)— Return the 3 matrices (o, y,.) in the Wannier basis additionally
to H. The return value will be a tuple (H.. .. ,sigma,...) if this option is True.

* makexcfield (int) — Return the 3 matrices pp(B}¢, ,) in the Wannier basis
in eV additionally to H. The return value will be a tuple (H....xcfield,...) if
this option is True. (Only for full relativistic.) In a spin polarized calculation ‘*
H- (B[0].dot(S[0])+B[1].dot(S[1])+B[2].dot(S[2]))*‘ will approximately be the non-
polarized Hamiltonian, where H, S and B are returned by hamAtKPoint (page 50)
with options makesigma and makexcfield. This is approximate since to obtain B we
need to factor the xc-Zeeman term into the spin matrices and the field matrices. The
FPLO basis is not complete and the Wannier basis even less. An illustrative example
isgivenin . /Examples/slabify/Fe/SP/slabify/xcfield.

* makebasisconnection (int)- Return, additionally to H, the 6 matrices Awk —
—i (uy | V) and V x A% in the Wannier basis, which are the Berry connec-
tion and Berry curvature of the WF basis itself: The relation to the position op-
erator is given in periodic gauge by —Abk = (MK and in relative gauge by
—A" = (M* — 810455 where s and t are Wannier centers (sites) and (7% =
>r ok REAGs-) (wos | 7 | wrs) where A = 0 in the periodic gauge and A = 1 in
the relative gauge. The return value will be a tuple (H, ,basisconnection,

.) if this option is True. The first 3 components of basisconnection are
the basis Berry connection and the last 3 the basis Berry curvature. To convert the
connection in relative gauge to the position operator add the matrices returned

50

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

by wannierCenterMatrix (page 46). See argument gauge above to remem-
ber why gauge=forcerelative needs to be used when relative is required.
Examples for the use of this argument are found in . /Examples/slabify/Fe/
SP/slabify/3dRand . /Examples/slabify/Fe/SP/slabify/AHC.

* makewfsymops (int) — If True return a list of WFSymOp (page 66) instances,
which describe the symmetry transformations of the Hamiltonian and the Wannier
function Bloch sums. The return value will be a tuple (H,...,wfsymops) if this option
is True.

Returns (H,...) — If all make... options are False it simply returns the Hamiltonian
H (no tuple) at kpoint for spin ms. If any of the make... options are True a tuple is
returned containing H and all additionally requested operators in the order defined by the
make. . . -arguments in the argument 11ist (page 50) above. The order of the keyword
arguments in an actual function call does not matter for the order of return values. If the
requested operator is a vector operator it is returned as a list of numpy.ndarrays. The
derivative dH/dk is in units of eV*aB.

Return type numpy.ndarray or a tuple of return values

Example

For convenience you can use kscale (page 56) as in:

s=sla.Slabify ()

k=[1,0,0]

ms=0

H=hamAtKPoint (k*s.kscale,ms) # or to get dH/dk
(H, dHk) =hamAtKPoint (k+xs.kscale, ms, makedhk=True)

diagonalize (h, dhk=None, makef=False, basisconnection=None, toldegen=1e-10)
Parameters
* h(square complex matrix) - the Hamiltonian

e dhk (BerryCurvatureData (page 67)) — behaves asa list of 3 complex
“numpy . ndarrays which contain dH/dk as returned by hamAtKPoint (page 50)

* makef (int)—if True return band wise Berry curvature

* basisconnection (1ist of 6 complex numpy.ndarrays) — basisconnection
and curvature as returned by hamAtKPoint (page 50)

* toldegen (float) — levels closer than this tolerance are considered to be a degen-
erate subspace in the non-Abelian correction to the Berry curvature

Returns (E,C....) — The first tuple value is a numpy . ndarray of the energies, the second
anumpy .ndarray of eigenvectors C [: , 1] is the i-th eigenvector. If makef is True
the third tuple elements is a numpy .ndarray containing the Berry curvature where
F[:,n] is the band-n Berry curvature (a 3-vector). The dimension of the Hamiltonian
is nvdim (page 54).

Return type tuple of return values

Diagonalize the Hamiltonian A and return the eigenvalues and eigenvectors. If makef is True, dhk
must be given. Then additionally the Berry curvatures for all bands is returned. If basisconnection is
also supplied the full Berry curvature is returned. See berryCurvature (page 52).

dhk must be obtained from hamAtKPoint (page 50). New in version 19: Note, that in the
periodic gauge (used for i and dhk) a correction for the position operator is used when calcu-
lating the Berry curvature. If gauge=forcerelative was used in hamAtKPoint (page 50) this
correction is zero. The curvature corresponds to A¥ = —i (u | Vu).

2.4. pyfplo.slabify 51

pyfplo Documentation, Release 22.00-62

Now, a correction for the non-Abelian Berry curvature is applied for degenerate subspaces. Which
levels are considered degenerate is controlled by foldegen. If it is too small, spurious results can be
obtained. If it is very large, some of the actual curvature will be mising. foldegen should be smaller
than the smallest physical gap in the band structure.

Example:

k=np.array([0.5,0,0])
(Hk, dHk) =s.hamAtKPoint (k*s.kscale, ms, makedhk=True)

(E,CC,F)=s.diagonalize (Hk, dhk=dHk, makef=True,
toldegen=1.0e-9)
print 'Berry curvature of homo',homo,': ',F[:,homo]
diagonalizeUnitary (U, evdegentol=1e-08)
Parameters
* U(square complex matrix)—the unitary matrix

* evdegentol (float) — eigenvalues with a distance less than this are considered
degenerate.

Returns (E,Z) — E are the complex eigenvalues and Z the eigenvectors.
Return type tuple of return values

For unitary matrices LAPACK does not return orthogonal eigenvectors for degenerate subspaces. This
method calls LAPACK for diagonalization and corrects the eigenvectosr afterwards.

coDiagonalize (E, C, Dk, evtol=1e-08, check=False)
Parameters
* E (sequence of £loat) — the Hamiltonian eigenvalues
* C(square complex matrix) - the Hamiltonian eigenvectors
* Dk (square complex matrix)—the Bloch sum symmetry representation matrix
* evtol (float) - tolerance to determine degenerate subspaces of E
e check (int)—if True perform paranoia checks

Returns (EU,CZ) — EU are the complex symmetry eigenvalues and CZ the transformed
eigenvectors which diagonalize the Hamiltonian and the symmetry.

Return type tuple of return values

Given Hamiltonian eigenvalues E and eigenvectors C such that HC = CEFE and a representation
matrix Dk for the Wannier function Bloch sums with symmetry properties H = D' H D determine
U=CtDC.

Then diagonalize U: U = ZEyZ™ in each degenerate subspace of E and form the transformed
eigenvectors C' = C'Z. Now C" diagonalizes H and U. The eigenvalues Ey; of U and the transformed
eigenvectors C’ are returned.

evtol is used to determine which Hamiltonian eigenvalues E [1] are degenerate.
The symmetry representation matrices are return by hamAtKPoint (page 50).

Note, that operations which are combined with time reversal do not really make sense in this context,
so do not use this routine if the operation is combined time reversal.

berryCurvature (E, C, dhk, subspace=None, basisconnection=None, toldegen=1e-10, returnde-
tails=False)

Parameters
* E (sequence of f1oat) — the Hamiltonian eigenvalues

* C(square complex matrix)- the Hamiltonian eigenvectors

52 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

e dhk (BerryCurvatureData (page 67)) — BerryCurvatureData (page 67),
behavesasa list of 3 complex ~numpy.ndarrays which containdH/dk as
returned by hamAtKPoint (page 50)

* subspace (sequence of int) — a list of zeros and ones, which describes the wanted
subspace or None for the whole space.

* basisconnection (1ist of 6 complex numpy.ndarrays) — basisconnection
and curvature as returned by hamAtKPoint (page 50)

* toldegen (float) - levels closer than this tolerance are considered to be a degen-
erate subspace in the non-Abelian correction to the Berry curvature

e returndetails (bool) — if True details of the curvature contributions are re-
turned

Returns (F,divergenttermsdetected) — F is a numpy . ndarray of shape= (3, nvdim)
and contains the band wise Berry curvature. divergenttermsdetected is now al-
ways False. It is still there to not break older code. Sorry. If basisconnec-
tion is given and returndetails==True the returned tuple is (F,Fdetails,
divergenttermsdetected), where Fdetails is a dict of the various terms F is
made of. The dict values are again numpy . ndarray of the same shape as F.

Return type tuple

Calculate the Berry curvature from the Hamiltonian eigenvalues E and eigenvectors C and form
dH/dk returned from hamAtKPoint (page 50). If basisconnection is given (as returned from
hamAtKPoint (page 50)) the full curvature is calculated (Wang2006) not only the D-D part. If
returndetails==True the separate terms F is made off are returned in a dict.

If subspace is None the Berry curvature is returned for all bands. If itis alist of size 1en (E) the Berry
curvature is calculated from the subspace for which subspace contains a nonzero value, preferably 1.
This can be used to make plots of the k-resolved mirror Chern number.

If basisconnection is not provided, the resulting Berry curvature will contain a correction for the posi-
tion operator in the periodic gauge. In the relative gauge (gauge=forcerelative) this correction
is zero.

The curvature corresponds to A¥ = —i (u | Vu).

Now, a correction for the non-Abelian Berry curvature is applied for degenerate subspaces. Which
levels are considered degenerate is controlled by toldegen. If it is too small, spurious results can be
obtained. If it is very large, some of the actual curvature will be mising. toldegen should be smaller
than the smallest physical gap in the band structure.

FPLO/...DOC/pyfplo/Examples/slabify/TCI/SnTe contains an example.
findWeylPoints (box, homos, tol=0.001)
Parameters
* box (BoxMesh (page 56)) — a definition of the box and its mesh.

* homos (1list or single int) — the band indices, which form the highest occuied
bands. If a list is given WPs for all these highest occuied bands are serached.

e tol (float)— This sets the finest bi-section of the refinement part of the algorithm.
What is a usefull value depends on the actual structuring of the Berry curvature.

This method tries to automatically find Weyl points using a modification of the algorithm described
in [Takahiro Fukui et.al. J. Phys. Soc. Jpn. 74, 1674 (2005)] The user defines a box which spans a
grid. On all grid points the Hamiltonian is diagonalized. For each micro cell of the grid the Berry
curvature is integrated over the surface of the cell. This gives the chirality of the WP if the box
contains a WP. For all cells, which have a non zero result subsequent bisections is performed un-
til the box size falls below fol. Finally, all resulting boxes with non-zero chirality are written to
the file weylpoints.py. This file can be loaded into a script for further processing (e.g. to use
calculateChernNumberInSphere (page 47) to make sure that is actually is a Weyl point.)

2.4. pyfplo.slabify 53

pyfplo Documentation, Release 22.00-62

Note: that the alogrithm does not always find all Weyl points due to several reasons.

* The box grid must be fine enough such that the Berry curvature variation is properly sampled by

the micro cells.

* The origin of the box matters if e.g. the WPs are pinned to symmetry planes The WPs ideally sit
well within a micro cell. Since, one can not always know this in advance it is probably good to
try two different origins. One at say (000) and another at —A}, /2, where Ay is the body diagonal

of a micro cell.

* A micro cell might contain two WPs of opposite chirality, which would result in zero total chirality

and hence these WPs are missed. The grid must be fine enough to avoid this.

Often symmetries can be used to complete the list of found WPs.

Warning: the algorithm can produce false positives. This is why it is always a good idea to check the

validity of the results via calculateChernNumberInSphere (page 47).
(also see the Weyl semi metal example (page 117))

calculateMirrorChernNumbers (homo, nint, atneqgk=False, showevs=False, evtol=1e-08,
fullF=False, toldegen=1e-10)

Parameters
* homo (int) — the highest occupied band
* nint (int) — the number of subdivision in the first k direction of the mirror plane
* atneqgk (int) —if True also calculate for plane at nonzero out-off plane position
* showevs (int) — if True show mirror eigenvalues

* evtol (float) — energies eigenvalues which are closer than this tolerance are con-
sidered degenerate when determining mirror subspaces

e fullF (int)-if the position operator (basis connection) is contained in +hamdata
the full Berry curvature is calculated if fullF is True

* toldegen (float) - levels closer than this tolerance are considered to be a degen-
erate subspace in the non-Abelian correction to the Berry curvature

For each symmorphic mirror operation the mirror chern number for the mirror plane in k-space is cal-
culated. The result will depend on the density of the inregration mesh which is controled by nint. The
mirror eigenvalues are determined in the subspaces of degenerate energies. This increases the accuracy
of the diagonalization of the unitary transformation. The Hamiltonian eigenvectors are transformed to
belong to mirror eigenvalue subspaces from which the Berry curvature is determined. foldegen con-
trols the application of the non-Abelian correction to the Berry curvature (see berryCurvature

(page 52)).

The mirror planes are determined automatically, which leads to a 2d reciprocal basis in the plane and
an out off plane vector an integer multiple of which describes the position of all mirror planes. The

mirror chern number is calculated for the plane through the origin and for the closest plane.
See berryCurvature (page 52) for details about the Berry curvature calculation.
FPLO/...DOC/pyfplo/Examples/slabify/TCI/SnTe contains an example.

dirname
Local result directory. You can also set it

s=sla.Slabify ()

s.dirname='."' # now output lands in the current directory

Type str

nvdim
Return dimension of WF Hamiltonian.

54

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

Type int

nspin
Return number of spins (always 1 for full-relativistic).

Type int

object
The type of structure-object to be created

Values: '3d', 'slab' or 'semislab'
Type str

enlarge
3x3 list or numpy.ndarray: A 3x3 integer matrix U for enlarging the cell. The rows of U
represent the three new vectors. This matrix produces a new unit cell A’ out of the old A via A’ = U- A

ai
where we assume that A is a column vector of the tree lattice vectors. A = as (see Structure
as
Manipulation Algorithm (page 85))
zaxis
The axis perpendicular to the surface (in cartesian coordinates) (see Structure Manipulation Algorithm
(page 85))
Type 3-vector
numberoflayers

Number of layers to be constructed from the layered cell. For 'semislab's the smallest possi-
ble number should be chosen. This number is determined by the maximal inter-atom overlap in the
Hamiltonian data. It is best to start with 1 and then increase it according to the program output (it will
complain if needed). (see Structure Manipulation Algorithm (page 85))

Type int

anchor
at which relative z-position in the layered unit cell do we cut the solid.

Type float
Type for 'slab' and 'semislab’

cutlayersat
Currently only for 'slab'! Lower and upper absolute z-coordinate at which to cut a finite slab. If
cutlayersat[l]<cutlayersat[0] itis not applied. (see Structure Manipulation Algorithm

(page 85))
Type 1list of 2 float

cutatoms
Currently only for 'slab'! A list of atoms to be removed in the final step. Note that the site numbers
refer to the cell after cut Iayersat (page 55) was applied. Use xfplo on the resulting =. in file to
find the site numbers. (see Structure Manipulation Algorithm (page 85))

Type list of int

options
A set of options (for debugging), see pyfplo.common.OptionSet (page 36)

Example

import pyfplo.slabify as sla
s=sla.Slabify ()
op=s.options
(continues on next page)

2.4.

pyfplo.slabify 55

pyfplo Documentation, Release 22.00-62

(continued from previous page)

for n in op.names:
print n,'is set to ',opln]

Type OptionSet (page 36)

kscale
The common factor used for the k-points. Usually k-points are given as 2«pi/a =* (kx,ky,kz)
where a is obtained from +hamdata or more precisely from the conventional cell. One can set
kscale (page 56) to any value which is convenient.

Note: For rhombohedral lattices the conventional lattice is the trigonal (hexagonal) cell if the space-
group setting is hexagonal or the same as the primitive rhombohedral cell if the spacegroup setting is
rhombohedral. Consequently kscale (page 56) depends on the setting for rhombohedral lattices.

Type float

bfield
the optional B-field configuration.

Type BfieldConfig (page 65)

hasxcfield
if True the Bxc-data are available in +hamdata

hassigma
if True (0,4 -) is available in +hamdata

hasbasisconnection
if True basis connection and curvature are available in +hamdata

2.4.2 BoxMesh

class BoxMesh
Define a box mesh in 3 dimensions. For a planar mesh set nz=1 and zinterval=[0,0].

setBox (xaxis=[1, 0, 0], yaxis=[0, 1, 0], zaxis=[0, 0, 1], origin=[0, 0, 0])
Returns self — for call chaining.
Return type BoxMesh (page 56)

Convenience function: Define the box. See origin (page 58), xaxis (page 58), yvaxis (page 58),
zaxis (page 58) for docs.

setMesh (nx=100, ny=100, nz=100, xinterval=[-0.5, 0.5], yinterval=[-0.5, 0.5], zinterval=[-0.5,
0.5])

Returns self — for call chaining.
Return type BoxMesh (page 56)

Convenience function: Define the mesh subdivisions of the box. See nx (page 58), ny (page 58), nz
(page 58), xinterval (page 58), yinterval (page 58) and zinterval (page 58) for docs.

xmesh ()
Returns xmesh — the mesh coordinates along the xaxis (page 58)
Return type numpy.ndarray

ymesh ()
Returns ymesh — the mesh coordinates along the yaxis (page 58)
Return type numpy.ndarray

zmesh ()

56 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

Returns zmesh — the mesh coordinates along the zaxi s (page 58)
Return type numpy.ndarray
mesh (scale, xfirst=False)
Parameters
* scale (float) — all points are multiplied with scale
e xfirst (int)—if True invert the loop order (make the x-loop the outer loop).
Returns mesh — The flat list of all vectors of the mesh.
Return type numpy.ndarray

Return the box mesh in absolute coordinates as a single flattend continous numpy .ndarray of
vectors. This routine actually first calculates the mesh. Hence it is strongly advised to use a local copy
as in:

kpnts=box.mesh (scale,False)

someFunctionCall(...,kpnts,...)

When creating the mesh the innermost loop is x, then y, the outer loop is z. If xfirst is True the loop
order is inverted. All points are scaled by scale.

The mesh is calculated as:

mesh[ind]=(xaxis*xinterval[i]+
yaxis*yinterval[]j]+
zaxisxzinterval [k]+origin) xscale”

where 1, j and k run over all posible interval values and ind runs over all mesh indices depending
on the loop order.
relToAbs (*args)

Parameters args (3 float or 1ist or numpy.ndarray) — can be a 3-vector or three
coordinates.

Returns point — the mesh point in absolute coordinates.
Return type numpy.ndarray

Take a point (x, y, z) in relative mesh coordinates and return the absolute coordinates. Relative means
relative with respect to the normalized axes not the intervals:

abs=origintxxxaxisty*yaxis+z*zaxis
absToRel (*args)

Parameters args (3 float or 1ist or numpy.ndarray) — can be a 3-vector or three
coordinates.

Returns point — the mesh point in relative coordinates.
Return type numpy.ndarray

Take a point in absolute coordinates and return the relative mesh coordinates (x, y, z). Relative means
relative with respect to the normalized axes not the intervals:

abs=origintxxxaxisty*yaxis+z*zaxis
xyzFromIndex (ind, xfirst=False)
Parameters
* ind (int) - an index into the continous flattend mesh array of vectors.

* xfirst (int)—if True invert the loop order (make the x-loop the outer loop).

2.4.

pyfplo.slabify 57

pyfplo Documentation, Release 22.00-62

Returns xyz — a list of 3 indices such that the mesh position xyz [0], xyz[1], xyz [2]
has point mesh (ind)

Return type numpy.ndarray of 3 int

Given an index into the flattened mesh array return the individual indices of the three box axis: ix,
iy, iz. The order of loops matter (see mesh (page 57)).

xfirst=False: ind=ix+nx+* (iy+ny*iz)
xfirst=True: ind=iz+nz+ (iy+tny*ix)

str ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob3j)

origin
numpy .ndarray: The origin(shift) of the box mesh given with respect to the global coordinate
system, in some units, which usually are pyfplo.slabify.Slabify.kscale (page 56). (See
the scale parameter in me sh (page 57))

xinterval
numpy .ndarray: Interval along the first (x) axis of the box as defined by xaxis (page 58). The
units often are pyfplo.slabify.Slabify.kscale (page 56), which makes it a uniform scale
no matter the orientation of the box.

yinterval
numpy .ndarray: Interval along the first (y) axis of the box as defined by yaxis (page 58). The
units often are pyfplo.slabify.Slabify.kscale (page 56), which makes it a uniform scale
no matter the orientation of the box.

zinterval
numpy .ndarray: Interval along the first (z) axis of the box as defined by zaxis (page 58). The
units often are pyfplo.slabify.Slabify.kscale (page 56), which makes it a uniform scale
no matter the orientation of the box.

nx
number of points in the first (x) direction.
Type int
ny
number of points in the second (y) direction.
Type int
nz
number of points into the thid (z) direction, which also is integrated over for planar projections
Type int
xaxis
the first (x) axis spanning the box. It will be automatically normalized.
Type numpy.ndarray
yaxis
the second (y) axis spanning the box. It will be automatically normalized.
Type numpy.ndarray
zaxis

the third (z) axis spanning the box. It will be automatically normalized. This is integrated over.

Type numpy.ndarray

58 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

2.4.3 EnergyContour

class EnergyContour (ne=100, e0=-1, el=1, ime="auto’)
Create a complex energy contour for energy distribution curves (EDC) Currently, only equidistant and
parallel to real axis. Usage:

import pyfplo.slabify as sla
ec=sla.EnergyContour (100,-1.5,2.5,0.001)

or set individual properties:

import pyfplo.slabify as sla
ec=sla.EnergyContour ()
ec.ne=100

or set individual mesh:

import pyfplo.slabify as sla
ec=sla.EnergyContour ()
ec.setMesh([1,2,3,4+.131)

Parameters
* ne (int) - see ne (page 59)
* e0 (float)-see e0 (page 59)
* el (float)—see el (page 59)

* ime ('auto' or float)—see ime (page 59)

Set an equidistant energy contour paralell to the real axis. See the individual properties for further docs.
mesh ()

Returns mesh — the energy mesh

Return type numpy.ndarray
setMesh (m)

Parameters m (1ist or numpy.ndarray of complex)— alistof energy points in
the complex plane

Set a hand crafted mesh. DO NOT set any other variable after this.

str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob3j)
ne
number of energy points
Type int
e0
real part of starting point
Type float
el

real part of end point

Type float

2.4. pyfplo.slabify 59

pyfplo Documentation, Release 22.00-62

ime
imaginary part of the contour. ime can be a real number or the string 'auto' in which case ime is set
to (el-e0) /ne Of course you have to define €0, el and ne first or simply use the constructor.

Type float or str

2.4.4 FermiSurfaceOptions

class FermiSurfaceOptions
Fermisurface controls.
Define the 2d k-mesh on which to calculate.

For '3d'/'slab"' this mesh is used as a basis for interpolation to obtain the iso-lines. For ' semislab'
it defines the pixel mesh on which to calculate the spectral density.

Note, that the slabify structure manipulation routines transform the original cell in such a way that the
orientation of the resulting cell with respect to the original global cartesian system is unaltered. The k-mesh,
is given in this global cartesian system. So a slab with zaxis=[1, 0, 0] has a surface BZ in the 010/
001-plane and the axis must be set accordingly. Always try with a small mesh first to get your bearings.
Also for spectral densities (pixelized pictures) in semislab mode the k-plane axis must be orthogonal!

setPlane (xaxis=[1, 0, 0], yaxis=[0, 1, 0], origin=[0, 0, 0])
Parameters
* xaxis (3-vector of float)-see xaxis (page 62)
e yaxis (3-vector of float)-see yaxis (page 63)
* origin (3-vector of float)-—see origin (page 62)
Convenience function: Define the k-plane.
setMesh (nx=100, xinterval=[-0.5, 0.5], ny=100, yinterval=[-0.5, 0.5])
Parameters
* nx (int) - see nx (page 62)
* xinterval (2-vector of float)-see xinterval (page 62)
* ny (int)—see ny (page 62)
e yinterval (2-vector of float)-see yinterval (page 62)
Convenience function: Define the mesh subdivisions of the k-plane.

on ()
Activate fermi-surface related routines.

off ()
Deactivate fermi-surface related routines.

xmesh ()
Returns xmesh — the mesh coordinates along the xaxis
Return type numpy.ndarray
ymesh ()
Returns ymesh — the mesh coordinates along the yaxis
Return type numpy.ndarray
mesh (scale)
Parameters scale (float) — all points are multiplied with scale

Returns mesh — The flat list of all vectors of the mesh. x is running first.

60 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

Return type numpy.ndarray

Return the box mesh in absolute coordinates as a single flattend continous numpy .ndarray of
vectors. This routine actually first calculates the mesh. Hence it is strongly advised to use a local copy
as in:

kpnts=fso.mesh (scale)
someFunctionCall(...,kpnts,...)
When creating the mesh the innermost loop is y, the outer loop is x. All points are scaled by scale.

The mesh is calculated as:

mesh[ind]=(xaxis*xmesh () [1]+yaxisxymesh () [j]+origin) xscale”

where i, j interval values and ind runs over all mesh indices.

openDensPlotFile (filename, ms, plotorigin=[0, 0], plotxaxis=[1, 0], plotyaxis=[0, 1],
progress=None)

Parameters
e filename (str) - the name of the xynz-type file
* ms (int) — The spin component. Full relaticistic: ms=0 else: ms in [0, nspin-1]

* plotorigin(2-vector of float)- avectordescribing the origin in the plot-
ting plane

* plotxaxis (2-vector of float) - a vector describing the x-axis in the plot-
ting plane

* plotyaxis (2-vector of float) - a vector describing the y-axis in the plot-
ting plane

* progress — a progress message (str) or None
Returns band file context
Return type DensPlotContext (page 63)

Low level routine. Return an object of type DensPlotContext (page 63) for creation of FPLO
xynz density plot files.

The returned object will open the file and organizes the proper file format. Its DensPlotContext.
write () (page 63) method can be used to write the actual data. If the object gets deleted (automatic
if the scope is left) the file gets closed. The DensPlotContext.close () (page 63) method can

be called explicitly.
The best way to use it is in a with-statement. Then it is closed automatically after the with-block is
exited:
with fso.openDensPlotFile(...) as f:
EO TN
f.write(...)

pass # now the file is closed.

If multiple files are written at the same time one can do the following:

fl=fso.openDensPlotFile (filenamel, ...)
f2=fso.openDensPlotFile (filename2, ...)
for ...:
fl.write(datal, ...)
f2.write(data2,...)
fl.close()
f2.close ()
pass # now the files are closed.

2.4. pyfplo.slabify 61

pyfplo Documentation, Release 22.00-62

Usually FermiSurfaceOptions (page 60) defines a plane in k-space on which pixeled data
are calculated. To plot them, we need to map this onto the plotting x,y-plane. If the x,y-axes of
FermiSurfaceOptions (page 60) are not orthogonal one wants to give two axes fo the same
angle as arguments to openDensPlotFile (page 61) to orient the data in the plotting plane. The
origin in the plotting plane can also be given. The length of plotxaxis and plotyaxis determines
the length scale when plotted with x fbp.

If progress is set to a string a progress message is written in subsequent calls to DensPlotContext.
write () (page 63).

see help of DensPlotContext (page 63).

An example can be found in ./Examples/slabify/densplot and ./Examples/
slabify/Fe/SP/slabify/AHC/curvature.py.

str__ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)

active
if True calculate the 3d/slab Fermi surface features.

Type bool

nx
number of points into the first (x) direction.

Type int

ny
number of points into the first (y) direction.

Type int

xinterval
interval along the first (x) axis of the BZ-plane as defined by the in-plane vector xaxis (page 62).
The units are pyfplo.slabify.Slabify.kscale (page 56), which makes it a uniform scale
no matter the orientation of the k-plane.

Type numpy.ndarray

yinterval
interval along the first (y) axis of the BZ-plane as defined by the in-plane vector yaxis (page 63).
The units are pyfplo.slabify.Slabify.kscale (page 56), which makes it a uniform scale
no matter the orientation of the k-plane.

Type numpy.ndarray

fermienergy
at which Fermi energy? Units like in +hamdat a, which by default is eV.

Type float

fermienergyim
a finite imaginary part for the energy is needed for. semislab spectral functions (same units as
fermienerqgy (page 62)). The smaller this value the higher the k-point density must be. Often a
good value is interval-length/max (Nx, Ny)

Type float
origin
the origin of the k-plane in units of pyfplo.slabify.Slabify.kscale (page 56)

Type numpy.ndarray

62

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

xaxis
the first (x) axis spanning the k-plane. It will be automatically normalized. For semislab the axes
must be orthogonal

Type 3-vector of float

yaxis
the first (y) axis spanning the k-plane. It will be automatically normalized. For semislab the axes
must be orthogonal

Type 3-vector of float

2.4.5 DensPlotContext

class DensPlotContext
This class wraps data to easily manage the creation of density plot files. This class cannot be
instantiated directly. It only is produced and returned via a call to FermiSurfaceOptions.
openDensPlotFile () (page 61) An example can be found in . /Examples/slabify/densplot
and . /Examples/slabify/Fe/SP/slabify/AHC/curvature.py.

close ()
Explicitely close the file. Usefull, if multiple files are used in the same loop, in which case the with-
statement is not usefull. The underlying file gets closed when this object gets garbage collected (after
its scope is exited). For cleanliness it is a good measure to always close files.

Method1:

with fso.openDensPlotFile(...) as f:
doseomthing with £
here f is closed

Method2:

f=fso.openDensPlotFile(...):
do something with £
f.close ()

here f is closed

write (components)

Parameters components (sequence (list,tuple, ..))— sequence of values for
all density data components at this k-point. There can be more than one value per k-point,
e.g. three components of a vector field.

Write the density data components for the current k-vector to the file.

2.4.6 GreenOptions
class GreenOptions (nsigiter=30, sigitertol=0.001, sigitermethod="accel’)
Settings which control the self energy (sigma) calculation.
Parameters
* nsigiter (int)-see nsigiter (page 64)
* sigitertol (float)—see sigitertol (page 64)
* sigitermethod (str)—see sigitermethod (page 64)
Create a GreenOptions object with the settings given in the argument.

__str ()

return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

2.4. pyfplo.slabify 63

pyfplo Documentation, Release 22.00-62

print (ob3j)
nsigiter
maximum number of sigma (self energy) iteration loops.
Type int

sigitermethod
sigma iteration method, 'accel' (default) or ''

Type str

sigitertol
sigma iteration tolerance.

Type float

2.4.7 WeylPoint

class WeylPoint (k, axisI=[1.0, 0.0, 0.0], axis2=[0.0, 1.0, 0.0], axis3=[0.0, 0.0, 1.0], chirality=1.0,

radius=0.1, energy=0.0, homo=1, spin=1)
Collect information about a Weyl point. This is for easier book keeping.

for documentation consult the individual properties.

str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (obj)

k is the WP position. Usually it is given in units S1abify. kscale (page 56)
Type 3-vector

axisl
the first axis to span a volume around the WP or for bandplot purposes. On being set it will be
normalized.

Type 3-vector

axis2
the second axis to span a volume around the WP or for bandplot purposes. On being set it will be
normalized.

Type 3-vector

axis3
the third axis to span a volume around the WP or for bandplot purposes. On being set it will be
normalized.

Type 3-vector

chirality
Store the chirality

Type float

radius
a radius within which a monopole was found.

Type float

energy
float at which energy does the WP sit.

64

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

homo
The highest occupid band.

Type int
spin
always 1).
Type int
Type the spin (1=up, 2=down, relativistic

2.4.8 BfieldConfig

class BfieldConfig
The class allows to add model spin-only magnetic fields. to the Hamiltonian. This class cannot be instanti-
ated directly. It only is returned from objects, which have an BfieldConfig (page 65) member variable
(see Slabify.bfield (page 56)). Example usage:

s=sla.Slabify ()

bf=s.bfield

bf.setGlobalField ([0,0,1.3])

#or

s=sla.Slabify ()
s.bfield.setGlobalField([0,0,1.371)

For an example see . /Examples/slabify/Fe/NSP/slabify/addBfield.
setGlobalField (B)
Parameters B (3-vector of float) - the magnetic field
Set constant global spin-only magnetic field. The last field set in the script (global or local) will win.
setLocalFields (listofcomponents)

Parameters listofcomponents (1ist of pairs of a projector (1ist) and field 3-
vector) — list of pairs of a projector and field vector:

[
t ro,0,0,1,1,1,1,0,0,01, 10, 1.2,0] 1,
tr,1,1,09,9,0,0,0,0,071,10,-1.2,0] 1,

where the first internal list is a projector P and the second a field B. The projector must
have the dimension of the Hamiltonian. It usually is a list of zeros and ones. The Hamil-
tonian is modified according to:

H=Ho+ ¥, P (5 B;) P

which means that the blocks where P is nonzero get a Zeeman term added. There can
be several P, B pairs as indicated by the subscript i. You can e.g. use Slabify.
orbitalNames () (page 45) and python map to create the projectors.

Set constant local spin-only magnetic fields. The last field set in the script (global or local) will win.

str__ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob7j)

2.4. pyfplo.slabify 65

pyfplo Documentation, Release 22.00-62

2.4.9 WFSymOp

class WFSymOp
A list of instances of this class is returned by hamAtKPoint (page 50) if options are set accodingly. It
provides information on the symmetry transfrormations of the Hamiltonian and Wannier function Bloch
sums.

There is a script in FPLO/ . ..DOC/pyfplo/Examples/slabify/symmetryops which after ad-
justing the path should run through without errors. It demonstrates the symmetry operations and also prints
the eigenvalues of operations. Use this as a starting point for your own work.

str_ ()
return printable representation. You do not need to call this explicitly. An object obj with this function
provides usefull info when printed:

print (ob3j)

symbol
A symbolic representation of the symmetry operation. If in doubt refer to alpha (page 66) and tau
(page 66) for the exact meaning.

index
This is a unique index, which is used to identify particular operations. A list of such indices can be used
inacallto Slabify.hamAtKPoint (page 50) to request a subset of symmetries. The indices are
unique identifiers independend of the structure and are printed when S1abify.prepare (page 42)-
ing the structure.

isinlittlegroup
This is True if the operation is in the little group of the k-point for which S1abify. hamAtKPoint
(page 50) was called.

alpha
This is the (improper) rotational part (3x3-matrix) of the symmetry operation. It acts on a real space
vector (or k-point) as 7 = «r. Together with tau (page 66) it forms the seitz symbol of the space
group operation which acts like {« | 7}7 = a7+ 7. alpha (page 66) and tau (page 66) are given
in absolute cartesian coordinates.

tau
This is the fractional translational part of the space group operation. It describes the location of the
operation in space and possible glide and screw components. If it is zero the operation is definitely
symmorphic but if it is non-zero it can be symmorphic (operation does not sit at (000)) or non-
symmorpic (is a glide/screw). See alpha (page 66).

timerev
For full relativistic magnetic calculations some space group operations of the input space group are
invalid. FPLO reduces the symmetry to a subset which leaves the magnetic field unchanged. These
are all operations which leave the field axis invariant. Among these there can be operations which
invert the axis. For these an additional time reversal puts the field back into its original direction. Such
combined operations have t imerev==True. Note, that these operations do not act like normal space

group representations. If a normal space group operation acts like H* = D** H** D¥ time reversed
- - — -\ kK

ops act like H* = (D’”H’O‘ka)

and the space group representation matrix in the Wannier orbital space.

where DF is a product of the time reversal representation matrix

Note: that for non-magnetic full relativistic calculations time reversal is also a symmetry. The corre-
sponding representation matrix is to found among the list of WFSymOp (page 66) instances returned
by Slabify.hamAtKPoint (page 50). For this operation the complex conjugation also has to be
applied.

isimproper
If True this operation is improper; a rotation times inversion.

Dk
This is the representation matrix of § = {« | 7} (or pure time reversal O if present or a combined

66 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

operation ©g) in the space of the Wannier orbitals at a given k-point. If the operation is in the little
group of the k-point the Hamiltonian fulfills H* = DF+ H* DF otherwise H* = DF+Hok DF_If the
operation is combined with time reversal an additional complex conjugation must be applied. If time
reversal is in the little group we get H* = <DE+H’;D’;> " otherwise HF — (DEJFH_"EDE) " Also
see t imerev (page 66).

The Wannier orbital Bloch sums transform as jw* = w®* D¥ where w is the row vector of all WFs and
the multiplication with D¥ a matrix multiplication. For time reversed operations this reads ©guw" =
w~** D¥ Ky where K| indicates complex conjugation of everything which stands right of this operator
as in Ojw*C* = w=**DFCF K,

The matrix D* contains the fractional translational _part tau (page 66). For additional translations

by lattice vectors additional phase factors exp(—iak - R) must be added. However, such a situation
usually does not occur. For time reversed operations the minus sign becomes a plus sign.

Note: that the chosen gauge of the Hamiltonian affects the periodicity of the Hamiltonian and WFs in
k-space. In particular these objects are only k-periodic for the periodic gauge. In the relative gauge
additional phase factors would occure.

equivalentSites

The site number gisa=equivalentSites[isa] is related to isa by this operation.

2.4.10 BerryCurvatureData

class BerryCurvatureData
This helper class is returned by Slabify.hamAtKPoint (page 50) if option makedhk==True. It
contains the k-gradient of the Hamiltonian matrix and some additional data which are needed to calculate
the Berry curvature with proper symmetry for periodic gauge.

__getitem__ ()

For compatibility with older pyfplo versions this object behaves a bit like a 1ist of 3 complex
numpy .ndarrays in that it can be indexed. The returned numpy .ndarrays are copies of the
underlying data. So you cannot modify the BerryCurvatureData (page 67) data.

2.4.11 Site

Site

2.4.12 Data

For convenience:

version

copy of pyfplo.common. version (page 40)

Version

copy of pyfplo.common. Version (page 39)

c_elements
copy of pyfplo.common.c_elements (page 40)

BandPlot
copy of pyfplo.common.BandPlot (page 29)

BandWeights
copy of pyfplo.common.BandiWeights (page 33)

WeightDefinition
copy of pyfplo.common.WeightDefinition (page 35)

2.4. pyfplo.slabify 67

pyfplo Documentation, Release 22.00-62

WeightDefinitions
copy of pyfplo.common.WeightDefinitions (page 34)

BandFileContext
copy of pyfplo.common.BandFileContext (page 27)

Vlevel
copy of pyfplo.common.Vievel (page 39)

OptionSet
copy of pyfplo.common.OptionSet (page 36)

BandHeader
copy of pyfplo.common.BandHeader (page 32)

2.5 pyfplo.wanniertools

» WanDefCreator (page 69)

* SingleOrbitalWandef (page 70)

* MultipleOrbitalWandef (page 71)
» Wandef (page 71)

* Contrib (page 73)

This module provides some simple functions, which can be used to create =.wandef files. It is convenient in
the context of pyfplo.slabify (page 41), where one usually needs to construct minimum basis models. For
multi-contrib Wannier functions consult Wandef (page 71) and Contrib (page 73) and the example MgB2 in
DOC/WannierFunctions/examples/MgB2/bond-centered. Example for simple Wannier functions:

wdc=wt .WanDefCreator (rcutoff=25,wftol=0.001, coeffformat="bin',
wfgriddirections=[[2,0,0],[0,2,0]1,[0,0,211,
wfgridsubdiv=[1,1,1],savespininfo=True,
savebfield=True, savepositionoperator=True,
gradorder=1,
keeprunning=True, opendxinterface=False,
wfinrealspace=False,wfcoeffstats=True,
hamtstats=True, printT=True)

emin=-5
emax= 3
delower=1
deupper=1

Add all wandefs for all 3d orbitals for both spins
for Fe site 1 and 2.

wdc.add (wt .MultipleOrbitalWandef ('Fe', [1,2],['3db'],
emin=emin, emax=emax,
delower=delower, deupper=deupper))

Add all wandefs for all 2p orbitals for both spins
for O site 7, 8 and 9.

wdc.add (wt .MultipleOrbitalWandef ('O0', [7,8,9],['2pb"'],
emin=emin, emax=emax,

delower=delower, deupper=deupper))

wdc.writeFile('=.wandef'")

68 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

2.5.1 WanDefCreator

class WanDefCreator (rcutoff=20, wftol=0.01, coeffformat="bin’, wfgridbasis="conv’, wfgridsub-
div=[1, 1, 1], wfgriddirections=[[1, 0, 0], [0, 1, 0], [0, O, 1]], wf
gridorigin=None, savespininfo=False, savebfield=False, savepositionopera-
tor=False, gradorder=1, keeprunning=True, opendxinterface=False, wfin-
realspace=True, wfcoeffstats=True, hamtstats=True, printT=True, auto-

mode=None)
The WanDefCreator object defines the content of the file =. wande f. You can add a single-contrib wandef

via SingleOrbitallWandef (page 70) and several such wandefs via MultipleOrbitalWandef
(page 71). More complex mulit-contrib wandefs are added via Wandef (page 71) which in turn uses
Contrib (page 73) to add single contribs to it.

Parameters

* rcutoff (float)— Where in Bohr radii do we cutoff the hopping matrix elements to
construct the tight-binding representation.

* wftol (float)— Hoppings below this threshold are not used.

* coeffformat (str) — Can be ‘bin’ or something else. If set to ‘bin’ the binary
+wancoeffbin will be created and used.

*» wfgridbasis (str)—Canbe 'conv', 'prim' or 'cart'

*» wEgridsubdiv (1ist or numpy.ndarray of 3 int) - The subdivision of
the real-space grid on which to plot the Wannier functions.

* wfgriddirections (list or numpy.ndarray of 3 vectors) — The
three directions, which span the real-space grid.

* wfgridorigin (1ist or numpy.ndarray of 3 float or None)-The
origin of the real-space grid. Please consult FPLO. ./DOC/WannierFunctions/
wan_user . pdf for more information.

* savespininfo (bool) — If True additional matrices (spin operators) are saved
into +wancoeff for use by slabify (page 41). This option only works with full-
relativistic calculations.

* savebfield (bool) — If True additional matrices (exchange field) are saved into
+wancoeff for use by slabify (page 41). This option only works with full-
relativistic calculations.

* savepositionoperator (bool)-If True additional matrices (position operator)
are saved into +wancoef f for use by slabify (page 41).

* gradorder (int) — For the position operator a numerical gradient in k-space is
needed. The gradient formula can have order 1,3,5 and 7. 1 or 3 are most likely best.
The position operator converges very slowly with the number of SCF k-points. Often,
gradorder=3 helps to improve the accuracy.

* opendxinterface (bool) — If True additionally the old-style opendx interface
files will be written (WF . net, WF . cfg, opendxWF . dx).

* keeprunning (bool)—If True fplo waits after the Wannier function calculation to
make a quick re-run possible. If False fplo stops.

» wfinrealspace (bool) - If True the real space representation of the WFs will be
calculated and written to the files wfdataOO1 These files can be loaded by xfplo:
xfplo =.in wfdata002 wfdata005. Additionally the WF statistics files +WF .

. are written if wfcoeffstats is True.

* wfcoeffstats (bool)— Triggers the output of the files +WFstat. . ., which con-
tain the size of the orbital contributions to a WF as a function of distance between WF

2.5. pyfplo.wanniertools 69

pyfplo Documentation, Release 22.00-62

and orbital, which serves as a measure a for localiaztion. This option is inactive if wfin-
realspace is False. It also triggers the ouptut of +WF_coefficients, which gives
a detailed account of the orbital contributions to the WFs.

* hamtstats (bool)— Triggers the output of the files +T_ . . ., which contain the size
of the hoppings around a WF as a function of distance, which serves as a measure for
localiaztion.

* printT (bool) — Triggers the output of T=. . . lines on standard output. Nowadays
+hamdata is much more usefull.

¢ automode (None or ‘valence’ or ‘all’) — If this is ‘valence’ (or ‘all’) no wandefs need
to be specified. Instead the code creates wandefs for all valence (or really all) orbitals.
If some semi core states overlap the valence energy region semi cores are added to the
wandefs until we get a clear gap below the lowest band considered. This options leads
to a slow down, but it is usefull for automatic situations. Note, that a larger rcutoff
might be needed in this case. For convenience the file makewandeffromauto.py
is created after the file +wancoff was processed in the WF creation run. This file is
overwritten. To modify it copy it.

An example with automatic creation is:
import pyfplo.wanniertools as wt

if name_ == '_ main__ ':
wdc=wt .WanDefCreator (rcutoff=25,wftol=0.001,coeffformat="bin’,

wfgriddirections=[[2,0,0],[0,2,01,[0,0,211,
wfgridsubdiv=[1,1,1],savespininfo=True,
savebfield=True, savepositionoperator=True,
gradorder=1,
wfinrealspace=True,wfcoeffstats=True, hamtstats=True,
printT=True, automode="val')

wdc.writeFile ('=.wandef'")

add (wandef')
Add a SingleOrbitalWandef (page 70), MultipleOrbitallWandef (page 71) or Wandef
(page 71) to the defintitions:

import pyfplo.wanniertools as wt
wdc=wt .WanDefCreator (rcutoff=30,wftol=0.001)
wdc.add (MultipleOrbitalWandef ('A1', [1,4],['3s"','3p"'],
emin=-13,emax=-5,
delower=1, deupper=10))
wdc.writeFile ()

writeFile (filename="=.wandef’)
Write the content into the file called filename.

2.5.2 SingleOrbitalWandef

class SingleOrbitalWandef (¢l site=1, orb="1s+0’, emin=-1, emax=1, de=1, delower=1, deup-
per=1, fewind=[-100, 100, 1, 1, 0], lbands=None, ubands=None,
xaxis=[1, 0, 0], zaxis=[0, 0, 1], fac=1.0, onoff=1, sxaxis="qua’,

szaxis=None)
This class defines a single wandef entry with a single contrib. To collect multiple wandefs into a single

python statment use MultipleOrbitalWandef (page 71).
Ignore fewind for now. The rest should be clear. Read the Wannier function documentation.
Parameters

* el (str)— An element name.

70 Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

e site (int) - The site number.

e fac (float or complex) — The factor of the contrib. Makes no sense in this
context, but is needed if you use Wandef (page 71) and Contrib (page 73).

* emin, emax, de,delower, deupper (float) — The energy window settings; all
values can be single numbers or a list of two numbers (for spin up and spin down).

* lbands,ubands (int or list or None)— Optional. Either a single int (for
both spins) or list of two int (spin up and down), specifying the lower and upper most
band index to take into the projector. This narrows the energy window to a definite set
of bands. which might be usefull if there is a separation of bands.

* orb (str)—can be something like
5d : all 5d+m orbitals
5d-1: only 5d-1

For full relativistic a 'u', 'd' or 'b' can follow the orbital name, specifying
spin up,down or both.

5d b : all 5d+m orbitals for both spins
5d-1 b: only 5d-1, both spins
Alternatively, a spherical spinor basis can be chosen.
5d5/2: all 5d5/2+mu/2 orbitals
5d5/2-3/2: only this orbital

* xaxis, zaxis (list or numpy.ndarray of 3 float)— The local coordi-
nate system in which the orbital is defined

* sxaxis, szaxis (str or list or numpy.ndarray of 3 float) - For
full relativistic: the local coordinate system in which the spin eigenstates are defined.
If it is a st r is must be ‘global’ ,’'local’, or ‘quant’, which can be abbreviated as ‘glo’
Jloc’, or ‘qua’. If it is vector szaxis must also be given.

"glo’: uses the global cartesian system
’loc’: uses the system defined by xaxis and zaxis

’qua’: uses the spin-quantization axis as defined in fedit.

2.5.3 MultipleOrbitalWandef

class MultipleOrbitalWandef (el, sites, orbs, emin=-1, emax=1, de=1, delower=1, deup-
per=1, fewind=[-100, 100, 1, 1, 0], Ibands=None, ubands=None,
xaxis=[1, 0, 0], zaxis=[0, 0, 1], fac=1.0, onoff=1, sxaxis="qua’,

szaxis=None)
Define multiple single-contrib wandefs.

Parameters
e sites (1ist)— a list of sites
* orbs (1ist)—alist of orbitals (see SingleOrbitalWandef (page 70))

For other parameters consult SingleOrbitalWandef (page 70).

2.5.4 Wandef

class Wandef (name, emin=-1, emax=1, de=1, delower=1, deupper=1, fewind=[-100, 100, 1, 1, 0],

Ibands=None, ubands=None, onoff=1, contribs=None)
This class defines a single wandef which can have multiple Cont rib (page 73).

2.5. pyfplo.wanniertools

7

pyfplo Documentation, Release 22.00-62

Example:

#!

/usr/bin/env python

import sys
import numpy as np
import pyfplo.wanniertools as wt

Smmm=mmmmmmmmmmm e e e e e
def work () :
operations
s=np.sqrt (3.) /2.
C6=np.matrix([[0.5,-s,0],[s,0.5,0,]1,[0,0,1]],dtype="float')
C3=C6.dot (C6)
emin=-13
emax=-10
delower=1
deupper=20
xaxiss=np.matrix([1,0,0],dtype="float")
wdc=wt .WanDefCreator (rcutoff=15,wftol=0.001,coeffformat="bin’,
wfgridbasis="'conv',wfgridsubdiv=[30,30,30],
wfgriddirections=[[2,0,0],[0,2,0]1,[0,0,211,
wfgridorigin=None, savespininfo=False,
savebfield=False, savepositionoperator=False,
gradorder=1,
keeprunning=True, opendxinterface=False,
wfinrealspace=True,wfcoeffstats=True,
hamtstats=True, printT=False)
for isa in range(2,4):
xaxisp=xaxiss
if isa ==
xaxisp=-xaxiss
for i in range(l,4):
wdc.add (wt . Wandef (
name='Bs sp at '.format (i,isa),
emin=emin, emax=emax,de=1.0,delower=delower, deupper=deupper)
.addContrib(site=isa, orb="'2s+0"', fac=1.,xaxis=xaxiss)
.addContrib(site=isa, orb="'2p+1"', fac=np.sqgrt (2), xaxis=xaxisp)
)
xaxisp=xaxisp.dot (C3)
wdc.writeFile ()
return
===============——————=———————————c———————————————————————————————==
#
mmmmmmmmm—m e e
if _name_ == '_ main_ '
work ()
Parameters

* name (str) - The name of the Wannier function.

* emin, emax,de, delower, deupper (float) — The energy window settings; all
values can be single numbers or a list of two numbers (for spin up and spin down).

72

Chapter 2. Modules

pyfplo Documentation, Release 22.00-62

* lbands,ubands (int or list or None)— Optional. Either a single int (for
both spins) or list of two int (spin up and down), specifying the lower and upper most
band index to take into the projector. This narrows the energy window to a definite set
of bands. which might be usefull if there is a separation of bands.

* contribs (1ist of Contrib)— A list of instances of Contrib (page 73). Al-
ternatively, Contribs can be added via addContrib (page 73).
Ignore fewind for now.

addContrib (site, orb="1s+0’, fac=1.0, difvec=[0.0, 0.0, 0.0], xaxis=[1.0, 0.0, 0.0], zaxis=[0.0,

0.0, 1.0], sxaxis="qua’, szaxis=None)
Add a single contrib. For meaning of the parameters consult SingleOrbitalWandef (page 70).

Returns

self for call chaining as in:

Wandef (...)\
.addContrib (...)\
.addContrib (...)

Return type wandef (page 71)

2.5.5 Contrib

class Contrib (site, orb="1s+0’, fac=1.0, difvec=[0.0, 0.0, 0.0], xaxis=[1.0, 0.0, 0.0], zaxis=[0.0,
0.0, 1.0], sxaxis="qua’, szaxis=None)
A contrib for a wandef (page 71).

Parameters

e site (int) - The site number.

* orb (str)—can be something like
5d+2: real harmonics
5d+2 up: real harmonics spin up (full relativistic)
5d+2 dn: real harmonics spins down (full relativistic)

Alternatively, a spherical spinor basis can be chosen.

5d5/2-3/2: j=5/2 mu=-3/2

* fac (float or complex)-canbe complex asin 0.577+0.5j

e difvec (list or numpy.ndarray of 3 float) — The connection vector
from the Wannier center to this constrib’s site.

* xaxis, zaxis (list or numpy.ndarray of 3 float)— The local coordi-
nate system in which the orbital is defined

* sxaxis, szaxis (str or list or numpy.ndarray of 3 float) - For
full relativistic: the local coordinate system in which the spin eigenstates are defined.
If itis a str is must be ‘global’ ,’local’, or ‘quant’, which can be abbreviated as ‘glo’
Jloc’, or ‘qua’. If it is vector szaxis must also be given.

"glo’: uses the global cartesian system
’loc’: uses the system defined by xaxis and zaxis

’qua’: uses the spin-quantization axis as defined in fedit.

2.5. pyfplo.wanniertools 73

pyfplo Documentation, Release 22.00-62

74 Chapter 2. Modules

- NV S SO R R

CHAPTER
THREE

EXAMPLES

3.1 A basic tutorial

* The bulk band structure (page 75)

* The bulk Fermi surface (page 78)

» Fermi surface cuts (page 79)

* Bulk projected bands (page 81)

* Finite slab with 10 unit cells (page 83)

* Finite slab with 10 unit cells (doubled in-plane cell) (page 86)

* Finite slab with 10 unit cells (doubled in-plane cell), one atom removed (page 88)
e Finite slab with 10 unit cells (doubled in-plane cell), 3 atoms removed (page 91)

» Semi infinite slab (page 96)

» Semi infinite slab, doubled planar cell (page 99)

Note: You need to use the newer xfbp/xfplo version, which comes with pyfplo in order for the cmd scripts to
work properly.

This example tries to explain how pyfplo.slabify (page 41) works in detail. The tutorial files are in FPLO.
../DOC/pyfplo/Examples/slabify/model where FPLO. . . stands for your version’s FPLO directory,
e.g. FPL022.00-62.

We use a hand written Hamiltonian file (+hamdata) containing some model data. Usually this is created by the
Wannier function module of fplo. The model defines a single orbital tight binding model on a cubic lattice.

3.1.1 The bulk band structure

In a first step we plot the 3d bulk band structure. The python script 3d/slabify.py is shown in the following

#! /usr/bin/env python

from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

(continues on next page)

75

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

59

60

61

62

pyfplo Documentation, Release 22.00-62

(continued from previous page)

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version
#if fedit.version!='22.00"': raise RuntimeError ('pyfplo version 1is incorrect.')
mmmmmmmmmmmmmmmemmm e e e e e e e
#
R
def work () :
hamdata="'../+hamdata’

s=sla.Slabify ()
s.object="3d'
s.printStructureSettings ()
s.prepare (hamdata)

bp=sla.BandPlot ()

bp.points=|[
['$~G',[0,0,011,
['X',[0.5,0,011,
['M',[0.5,0.5,011,
['$~G',[0,0,011,
['z',[0,0,0.511,
['R',[0.5,0,0.511,
['L',[0.5,0.5,0.511,
['Z',[0,0,0.511]

~

bp.calculateBandPlotMesh (s.dirname)

s.calculateBandStructure (bp, suffix="'_my_suffix');

Line 8 can be uncommented and edited to make python search for pyfplo in a particular location (also see Setup
(page 1)). Line 14 shows which pyfplo version was loaded and from where. If you uncomment line 16, the
script is showing an error message if the pyfplo version does not match a particular version.

Please run the script (from 3d/README . rst):

run the script as in
(continues on next page)

76 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

(continued from previous page)

./slabify.py | tee out
xfbp bands.cmd

and have a look at the output and into slabifyres/
#alternatively run

python ./slabify.py | tee out
xfbp bands.cmd

Now for the actual script. Line 25 defines a convenient variable pointing to the Hamiltonian file. Line 27 makes
s an instance of slabify.Slabify (page 41). Inline 30 we tell it that we want a 3d object and since we dont
set any other options it will be the simple cubic cell as defined in +hamdata. Line 33 now reads the Hamiltonian
data and sets up the structure. After this step there will be several files in the output directory slabifyres/
called=.in_...:

=.in_step_1_3d_enlarged: This is the cell after the first structure manipulation step, which is the
application of the enlarge (page 55) matrix.

=.in_final_PLIlayer: I the final result.

Of course in our case the two are identical, since we did not give any structure options except for s . object=3d.
Furthremore, there are bandstructure files. Ignore +sweights_sf_my_suffix for now.

On with the code: Line 35 make bp an instance of common . BandP1ot (page 29) while lines 36.. set the high
symmetry points. Note, that the units are slabify.Slabify.kscale (page 56). One can set kscale to
something else after the call to s.prepare (hamdata). Line 46 sets up bp and writes the file +points to
the directory defined in slabify.Slabify.dirname (page 54). If this variable is set by the user, it must
be before the call to s1abify.Slabify.prepare (page 42). Finally, in line 48 the band structure and band
weights are calculated. The suf fix argument helps to give the files custom made names.

Finally, if you sucesfully installed xfbp and executed xfbp bands.cmd you saw the simple bulk band structure
(That is what you should see. (page 77)).

A model: 3d bulk

20
= 10
@,
~
::
> 0 €
S Vi
c
L

-10

r X M r Z R L Z

Fig. 3.1: The 3d band structure of the model.

It is strongly encouraged to also study the .cmd scripts to learn tricks. If you want to use other software
for plotting you can use the pyfplo.common.BandPlot.readBands (page 31) and pyfplo.common.
BandWeights.readBandiWeights (page 34) methods to deal with the data as you please.

3.1. A basic tutorial 77

pyfplo Documentation, Release 22.00-62

3.1.2 The bulk Fermi surface

Next we create a bulk Fermi surface of the model. We created an appropriate =. in with symmetry P1 and a
simple cubic lattice with correct lattice constants (as in +hamdata). Next, we opened xfplo in fermi surface
mode, defined a mesh, exported it, saved the settings in =. xe £, stopped before the automatic fplo run and quit
the program. Now, we got =.kp and =. xef.

Please change into FS/ and run the script (from FS/README . rst):

Here we created an appropriate =.in with the correct

lattice. The we used xfplo —-fs to setup and export a k-mesh to =.kp.
We use slabify to calculate the Fermisurface corresponding to the

model data in ../+hamdata.

#

run

./slabify.py | tee out
xfplo =.xef

to see the result.

You should see something like this. (page 78)

0.496 [10%6 m/s] 4.511

Fig. 3.2: The 3d Fermi surface extracted via slabify.

Let’s explain the script FS/slabify.py now.

#! /usr/bin/env python

from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPLO22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

(continues on next page)

78 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

pyfplo Documentation, Release 22.00-62

(continued from previous page)

print ('\npyfplo version=: \nfrom: \n'.format (sla.version,sla. file))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
M mmmm e
#
mmmmmmmmmmmmmmmemmm e e e e e e e
def work () :
hamdata='../+hamdata'

s=sla.Slabify ()
set output directory to current directory
s.dirname="."

s.object="3d"
s.printStructureSettings ()

s.prepare (hamdata)

bp=sla.BandPlot ()
bp.readBandPlotMesh ('./=.kp")

s.calculateBandStructure (bp) ;

In line 31 we explicitely set slabify.Slabify.dirname (page 54) to the local directory. This will put
everything into the same directory where slabify.py was executed. The setup continues as in The bulk band
structure (page 75) until line 42 where instead of setting a path through high symmetry points the k-point file from
xfplo is used.

3.1.3 Fermi surface cuts

There is an option to create Fermi surface cuts.

Please change into cut s/ and run the script (from cut s/README . rst):

#run

./slabify.py | tee out

(continues on next page)

3.1. A basic tutorial 79

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

pyfplo Documentation, Release 22.00-62

xfbp cuts.cmd

(continued from previous page)

#have a look at slabifyres/ and cuts.png

You should see something like this. (page 80)

E=0

Y-axis label

X-axis label

X-axis label

Fig. 3.3: Cuts through the 3d Fermi surface of the model.

Let’s explain the script cuts/slabify.py now.

#! /usr/bin/env python
from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version
#1f fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')

R
#
B oo ——— ——— ——— ——— e ==
def work() :

hamdata="'../+hamdata'

s=sla.Slabify ()

s.object="3d"

s.printStructureSettings ()

s.prepare (hamdata)

fso=sla.FermiSurfaceOptions ()

(continues on next page)

80 Chapter 3. Examples

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

61

62

63

64

65

66

67

pyfplo Documentation, Release 22.00-62

(continued from previous page)

fso.setMesh (100, [-0.5,0.5],100, [-0.5,0.51])

n=10
for ikz in range(0,n+1):
kz=ikz*0.5/n
fso.setPlane([1,0,0],([0,1,0],10,0,kz])
fso.fermienergy=0
suffix="'_kz= '.format (kz)
we need to set forcerecalculation=True since
the k-plane changes with every loop
s.calculateFermiSurfaceCuts (fso,suffix=suffix, forcerecalculation=True) ;

fso.fermienergy=-3

suffix=" kz= _ef= '.format (kz, fso.fermienergy)

Now we do NOT need to set forcerecalculation=True since

only the Fermi energy changed.

The actual example is so fast that you do not see the impact.
s.calculateFermiSurfaceCuts (fso, suffix=suffix, forcerecalculation=False) ;

In lines 35-36 we setupa slabify.FermiSurfaceOptions (page 60) instance with default axes and define
a 100x100 2d mesh which stretches from —0.5 to 0.5 in units of slabify.Slabify.kscale (page 56)
which happens to be 2xpi/a by default.

Next a loop is done over various kz-values. In line 41 the plane (axes and origin) is specified explicitely. The
origin [0, 0, kz] puts this plane parallel to kx, ky through the k z-value. Line 42 sets the Fermi energy and line
43 a filename suffix. In line 46 S1abify.calculateFermiSurfaceCuts (page 44) is called with the flag
forcerecalculation=True, which is explained under the link above. After this line the files

+cut_band_sf,

+cut_bweights_sf and

+cuts_kz=00.00.spinl_kz=...
are created in slabifyres/.

Line 49 sets a different Fermi energy and line 54 recalculates the files +cuts_kz=00.00.spinl_kz=...
(iso lines) but not the other files because of forcerecalculation=False. In a real example with lots of
orbitals this avoids the expensive diagonalization step. There are also +cutswithweights files if the wds
option is specified.

3.1.4 Bulk projected bands

On can calculate the bulk projected bands (BPB) as energy distribution curves (EDC) or Fermi surface projections.

Please change into bpb/ and run the script (from bpb/README . rst):

3.1. A basic tutorial 81

20

21

22

23

24

25

26

27

28

29

pyfplo Documentation, Release 22.00-62

#run

./slabify.py | tee out
xfbp bpbedc.cmd

xfbp bpbfs.cmd

#have a look at slabifyres/ and #*.png

You should see something like this. (page 82)

Bulk projected bands {001)-Bulk projected Fermi surface

{hi V]

Energy £

I X] 1 -0.40 G20 000 Q.20 0.4n

b

Fig. 3.4: The bulk projected bands of the model.

Let’s explain the script bpb/slabify.py now.

#! /usr/bin/env python
from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: \nfrom: \n'.format (sla.version,sla. file))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
R
#
========================—c===—=————=—=——c———=——c———————————c——=====
def work () :
hamdata="'../+hamdata’

s=sla.Slabify ()

s.object="3d"'
s.printStructureSettings ()

(continues on next page)

82 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

(continued from previous page)

s.prepare (hamdata)

bp=sla.BandPlot ()

bp.points=|[
['$~G6',[0,0,011,
['X',[0.5,0,011,
['M',[0.5,0.5,011,
['$~G¢',[0,0,011,

bp.ndiv=100
bp.calculateBandPlotMesh (s.dirname)

Ne=200
Nkz=100

ec=sla.EnergyContour (Ne,-15,25)
print (ec)
s.calculateBulkProjectedEDC (bp,ec, [0,0,1],nz=Nkz)

Nk=200

fso=sla.FermiSurfaceOptions ()
fso.setMesh (Nk, [-0.5,0.5],Nk, [-0.5,0.5])
fso.setPlane([1,0,0],([0,1,0],[0,0,0])
fso.fermienergyim=2./Nkx10

now make projected fermi surfaces
s.calculateBulkProjectedFS (fso,zaxis=[0,0,1],nz=Nkz)

In line 34-42 we define a path through the 2d BZ and set the maximum number of subdivisions for the path
segments to 150. In line 47 we define an EnergyContour (page 59) for the EDC. In line 49 the bulk projected
EDC s calculated (S1abify.calculateBulkProjectedEDC (page43)) by defining a projection axis zaxis
and setting the number of integration intervals for the projetion. The code finds out which is the shortest period
in the projection direction and integrates over this period via linear interpolation. A complex representation of the
delta functions is used, which necessitates an imaginary part in EnergyContour (automatic in our case). The
result is written to slabifyres/+bpb_fs.spinl.

In lines 52-59 we set up a 2d mesh in a plane perpendicular to the projection axis, set an imag-
inary energy part (needs some experimenting for good results) and do the calculation (Slabify.
calculateBulkProjectedFsS (page 43)). The result is written to ‘slabifyres/+bpfs_sf.spinl’.

3.1.5 Finite slab with 10 unit cells

We construct a finite slab with 10 unit cells. Please change into s1ab10/ and run the script (from slab10/
README. rst):

3.1. A basic tutorial 83

20

21

22

23

24

pyfplo Documentation, Release 22.00-62

run the script as in

./slabify.py

tee out
xfbp weigths.cmd

and have a look at the output and into slabifyres/

#alternatively run

python ./slabify.py

xfbp weigths.cmd

| tee out

You should see something like this. (page 84)

Energy rn(k} [eV]

Compound XQYZ“G

r X M I

Fig. 3.5: The 10-cell finite slab band structure.

Let’s explain the script slabl0/slabify.py now.

#! /usr/bin/env python
from _ future import print_function

import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np

import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
===== e e e -
#
mmmmmmmmmmmm—m e e e e e
def work ()
(continues on next page)
84 Chapter 3. Examples

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

71

2

73

74

75

76

77

pyfplo Documentation, Release 22.00-62

(continued from previous page)

hamdata="'../+hamdata'

s=sla.Slabify ()

.object="'slab'
.anchor=-0.001
.numberoflayers=10
.printStructureSettings ()

n n n 0

©)]

.prepare (hamdata)

bp=sla.BandPlot ()
bp.points=][

bp.calculateBandPlotMesh (s.dirname)

s.calculateBandStructure (bp) ;

all orbitals up to 10 length units at the upper surface
upper=s.orbitalNamesByDepth (-1, 10)

all orbitals up to 10 length units at the lower surface
lower=s.orbitalNamesByDepth (10, -1)

a nice python trick to get the rest list

rest=1list (set (s.orbitalNames ())-set (upper)-set (lower))

wds=sla.WeightDefinitions ()
wds.add ('bulk') .addLabels (rest)
wds.add ('lower') .addLabels (lower)
wds.add ("upper') .addLabels (upper)

bw=sla.BandWeights (s.dirname+'/+bweights_sf'")
bw.addWeights (wds, s.dirname+'/+bwsum_sf')

This time we make a slab structure (free standing x,y-periodic slab) in line 30. The zax i s (page 55) is not set and
hence has its default value [0, 0, 1]. Line 32 sets numberoflayers (page 55). We set the anchor (page 55)
to slightly below 0 in line 31. What happens now:

e The default 3d wunit cell is enlarged to produce the “enlarged 3d” wunit cell in =.
in_step_1_3d_enlarged (identical to the default here).

* The enlarged 3d unit cell will be transformed into a 3d unit cell which has the a and b axis perpendicular to

3.1. A basic tutorial 85

pyfplo Documentation, Release 22.00-62

the zaxis. (the c axis it not necessarily parallel to the z axis) This creates the elementary building block
for 'slabs'/'semislabs"'.

* Then this block is repeated numberoflayers of times in c-direction to get the 3d “layered cell” (=.
in_step_2_3d_layered).

* Next, the “layered cell” will be anchored, which means that the z-periodic 3d “layered cell” will be shifted
such that anchor (page 55) becomes the z=0-plane. After this the cell is cut at z=0 and z=1, which
results in a free standing slab of the length of one “layered cell” unit cell. The result is found in =.
in_step_3_slab_anchored For 'semislab's the resulting cell is used as surface block (layer)
such that the upper boundary (largest z) represents the surface to the vaccum. Internally this block is
repeated indefinitely at the lower boundary of the unit cell to form a semi-infinite slab.

The next option is only needed for 'slab's.

* (Not used here) After this, cut layersat (page 55) is applied to cut away some layers at the top and
bottom of the slab.

The next option is currently only used for 'slab's, which means that we cannot remove selected atoms for
'semislab’'s yet.

* (Not used here) Finally, all atoms in the list cutatoms (page 55) are removed from the slab. The number
in this list must be taken from the site numbers in =.in_step_4_slab_cutlayers. Use xfplo and
point the mouse at the atoms: the status bar will show the site number as in A1 (S3,W3,T3).... S3
means site 3. The result after this stepis =.in_final PLlayer

We setup the high symmetry points an calculate bands and weights up to line 46.

What comes next is adding all orbitals at the two sides and in the middle to get band weights to color the band
structure with. In the current slab this is not very interesting. But it becomes interesting later. Line 51 defines a
list of orbitals which sit up to 10 length units (usually Bohr radii) deep at the upper side of the slab. Note the -1 in
the first argument. This is explained in orbitalNamesByDepth (page 46) and orbitalIndicesByDepth
(page 45). It just takes orbitals at the lower side which lie below the lower vaccum boundary, which is no orbitals.
The same is done for the 1 ower variable. The line 55 shows a neat trick to calculate the rest (which is not orbitals
in the upper or lower set of orbitals).

Line 58-61 defines three added weights named 'bulk', 'lower' and 'upper' and line 63-64 read the
bandweights file and write the added weights to +bwsum_sf.

Now, we can color the band weights according to their “surface character” which is shown in The 10-cell finite
slab band structure. (page 84). Nothing interesting to see here. (But later!)

3.1.6 Finite slab with 10 unit cells (doubled in-plane cell)

We construct a finite slab with 10 unit cells, doubled in the a, b-plane.

Please change into s1ab10x2/ and run the script (from s1ab10x2/README. rst):

run the script as 1in

./slabify.py | tee out
xfbp weigths.cmd

and have a look at the output and into slabifyres/
#alternatively run

python ./slabify.py | tee out
xfbp weigths.cmd

You should see something like this. (page 87)

86 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

pyfplo Documentation, Release 22.00-62

Compound)(2\'2"'”

Energy ALY [eV]

Fig. 3.6: The 10-cell slab with doubled in-plane unit cell.

Let’s explain the script slabl10x2/slabify.py now.

#! /usr/bin/env python
from _ future_ import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version
#if fedit.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')
===== S — S S
#
=====——=———————————————————————————————————————c—————————————=——===
def work () :
hamdata="'../+hamdata’

s=sla.Slabify ()

.object="'slab'

.enlarge=([1,1,0],([-1,1,0],[0,0,1]]
.anchor=-0.001

.numberoflayers=10
.printStructureSettings ()

n n n n n

s.prepare (hamdata)

bp=sla.BandPlot ()
bp.points=][
(continues on next page)

3.1. A basic tutorial 87

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

69

70

71

72

73

74

75

76

77

78

79

pyfplo Documentation, Release 22.00-62

(continued from previous page)

bp.calculateBandPlotMesh (s.dirname)

s.calculateBandStructure (bp) ;

all orbital indices up to 10 length units at the upper surface
iupper=s.orbitalIndicesByDepth (-1, 10)

all orbital indices up to 10 length units at the lower surface
ilower=s.orbitalIndicesByDepth (10,-1)

get all orbital indices

iall=s.orbitalIndicesByDepth ()

a nice python trick to get the rest list

irest=1list (set (iall)-set (iupper)-set (ilower))

print ('the orbital indices lists:',ilower,irest, iupper)

wds=sla.WeightDefinitions ()

wds.add ('bulk') .addLabels (s.orbitalNames (irest))
wds.add ('lower') .addLabels (s.orbitalNames (ilower))
wds.add ('upper') .addLabels (s.orbitalNames (iupper))

bw=sla.BandWeights (s.dirname+'/+bweights_sf'")
bw.addWeights (wds, s.dirname+'/+bwsum_sf')

We now used an enlarge (page 55) matrix to double the 3d unit cell (Line 31). In contrast to the previous
example we now use another route to get the neede orbital sets (Line 52-60). This also alters the line 66-68.
Whatever method you use depends on what you want to do. The orbital-name based approach allows specific
filtering, which was shown elsewhere.

This example was not very interesting either. Let’s go on.

3.1.7 Finite slab with 10 unit cells (doubled in-plane cell), one atom removed

We construct a finite slab with 10 unit cells, doubled in the a, b-plane with one atom removed at the upper side.

Please change into s1abl0x2modl/ and run the script (from slabl0x2modl/README. rst):

88 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

run the script as in

./slabify.py | tee out

xfbp weigths.cmd

xfbp sweigths.cmd

and have a look at the output and into slabifyres/
#alternatively run

python ./slabify.py | tee out

xfbp weigths.cmd
xfbp sweigths.cmd

You should see something like this. (page 89)

Compound)(2\'2"0

n

Energy e (k) [eV]

r x M r

Fig. 3.7: 10-cell slab, double in-plane cell, one atom removed.

Now, that is interesting. We see a surface state steming from the removed atom at the upper boundary.

Let’s explain the script slabl0x2modl/slabify.py now.

#! /usr/bin/env python
from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPLO22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version

#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
mmmmmmmmmememe e e

#

===== e e

(continues on next page)

3.1. A basic tutorial

89

21

22

23

24

25

26

27

28

29

39

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

pyfplo Documentation, Release 22.00-62

(continued from previous page)

def work () :

hamdata="'../+hamdata’

s=sla.Slabify ()

.object="'slab'

.enlarge=[[1,1,0],[-1,1,01,[0,0,1]]
.anchor=-0.001

.numberoflayers=10

.cutatoms=[20]
.printStructureSettings ()

n n n n n n

s.prepare (hamdata)

bp=sla.BandPlot ()
bp.points=][

bp.calculateBandPlotMesh (s.dirname)

s.calculateBandStructure (bp) ;

all orbitals up to 10 length units at the upper surface
upper=s.orbitalNamesByDepth (-1,10)

all orbitals up to 10 length units at the lower surface
lower=s.orbitalNamesByDepth (10, -1)

a nice python trick to get the rest list

rest=1list (set (s.orbitalNames ())-set (upper)-set (lower))

wds=sla.WeightDefinitions ()
wds.add ('bulk') .addLabels (rest)
wds.add ('lower') .addLabels (lower)
wds.add ('upper') .addLabels (upper)

bw=sla.BandWeights (s.dirname+'/+bweights_sf'")
bw.addWeights (wds, s.dirname+'/+bwsum_sf')

now we first create BandWeights

bw=sla.BandWeights (s.dirname+'/+sweights_sf")

such that we can read its header and get the labels
labels=bw.header () .labels

110=["'band000000010"]

and we get all but band number 10

rest=1list (filter (lambda x: x not in 110 ,labels))
wds=sla.WeightDefinitions ()

wds.add ('rest ') .addLabels (rest)

wds.add ('b1l0') .addLabels (110)

(continues on next page)

90

Chapter 3. Examples

91

92

93

94

95

pyfplo Documentation, Release 22.00-62

(continued from previous page)

print (wds)

bw.addWeights (wds, s.dirname+'/+swsum_sf')

Now, we remove atom 20 in line 34. Have a look at =.in_final_PLlayer, you will see that an atom at the
top is missing.

In lines 72-84 we do something new. We define added band weights for the file +sweights_sf, which contains
fatband data of layer-coordinate versus k-path. The band weights are refering to the bands not orbitals. This file
tells us in which layer a particular bands has what weight. By defining added weights for band 10 and the rest
we can see in this Figure (page 91) that the surface state in /0-cell slab, double in-plane cell, one atom removed.
(page 89) really lives in the first layer and the rest of the bands does not.

layer wise weight of band 10 and the rest

1.00 > = O rest b
O b
- o) W Y Ty
s - - —t s — & - 1
080 b o o o P W R W S W s W S s T U s W o U N
r LN W N R e r o - W I) —
2
[—~ —~ — e
- = = p o = o e e B
2
S 060 P e,
<) s v N o L B e e e v
g P S e
= = S = 2 - —
e 040 -
= T T e W« U T e W s T e W T A O O O W
= S — o B o - =
]
A S S o W N P Y P o N U N W
0.20 "y - s - L NS) r, — — L —
" i = Fa P Y R e W . W)
> e A S L L B i A e
— o e T — — o o -
0.00 LN W W LN e N N L v e e B e [
r X M r

Fig. 3.8: Layer resolved weights of the bands.

3.1.8 Finite slab with 10 unit cells (doubled in-plane cell), 3 atoms removed

We construct a finite slab with 10 unit cells, doubled in the a, b-plane with one atom removed at the upper side
and two at the lower side.

Please change into s1ab10x2mod2/ and run the script (from slabl0x2mod2/README. rst):

run the scripts as 1in

./slabify.py | tee out
./cuts.py | tee out
xfbp weigths.cmd

xfbp sweigths.cmd
xfbp wcuts.cmd

(continues on next page)

3.1. A basic tutorial 91

pyfplo Documentation, Release 22.00-62

(continued from previous page)

and have a look at the output and into slabifyres/
alternatively run

python ./slabify.py | tee out
python ./cuts.py | tee out
xfbp weigths.cmd

xfbp sweigths.cmd

xfbp wcuts.cmd

You should see something like this. (page 92)

Ho
Compound X,YZ

n

Energy e (k) [eV]

Fig. 3.9: 10-cell slab, doubled in-plane, 3 atoms removed.

Now, that is even more interesting. We see a surface state steming from the removed atom at the upper surface
and two surface states from the atom removal at the lower boundary.

Let’s explain the script slabl0x2mod2/slabify.py now.

#! /usr/bin/env python
from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')

def work () :

(continues on next page)

92 Chapter 3. Examples

23

24

25

26

27

28

29

38

39

40

41

42

43

44

45

46

47

48

49

50

51

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

pyfplo Documentation, Release 22.00-62

(continued from previous page)

hamdata="'../+hamdata’

s=sla.Slabify ()

.object="slab'

.enlarge=[[1,1,0],[-1,1,01,([0,0,1]1]
.anchor=-0.001

.numberoflayers=10
.cutatoms=[2,4,20]
.printStructureSettings ()

n n n n n n

s.prepare (hamdata)

bp=sla.BandPlot ()

bp.points=|[
['$~G',[0,0,011,
['X',[0.5,0,011,
['M',[0.5,0.5,011,
['$~G',[0,0,011,

bp.calculateBandPlotMesh (s.dirname)

s.calculateBandStructure (bp) ;

all orbitals up to 10 length units at the upper surface
upper=s.orbitalNamesByDepth (-1, 10)

all orbitals up to 10 length units at the lower surface
lower=s.orbitalNamesByDepth (10, -1)

a nice python trick to get the rest 1list

rest=1list (set (s.orbitalNames ()) -set (upper)-set (lower))

wds=sla.WeightDefinitions ()
wds.add ('bulk') .addLabels (rest)
wds.add ('lower') .addLabels (lower)
wds.add ('upper') .addLabels (upper)

bw=sla.BandWeights (s.dirname+'/+bweights_sf")
bw.addWeights (wds, s.dirname+'/+bwsum_sf')

now we first create BandWeights

bw=sla.BandWeights (s.dirname+'/+sweights_sf'")

such that we can read its header and get the labels
labels=bw.header () .labels

and we get addweights for bands 8, 9, 10 and the rest
ibands=[8,9,10]

bands=["'band{0:09d}"'.format (x) for x in ibands]
rest=1list (filter (lambda x: x not in bands, labels))
wds=sla.WeightDefinitions ()

wds.add ('rest') .addLabels (rest)

(continues on next page)

3.1. A basic tutorial 93

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

pyfplo Documentation, Release 22.00-62

for ib,i in enumerate (ibands) :

wds .add (

'b{0:

02}

.format (i)) .addLabels ([bands[ib]])

(continued from previous page)

bw.addWeights (wds, s.dirname+'/+swsum_sf',vlevel=sla.Vlevel.All)

Line 34 now removes sites 2, 4 and 20. In lines 80-88 we use a different technique to extract the layer-wise
fatbands for 3 bands and the rest resulting in this Figure (page 94).

realtive layer coordinale

The second script in this example is slabl0x2mod2/cuts.py:

1.00

060

0.40

0.20

0.00

layer wise weight of band 8,9,10 and the rest

#! /usr/bin/env python
from _ future import print_function

import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:

import numpy as np
import pyfplo.slabify as sla

—— - - = HOHE o O rest by
— . bi&

Ty e eV 1

A R B RTINS N N O boa]

T T N T Ty VAT ALY YT AW W pio

AL R AN AN W AN e M
[V AN FTN TN TN N e N T TN T

LA A =y L e e AT
AV VWA Wt nWoa o Wt Tany Vo W Wan) n¥an

W Aot AL e AN AN L L Ry LEANLN
Y aVaWaWa) AN AWV vy vV W et

L p—y RO N R = ALY
f-\‘"‘(_\r'_\.’_"n(‘;.’“u RIS WARTARY ST T S o WA W W ¥ i
A p— b b R R

3_1“ W a-) y P W =) W TV VY

LS S N W e S N N A N SN W L e AN

-4 - - < = CJ AT
— [F
r X M r
Fig. 3.10: Layer resolved weights of the bands.
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;
{0})\nfrom: {I1}\n'.format (sla.version,sla._ file))

print (

'"\npyfplo version=:

protect against wrong version
#if fedit.version!='22.00":

raise RuntimeError ('pyfplo version is incorrect.')

(continues on next page)

94

Chapter 3. Examples

20

21

22

23

24

25

26

27

28

29

31

32

34

35

37

38

39

40

41

42

43

44

45

46

47

48

49

50

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

pyfplo Documentation, Release 22.00-62

(continued from previous page)

hamdata="'../+hamdata’

s=sla.Slabify ()

.object="slab'

.enlarge=[{ [1,1,0],([-1,1,0]1,([0,0,1]]
.anchor=-0.001

.numberoflayers=10
.cutatoms=[2,4,20]
.printStructureSettings ()

n n n n n n

s.prepare (hamdata)

all orbitals up to 10 length units at the upper surface
upper=s.orbitalNamesByDepth (-1,10)

all orbitals up to 10 length units at the lower surface
lower=s.orbitalNamesByDepth (10, -1)

a nice python trick to get the rest list

rest=1list (set (s.orbitalNames ())-set (upper)-set (lower))

wds=sla.WeightDefinitions ()
wds.add ('bulk') .addLabels (rest)
wds.add ('lower') .addLabels (lower)
wds.add ('upper') .addLabels (upper)

fso=sla.FermiSurfaceOptions ()
fso.setMesh (200, [-0.5,0.5],200,[-0.5,0.5])
fso.setPlane([1,0,0],[0,1,0],[0,0,11)
fso.fermienergy=0
s.calculateFermiSurfaceCuts (fso, wds=wds, suffix="E=0",
forcerecalculation=True) ;

fso.fermienergy=-1.
s.calculateFermiSurfaceCuts (fso,wds=wds, suffix="E=-1.",
forcerecalculation=False) ;

Here we first define the addweights in lines 40-51. Then we give wds as argument to Slabify.
calculateFermiSurfaceCuts (page 44) which triggers the creation of the files +cutswithweights.
... Note, that the flag forcerecalculation=False is used in the second call to Slabify.

3.1. A basic tutorial 95

pyfplo Documentation, Release 22.00-62

calculateFermiSurfaceCuts (page 44). The resulting files are plottet via xfbp wcuts.cmd and pro-
duce this Figure. (page 96).

Fig. 3.11: Fermi surface cuts colored by bulk, lower and upper weights.

You can see that there are a lots of tiny wiggles in the bulk band region. This is so because we backfolded the
planar unit cell. The only changes to the Hamiltonian are the cut-out atoms, which do not influence the bulk much.
Together with the finit number of layers this is what you get. For infinite layers these bulk regions would fill up
completely. What you also see however are the blue upper-surface surface-band for £ = 0 and additionally one
green lower-surface surface-band for £ = —1. Compare to the band weights (page 92).

3.1.9 Semi infinite slab

Finally we create spectral density plots for a semi infinite slab. In this case not much interesing is seen, since
the surface states where a consequence of cutting out and atom, which currently is not yet implemented for
'semislab’'s yet.

Please change into semi/ and run the script (from semi/README. rst):

Here we set up a semi infinte slab with a normal in-plane unit cell.
run

./slabify.py | tee out

xfbp edc.cmd

xfbp fssemi.cmd

have a look at slabifyres/=.in_step... and slabifyres/=.in_final PLlayer.
Try to understand how the structure settings work.

You should see something like this (page 97) and something like this (page 97). Compare this to the bulk projected
bands (page 82).

96 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

pyfplo Documentation, Release 22.00-62

penetration depth 1 block penetration depth 10 blocks

1 block 10 blocks
20

=}

Energy enm [eV]
Energy F"W [eV]

o

Fig. 3.12: Energy distribution curves for the semi-infinite slab.

penetration depth 1 block penetration depth 10 blocks

ky

Fig. 3.13: Surface Fermi surface spectral function.

Let’s explain the script semi/slabify.py now.

#! /usr/bin/env python

from _ future_ import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: \nfrom: \n'.format (sla.version,sla._ file))
protect against wrong version
#if fedit.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')
mmmmmmmem—m e
#
A mmmm e
def work () :
hamdata="'..//+hamdata'

(continues on next page)

3.1. A basic tutorial 97

40

41

42

43

44

45

46

47

48

49

50

51

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

pyfplo Documentation, Release 22.00-62

s=sla.Slabify ()

n n n n

n

.object="semislab'
.anchor=-0.001
.numberoflayers=4
.printStructureSettings ()

.prepare (hamdata)

bp=sla.BandPlot ()

bp.points=|[
['$~G',[0,0,011,
['X',[0.5,0,011,
['M',[0.5,0.5,011,
['$~G',[0,0,011,
]

bp.ndiv=60

bp.calculateBandPlotMesh (s.dirname)

ec=sla.EnergyContour (200,-15,25)
print (ec)

bp.on ()

penetration one block (primary layer)
s.calculateEDC (bp, ec, penetrationdepth=-1, suffix="'_1block")

penetration 10 blocks (primary layer)
s.calculateEDC (bp, ec, penetrationdepth=-10, suffix="'_10block")

fso=sla.FermiSurfaceOptions ()

fso.setMesh (200, [-0.5,0.5],200, [-0.5,0.51])

(continued from previous page)

s.calculateFermiSurfaceSpectralDensity (fso,penetrationdepth=-1,

suffix="'_1block")

s.calculateFermiSurfaceSpectralDensity (fso, penetrationdepth=-10,

if name == ' main

work ()

suffix='_10block")

In line 32 the structure type is set. We u se numberoflayers=4 in this case, although it is not really needed.
See documentation of numberoflayers (page 55). In lines 39-47 a band structure path is setup for the energy
distribution curve (EDC). Line 49 defines an energy contour (see EnergyContour (page 59)) with an automatic
imaginary part. Line 55 and 58 actually execute the EDC calculation (S1abify.calculateEDC (page 45))
with two different penet rat iondepths. The resulting files are called +akbl_sf.spinl (or spin2), which
we modified via the suffix argument. The name means: akbl=Ag)(k) = Bloch-spectral-function and s f = slabify.

penetrationdepth indicates to which depth the spectral density is collected. The larger the

penetrationdepth the more bulk signal will be sampled.

98

Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

Lines 60-65 setup and calculate the surface Fermi surface, which is basically the k,k-resolved spectral density for
the 2d surface BZ (Slabify.calculateFermiSurfaceSpectralDensity (page 45)). The resulting
files are called +fs_sf.spinl (or spinZ2), which we modified via the suffix argument. The name means fs =
Fermi-Surface-Spectral-Function and s f = slabify.

3.1.10 Semi infinite slab, doubled planar cell

At very last, we double the planar unit cell for illustrative purpose.

Please change into semix2/ and run the script (from semix2/README. rst):

Here we set up a semi infinte slab with a normal in-plane unit cell.
run

./slabify.py | tee out

xfbp edc.cmd

xfbp fssemi.cmd

have a look at slabifyres/=.in_step... and slabifyres/=.1in_final PLlayer.
Try to understand how the structure settings work.

You should see something like this (page 99) and somehting like this (page 99). Compare this to the left panel of
the finite slab result (page 96) with removed atoms. It demonstrates the backfolding in the bulk projected bands
region.

penetration depth 1 block penetration depth 10 blocks

1block 10 blocks

Energy e (k) [eV]
Energy e, (k) [eV]

Fig. 3.14: The energy distribution curves.

penetration depth 1 block penetration depth 10 blocks

ky

Fig. 3.15: Surface Fermi-surface spectral function.

Let’s explain the script semix2/slabify.py now.

3.1. A basic tutorial 99

20

21

22

23

24

25

26

27

28

29

30

31

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

pyfplo Documentation, Release 22.00-62

#! /usr/bin/env python

from _ future import print_function

import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {1}\n'.format (sla.version,sla._ file_))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')

def work () :

hamdata="'..//+hamdata'

s=sla.Slabify ()

.object="semislab'

.anchor=-0.001
.numberoflayers=4
.printStructureSettings ()

n n n n HH= 0

.prepare (hamdata)

]

bp=sla.BandPlot ()
bp.points=|[
['$~G',[0,0,0]1,
[VxY, [0.5,0,017,
['M',[0.5,0.5,0]],
['$~G',[0,0,0]1,
]
bp.ndiv=60

bp.calculateBandPlotMesh (s.dirname)

ec=sla.EnergyContour (200,-15,25)

print (ec)

bp.on ()

make a larger 3d cell out of the simple cell
.enlarge=[[1,1,0],[-1,1,0]1,[0,0,1]1]

penetration one block (primary layer)

s.calculateEDC (bp, ec, penetrationdepth=-1, suffix="'_1block")

penetration 10 blocks (primary layer)
s.calculateEDC (bp, ec, penetrationdepth=-10, suffix="'_10block")

fso=sla.FermiSurfaceOptions ()

100

Chapter 3. Examples

(continues on next page)

)

pyfplo Documentation, Release 22.00-62

(continued from previous page)

fso.setMesh (200, [-0.5,0.5],200,[-0.5,0.51)

s.calculateFermiSurfaceSpectralDensity (fso,penetrationdepth=-1,
suffix='_1block")

s.calculateFermiSurfaceSpectralDensity (fso, penetrationdepth=-10,
suffix='_10block")

The only thing we changed was line 34.

With this the introductory tutorial shall end.

3.2 2D topological insulator

* The topological phase (page 101)

* The trivial insulator phase (page 107)

Note: You need to use the newer xfbp/xfplo version, which comes with pyfplo in order for the cmd scripts to
work properly.

This example tries to explain how to calculate the Z, invariant of the 2d time reversal invariant topological insula-
tor BHZ model (Bernevig, Hughes and Zhang). The tutorial files are in FPLO. . . /DOC/pyfplo/Examples/
slabify/BHZmodel where FPLO. . . stands for your version’s FPLO directory, e.g. FPL0O22.00-62.

The method can be applied to any plane spanned by time reversal invariant points also in 3d lattices, e.g. in Weyl
semi metals, where the Z5 invariant tells us how many pairs of surface states are to be expected to cross a given
line — the projection of the plane onto the surface. (All assuming that the corresponding plane is gapped.)

We use a Hamiltonian file (+hamdata) containing the model data, which was created by bhz.py. Usually
+hamdata is created by the Wannier function module of fplo. The model data are taken from [Yu2011] and
modified a bit (a=5, M_TI=-6). The model defines a four orbital tight binding model. Depending on the parameter
choice the model is either a trivial insulator or a topological insulator. The two cases are in subdiretories called T
and TI.

3.2.1 The topological phase

In python script for the 2d band structure and the Z, calculation is TI/2d/Z2.py

#! J/usr/bin/env python

(continues on next page)

3.2. 2D topological insulator 101

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

pyfplo Documentation, Release 22.00-62

from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:

(continued from previous page)

#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
========== N — N — N — I —— -
#
mmmmmmmmmmmmmmmm e e e e e ==
def work () :
hamdata="'../+hamdata’
s=sla.Slabify ()
s.object="3d'
s.printStructureSettings ()
s.prepare (hamdata)
prepare BandPlot
bp=sla.BandPlot ()
bp.ndiv=100
bp.points=|[
['$NG'I [OIOIO]]I
['X',[0.5,0,0]1,
['M',[0.5,0.5,011,
['$NG'I [OIOIO]]I
('y',10,0.5,011,
]
bp.calculateBandPlotMesh (s.dirname)
s.calculateBandStructure (bp)
wannier centers
s.calculatez2Invariant ([0,0,0],[0.5,0,0],[0,0.5,0],Nint=20,Nky=100,
homos=[2,41)
R
#
mmmmmmmmmmmmmmmmm e e e e -
if _name_ == '_ main_ '
(continues on next page)
102 Chapter 3. Examples

64

65

66

pyfplo Documentation, Release 22.00-62

(continued from previous page)

work ()

Line 8 can be uncommented and edited to make python search for pyfplo in a particular location (also see Serup
(page 1)). Line 14 shows which pyfplo version was loaded and from where. If you uncomment line 16, the
script is showing an error message if the pyfplo version does not match a particular version.

Please run the script (from TI/2d/README. rst):

run the script as in

./Z22.py | tee out
xfbp bands.cmd

xfbp Z2_homo2.cmd
xfbp Z2_homo4.cmd

and have a look at the output and into slabifyres/

In line 27 we set the proper +hamdata and in line 30 we set the object to '3d"', which in the case of a 2d
lattice means 2d-bulk. In lines 35-48 the band structure is calculated (2d bulk bands for the topological phase.
(page 103)). Note that there is a small gap close to the I'-point where the orbital weight is inverted across the gap
which already indicates the possibility of a topological phase.

BHZ model: 2d bulk

6.0

40 |
T 20
=
=3
© 00 E
o
2
S -20f

4.0 |

r X M r Y

Fig. 3.16: 2d bulk bands for the topological phase.

In line 52 the Wannier centers are calculated. Consult calculateZ2Invariant (page 48) for more infor-
mation. Note, that we have to chose three time reversal invariant points (TRIM) in the Brillouin zone in units of
kscale (page 56). At the end of the output you will see the primitive reciprocal cell and the kscale factor (code
lines 57-58). The TRIM points are always in the middle between two reciprocal cell vectors. This should explain
our choice.

The output contains quite a lot of information. Please consider it all. For each homo which was specified
a file containing the Wannier centers slabifyres/+Z2_homo. .. and a file containing a reference line
+zgap_homo. .. are created. The reference line usually follows the largest gap between Wannier centers
[Sol2011]. In our modification a number of such lines for some of the largest WC-gaps is created. Each yields
a topological index. The majority result will win. The percentage of such lines with the majority result is called
reliability in the output. The table of invariants for all homos in the output looks like

3.2. 2D topological insulator 103

pyfplo Documentation, Release 22.00-62

Invariants:

homo 72 (reliability) smallest gap [eV]
2 1 (100%) 0.20353
4 0 (100%) >10

If the reliability is 100% all WC-gap-following curves gave the same result. This does however not mean it is
a save result. The exactness of this algorithm depends on the actual system. If the Berry curvature is strongly
fluctuating a finer grid is needed. This often happens e.g. if the energy gaps are small or zero. In such cases the
degeneracies at ky = 0 and ky = 7 can be broken. Also discontinuities can occur and the results can depend on
the evenness/oddness of Nint. All these are warning signs that the Zs invariant might be nonsensical.

Additionally, the smallest energy gap for each homo on the grid defined by the parameters Nint and Nky is printed.
This helps you decide, if the time reversal invariant plane is really gaped. Also this information is not fool proof,
since the grid is discrete.

If efhomo is given to calculateZ2Invariant (page 48) a * is printed after this homo number, usually ment
to be the Fermi level. If the reliability is less then 99% a question mark is printed before the 75 invariant, as in in
the following example:

Invariants:

homo 722 (reliability) smallest gap [eV]
12 2 1 (90%) 0.4
14 x2 0 (67%) 0.13
16 1 (100%) 0.56

Let’s have a look at the corresponding Wannier center files (Wannier centers for homo 2 in the topological phase.
(page 104) and Wannier centers for homo 4 in the topological phase. (page 104)) created by loading Z2_homo.
. .cmd into xfbp.

wannier centers, homo 2

1.00 [-
o
050 | L
e

£0.00 [st

-0.50

400 |

0.00 0.10 0.20 0.30 0.40 0.50
ky [2]

Fig. 3.17: Wannier centers for homo 2 in the topological phase.

wannier centers, homo 4

1.00 [

0.50 [

Soo00 b

-0.50

0.00 0.10 0.20 0.30 0.40 0.50
ky [2n]

Fig. 3.18: Wannier centers for homo 4 in the topological phase.

The Soluyanov algorithm draws a curve through all wannier centers, such that it always stays in the largest gap
between Wannier centers (which we modified to give more competing solutions). If the number of centers crossed
so far at a certain ky-value is even a blue symbol is plotted if the number is odd a red symbol is plotted. If the
last symbol (ky = 7) is red the Z» invariant is odd. Of course the WC-curves are discrete and hence we cannot
a priori decide about their connectedness, which leaves an uncertainty. Ultimately, the user has to look at these

104 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

pictures and decide for himself, how many WCs a chosen reference line crosses. In xfbp a right mouse click
close to a curve tells you how many sets there are, which helps to verify the number of crossed Wannier centers.
Any reference curve (also a straight horizontal line) is OK. The one shown in the plots is just the automatically
determined one. Since we modified the algorithm, the automatic curve does not necessarily follow the largest
WC-gaps. The two figures tell us that homo 2 has a non trivial Z5 invariant in the plane spanned by the TRIM
points given to calculateZ2Invariant (page 48).

Now, we make a calculation of the 1d surface states. Go into TI/semi and run the script (from TI/semi/
README . rst):

run the script as in

./calcedc.py
xfbp edc.cmd

and have a look at the output and into slabifyres/

The script looks like this:
#! /usr/bin/env python

from _ future_ import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

20

21

22

23

24

25

26

27

28

29

import numpy as np
import pyfplo.slabify as sla

print

protect against wrong version
#if fedit.version!='22.00":

('"\npyfplo version=:

def work () :

hamdata="'../+hamdata'

s=sla.Slabify ()

S
S
S
S
S

.object="semislab'
.zaxis=[0,1,0]
.numberoflayers=2
.printStructureSettings ()
.prepare (hamdata)

bp=sla.BandPlot ()
bp.ndiv=100
bp.points=|[

['x',10.5,0,011,
['$NG’I[OIOIO]]I
[('x',10.5,0,011,

\n'.format (sla.version,sla._ file))

raise RuntimeError ('pyfplo version is incorrect.')

(continues on next page)

3.2. 2D topological insulator

105

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

pyfplo Documentation, Release 22.00-62

(continued from previous page)

]

bp.calculateBandPlotMesh (s.dirname)
ec=sla.EnergyContour (400, -6, 6)

s.calculateEDC (bp, ec, penetrationdepth=-1, suffix="'_1block")

another zoom

s.dirname="zoom'

bp.points=|[
['X Sarrowleft', [0.15,0,0]],
['$~G", [10,, 0,011,
['Sarrowright X', [0.15,0,0]],

]
bp.calculateBandPlotMesh (s.dirname)

ec=sla.EnergyContour (200,-0.5,0.5)
s.calculateEDC (bp, ec, penetrationdepth=-1,suffix="'_1block")

Lines 30-32 setup a semislab with [010] surface and two layers in the primary layer. Since the bulk is 2d with a
[001] surface this results in a semi infinite ribbon. (Actually, in the moment the 2d bulk is a 3d repeated monolayer
slab.) After setup, the former [010] direction is the new c-direction (surface of the semi infinite ribbon) but still
the cartesian y-axis (remember we use rotations internally to keep the original orientation). The global x-axis is
now the (periodic) b-direction, while the global z-axis (as for the 2d bulk) is the direction perpendicular to the
ribbon. If we chose the high symmetry points along the cartesian x-axis (lines 40-42, 52-54) we sample k-points
in the periodic b-direction.

In lines 37-46 we set up a bandplot path and an energy contour and calculate the energy resolved Bloch spectral
density. In line 50-59 a zoomed in version is calculated and placed into a different directory (line 50), because the
+points file is different for both calculations.

Tl phase

Energy = (K] [e¥)

e r X

Fig. 3.19: Surface states in the topological phase.

The result looks like this Figure (page 106) and clearly shows a Dirac cone at the edge of the surface.

106 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

3.2.2 The trivial insulator phase

In python script for the 2d band structure and the Zs calculation is I/2d/Z2 . py and is identical to the one for
the topological phase.

Please run the script (from I/2d/README. rst):

run the script as 1in

./22.py | tee out
xfbp bands.cmd

xfbp Z2_homo2.cmd
xfbp Z2_homo4.cmd

and have a look at the output and into slabifyres/

Have a look at the 2d bulk bands for the trivial phase. (page 107)

BHZ model: 2d bulk

6.0 |
40 |
=
L 20
)
<= 0o €
- F
S
% 20 F
40 F
6.0 F
r X M r Y

Fig. 3.20: 2d bulk bands for the trivial phase.

It looks pretty much like the 2d bulk bands for the topological phase. (page 103) except that the band inversion
across the gap is missing. Consequently, Wannier centers for homo 2 in the trivial phase. (page 107) (created by
xfbp Z2_homo2.cmd) clearly indicates a trivial phase as is also seen by the output:

Invariants:

homo 722 (reliability) smallest gap [eV]
2 0 (100%) 0.46419
4 0 (100%) >10

wannier centers, homo 2

0.00 0.10 0.20 0.30 0.40 0.50
ky [2]

Fig. 3.21: Wannier centers for homo 2 in the trivial phase.

3.2. 2D topological insulator 107

pyfplo Documentation, Release 22.00-62

wannier centers, homo 4

0.50

$000 [

-0.50

-1.00

0.00 0.10 0.20 0.30 0.40 0.50
ky [2n]

Fig. 3.22: Wannier centers for homo 4 in the trivial phase.

As a final confirmation let’s have a look at the Surface states in the trivial phase. (page 108).

trivial phase

Energy = (K] [e¥)

e r X

Fig. 3.23: Surface states in the trivial phase.

Run the script (from TI/semi/README. rst):

run the script as in

./calcedc.py
xfbp edc.cmd

and have a look at the output and into slabifyres/

The python script is the same as for the topological phase.

3.3 3D topological insulator

Note: You need to use the newer xfbp/xfplo version, which comes with pyfplo in order for the cmd scripts to
work properly.

Here we discuss the calculation of the topological indices for 3d topological insulators. The algorithm is based on
Wannier centers as in 2D topological insulator (page 101). The only difference is that we need to calculate four Z,
invariants for 4 planes in the 3d BZ. In principle there are 6 different planes forming the faces of a parallelepiped
whose corners are the eight distinct time reversal invariant momenta (TRIM) of any chosen smallest primitive
reciprocal cell. However, if the electronic spectrum is gapped above a certain band there are only 4 independent
Z5 invariants, which are usually grouped into four topological indices vg; (v11213). 19 = 1 indicates a strong
topological insulator while any v 5 3 = 1 indicate conditions on the number of surface state pairs for certain
surface orientations. If vy = 0 but some v; 23 # 0 it is a weak topological insulator. If all indices are zero
it is a trivial insulator. The mapping of Z, invariants to indices is as follows: if any two parallel planes of the

108 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

parallelepiped have differing invariants vy = 1. We take the two planes spanned by the first two reciprocal lattice
vectors (g1,2) called 2 if the plane goes through the origin and z; if it goes through g3. The three weak indices are
identical to the Z» invariants of the three planes, which do not go through the origin, which we call z; (spanned
by g2,3 through g;), 1 (spanned by g3 1 through go) and z; (spanned by g 2 through g3). The weak indices of
course depend on the chosen TRIM points.

The algorithm selects the TRIM points and performs four Zs calculations. It tries to determine the invariants via
the automatic procedure explained in 2D topological insulator (page 101). The results including reliability and
electronic gap estimates are printed to the output and convenience files 2Z2_3dTI_homo. . . cmd for use in xfbp
are created.

This algorithm works for centro symmetric and non-centro symmetric compounds. A version of this algorithm
is linked directly into fplo. The difference is that when used from fplo a all-orbital Wannier basis is created
instead of the reduces Wannier models, which usually are the basis of pyfplo.slabify (page 41). This leads
to differently locking Wannier center curves, since there are more orbitals (semi core and such). If surface state
calculations are planned it is anyway necessary to create a Wannier model first. The resulting Z»-calculations are
faster than in fplo.

For illustration we chose a system, which is centro symmetric, since in this case we know the invariants from the
parity algorithm, which allows comparison. This example also shows some fo the complications. We will use
both the fplo version and the pyfplo version of the Wannier center algorithm to understand the pecularities.

The tutorial files are in FPLO. . ./DOC/pyfplo/Examples/slabify/3dTI/Bi2Se3.

To start with change into this directory and have a look into the topological insulator submenu in fedit. You
will see that “Force wannier center” is switched on, to force the use of this algorithm despite the fact that this
compound has an inversion center.

Now, have a look at makewandef . py. It illustrates how to create a =. wande £ quickly. There is a particularity
in the system, which is that the Bi6p and Sedp orbitals are separated from lower and higher bands through two
gaps. This makes creating a Wannier model especially easy. We use the option lbands and ubands to define an
energy window which excludes all other bands. Please execute

python makewandef.py

You should have a =.wandef file now. Next run fplo. E.g.:
fplo.... > out
to produce a bandstructure, +wancoef f and the output from the fplo Wannier center calculation. This will take

some time, since the fplo version of the WC algorithm is not the fastest, due to the larger number of bands needed.
Output related to the TI calculation can be found via:

grep TI: out
First, the invariants from parities are printed and then the Wannier center algorithm is executed. Various files
are created. Note, that the indices from parities can differ from the Wannier center results; first, because

the WC algorithm is tricky or second, if the electronic gap for a certain homo is zero, in which case both
algorithms makes no sense.

You will see the following output from the Wannier centers:

TI: Invariants:

TI: homo invariants E (k=0) estim.gaps [eV] for

TI: z0 zl x1 et
T g 114 2 0; (000) -1.09567 0.05585 0.01917 0.01917 0.01917
TI: 116 2 1;(111) -0.79835 0.01306 0.03873 0.03873 0.03873
TI: 118 = 1;(000) -0.22789 0.44699 0.43513 0.43513 0.43513
T g 120 2 1;(111) 0.28647 0.15850 0.14845 0.14845 0.14845
TI: 122 2 0;(111) 1.42635 0.02117 0.17378 0.17378 0.17378
I 3 124 0; (000) 1.44752 0.21087 0.29692 0.29692 0.29692
Ty

TI: homo invariants E (k=0) Z22 (reliability)

(continues on next page)

3.3. 3D topological insulator 109

pyfplo Documentation, Release 22.00-62

(continued from previous page)

TI: z0 zl x1 vl

TI: 114 2 0; (000) -1.09567 0 (77%) 0 (77%) 0 (77%) 0 (77%)
TI: 116 2 1;(111) -0.79835 0 (50%) 1 (73%) 1 (73%) 1 (73%)
TI: 118 = 1;(000) -0.22789 1 (100%) O (100%) O (100%) O (100%)
TI: 120 2 1;(111) 0.28647 0 (92%) 1 (65%) 1 (65%) 1 (65%)
TI: 122 0; (111) 1.42635 1 (69%) 1 (100%) 1 (100%) 1 (100%)
TI: 124 0; (000) 1.44752 0 (80%) O (100%) O (100%) O (100%)

The first table shows homos, indices the energy at the Gamma point and estimates of the electronic gap (taken
from the values on the finite grid used for the WC algorithm), while the second shows the Z5 invariants and their
estimated reliability for the four planes of the parallelepiped mentioned above. If the reliability is less than 100%
a question mark is printed after the homo. The homo, which is likely the highest occupied band is marked by a *
for orientation. This is of course only reliable if the system has a true gap.

In our case we see that there are rather small estimated gaps for lots of bands. Fortunately above the Fermi energy
(homo 118) the gap is sizable. Not, surprisingly the reliabilities are all very high (actually 100%). We also find
lots of question marks. Let’s have a look at the fplo and Wannier model bands (red/green) (page 110).

10.0 : %Z _ﬁ&_ﬁ e —
_/4\

—] ——— '+band' ™

—]
f ~————— "+wanband

"+wanbandib'

5.0

=
o,
= 0.0
=
W
ey
&
1]
C
w
50 F — - |

oo lﬂh fﬁ%

Fig. 3.24: fplo and Wannier model bands (red/green)

We see the two gaps, separating the p-bands as discussed above and that nearly all bands are separated by gaps
(although small). This means that topological invariants have a meaning. Note, that it is not needed that the gap is
visible in the DOS. All one needs is that the bands of homo and homo+1 never cross (warped gap).

Since this table is not ment for straight forward consumption we have to inspect the Wannier centers by hand.
Run:

xfbp Z2_3dTI_homoll8.cmd

and so forth. You will get several pictures. Let’s start with Wannier centers and reference line for homo 118
(page 111). As already pointed out in the table his band has a nice electronic gap above itself, happens to be the
last occupied band below the Fermi level and has high reliability of the automatically determined Z> invariants
(reference line winding number).

110 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

homo 118
wannier centers z0 wannier centers z1

0.50 " & oven

B
= 0.00

-0.50

-1.00

0.50
£000

-0.50

-1.00 ¢ "
000 0.10 020 030 040 050 0.00 010 0.20 030 040 0.50
ky [24] ky [21]

Fig. 3.25: Wannier centers and reference line for homo 118

It can be clearly seen that the x1, y; and z; planes have zero Z, invariant, while plane 2 is non-trivial. To really
verify this use the right mouse click in xfbp close to the higest Wannier center curve in the zy panel close to
6 = 1and k, = 0. It will show that only one center (called Set118 in xfbp) comes down from it’s degenerate
value of +-1. A clean straight reference line can be drawn for § = 0.9 (not shown), which only crosses this center
and hence crosses an odd number of Wannier centers, which results in Z5 = 1. This and the fact that we can
visually connect the Wannier center curves in a reasonable smooth way convinces us that the topological indices
are 1;(000). (Remember zg # z1 — vy = 1 and v; = Z3(21),) In fact due to symmetry the tree planes 1, y;
and z; give the same result in this compound.

Next we have a look at all the other homos, just for learning purposes.

homo 114
wannier centers z0 wannier centers z1

0.50
B
= 0.00

-0.50

-1.00

1.00

0.50
£000

-0.50

-1.00

000 010 020 030 040 050 000 0.10 0.20 030 040 050
ky [27] ky [27]

Fig. 3.26: Wannier centers and reference line for homo 114

The Wannier centers and reference line for homo 114 (page 111) are quite messy. However, you should convince
yourselfs that z; has a region (§ ~ 0.5) without any centers crossing — trivial, while for the zy-plane an even

3.3. 3D topological insulator 111

pyfplo Documentation, Release 22.00-62

number of curves cross any reference line. Hence we get 0;(000).

homo 116
wannier centers z0 wannier centers z1

0.50

Eoo00}i
-0.50

-1.00 ¢

1.00
0.50 |
Soooli

-0.50 [-

-1.00 £ , .
000 010 020 030 040 050 000 0.10 0.20 0.30 040 050
ky [2x] ky [2]

Fig. 3.27: Wannier centers and reference line for homo 116

The Wannier centers and reference line for homo 116 (page 112) are also messy and reveal another possible
complication. First, note that both 114 and 116 yield curves with fast varying (steep slopes) curves. These steep
curves generate only very few points on their steep section. Depending on the density of the ky mesh there might
even be zero points on such sections, which would make it look as if certain curves end for some ky value to
reemerge for a later ky-value. Any algorithm including our own judgment can fail in such cases. All we can
do is to take a denser ky-mesh. In this case the automatic reference line algorithm is correct as can be visually
verified. There is an even/odd number of curves crossed by a suitably chosen reference curve for the zy/z; planes
(z1,y1 = z1). Hence we get 1;(111). Note, however, that the electronic gaps above homos 114 and 116 are rather
small, they could well be zero. If this homo were important we would try to use much finer meshes to make
absolutely sure that the gap is finite.

Homo 122 also has a small electronic gap. If we assume that it is finite we can proceed analysing the invariants.
The Wannier centers and reference line for homo 120 (page 113) and the Wannier centers and reference line for
homo 122 (page 113) both show that the indices printed in the output table are wrong (as can be verified in this
case due to the parity algorithm).

112 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

homo 120
wannier centers z0 wannier centers z1

0.50

B
= 0.00

-0.50 | =

-1.00 L2

0.50

£000}

-0.50 [.

-1.00 ¢
000 0.10 020 030 040 050 0.00 010 0.20 030 040 0.50
ky [24] ky [21]

Fig. 3.28: Wannier centers and reference line for homo 120

For homo 120 the zy plane is clearly trivial since we can draw a non crossing reference line at § = +1 (the
automatic blue reference line is just that). For the other three planes the algorithm made a mistake around ky=0.33,
where a single red dot appears. This mistake is due to a steep section at one curve. One can find hand drawn
reference curves, which cross an even number of times and hence these planes are trival. The result should be
0;(000). Please also note that the reliability for homo 120 is high for the z(plane but only 65% for the other three,
which fits to the findings explained above. This is of course only an indicator.

homo 122
wannier centers z0 wannier centers z1

0.50

B
£000

-0.50 -

-1.00 B

wannier centers x1 wannier centers y1

050 | :
gy

-0.50 | :

S I e ey
1 1
I 1"

-1.00 ¢
0.00 0.10 020 030 040 050 0.00 010 020 030 040 0.50
ky [2x] ky [2n]

Fig. 3.29: Wannier centers and reference line for homo 122

For homo 122 the situation is even trickier. According to the reliabilities the z; panel might have a problem.
Indeed, the z; plane (and x1, y;) is clearly topological, but the 2y plane was determined as non trivial although
it is not. Again due to small electronic gaps in the zy plane we get very steep curves close to ky=0. In fact this
curve is so steep that we see only one point in the steep section. In xfbp use the right mouse click at the dot in
the upper left corner. It will show that there are two curves. Given the rest of the dots it is clear that one dot is
connected with the declining curve and the other must fall very steeply to connect to a curve close to § = 0.28.

3.3. 3D topological insulator 113

pyfplo Documentation, Release 22.00-62

Hence the reference line actually crosses two curves and not one. Consequently, zo # z; — 1;(111) in contrast
with the result printed in the output table.

Homo 124 is again a simple case and will not be discussed here.

In summary we saw that the fplo based version of the procedure is rather slow, which is bad if a high grid density
is needed to obtain reliable results. Let’s continue with the py fplo version then. We already set up the Wannier
basis production in our first fplo run. Now, we can proceed by re-running:

fplo...

Note that we do not use an output file (we don’t want to overright the TI results). This will produce among others
the file +hamdata, which we will use for the pyfplo based version of the TI procedure. If the fplo run is over
we confirm the Wannier basis by checking:

xfbp wband.cmd

which should show green bands (finite cut-off tight-binding Wannier bands) on top of red bands (exact Wannier
bands) on top of black bands (fplo bands). Please, change into s1abify/Z2 and execute:

python —-u Z2.py | tee out

The flag —u un-buffers the output, such that the progress is updated in real time. The file’s content is

#! /usr/bin/env python

from _ future import print_function
import sys, copy

import numpy as np

import pyfplo.slabify as sla

import pyfplo.common as com

import pyfplo.fploio as fploio

def work () :
print ('\nversion: ',sla.version, '\n')
np.set_printoptions (precision=5, suppress=True, linewidth=120)
hamdata='../../+hamdata'
s=sla.Slabify ()
s.object="3d’

s.printStructureSettings ()
s.prepare (hamdata)

p=fploio.INParser ()

p.parseFile('../../=.in")
d=p () ('special_sympoints"')
1=1]

for i in range(d.size()):
l.append ([d[i] ('label").S,d[i] ("kpoint') .1listD])
(continues on next page)

114 Chapter 3. Examples

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

69

70

71

72

73

pyfplo Documentation, Release 22.00-62

bp=com.BandPlot ()
bp.points=1
bp.ndiv=100

bp.calculateBandPlotMesh (s.dirname)

#help (sla)
s.calculateBandStructure (bp)

14
16
18
20
22
24

HO¥E W W O H

; (000)
; (111)
; (000)
; (000)
;(111)
; (000)

=>

|
V
O R O = =~ O

(continued from previous page)

s.calculate3dTIInvariants (200,200, homos=range (14, 25,2),efhomo=18)

return

#

if name == ' _ main__'
work ()

In lines 34-47 we calculate the band structure of the Wannier model along the same high symmetry points as were
used in the fplo calculation. With the help of:

xfbp slabifyres/+band_sf

and a right mouse click we find out that the Fermi level is above homo 18 (just a coincidence that 118-18=100).
This is used in line 56 to define a set of homos and efhomo. The grid is chosen finer for both the “integration” and
the ky direction. See calculate3dTIInvariants (page 49).

The output table:

Invariants:
homo invariants
14 2 0; (000)
16 2 1;(111)
18 = 1; (000)
20 0; (000)
22 1;(111)
24 0; (000)
homo invariants
14 2 0; (000)
16 2 1;(111)
18 = 1; (000)

E (k=0)

-1.09645
-0.79820
-0.22063
0.27854
1.42038
1.42948

E (k=0)
-1.09645

-0.79820
-0.22063

O O O O O O

z0

.02338
.00531
.42925
.14357
.00911
.20549

O O O O O o

estim.gaps [eV] for

z1 x1 vyl
.01563 0.01563 0.01563
.02098 0.02098 0.02098
.43611 0.43611 0.43611
.06937 0.06937 0.06937
.17176 0.17176 0.17176
.24304 0.24304 0.24304

Z2 (reliability)

zl x1 yl
0 (93%) 0 (93%) 0 (
1 (86%) 1 (93%) 1 (
0 (100%) O (100%) O

<-small

<-small

(continues on next page)

3.3. 3D topological insulator

115

pyfplo Documentation, Release 22.00-62

(continued from previous page)

20 0; (000) 0.27854 0 (100%) O (100%) O (100%) O (100%)
22 1; (111) 1.42038 0 (100%) 1 (100%) 1 (100%) 1 (100%)
24 0; (000) 1.42948 0 (100%) O (100%) O (100%) O (100%)

looks a bit different from the previous one. First of all the gap values are different since there are always tiny shifts
in a reduced Wannier model compared to a full band structure and second we used a finer grid. Furthermore, the
reliabilities increased considerably, again mostly due to the finer grid. Finally, all topological indices are correct.

We can now load all the Z2_3dTI_homo. . .cmd files into xfbp and analyse the validity by hand. We will
look at three Wannier center graphs. The Wannier centers and reference line for homo 16 (page 116) show a
quick change in the zp-panel around ky=0.16, which is most likely due to the small electronic gap. Furthermore,
the steep sections in the z1-panel are now represented by more points, which makes the automatic reference line
algorithm more reliable.

homo 16
wannier centers z0 wannier centers z1

0.50

B
=000

-1.00 [gmmt | il . LR

wannier centers x1 wannier centers y1

0.50 |
£000}
-0.50 m,

= .
100 F —

0.00 0.10 0.20 0.30 040 0.50 0.00 0.10 0.20 030 0.40 0.50
ky [27] ky [2n]

Fig. 3.30: Wannier centers and reference line for homo 16

The Wannier centers and reference line for homo 20 (page 117) has the correct reference line due to the increased
mesh size.

116 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

homo 20
wannier centers z0 wannier centers z1

& o
050

_—

SmiIEeee———

050 F V

-1.00 L2

wannier centers x1 wannier centers y1

0.50

£000}

-0.50

-1.00 ¢
000 0.10 020 030 040 050 0.00 010 0.20 030 040 0.50
ky [24] ky [21]

Fig. 3.31: Wannier centers and reference line for homo 20

The Wannier centers and reference line for homo 22 (page 117) now clearly shows that two WC curves meet close
to the upper left corner of the zp-panel, which makes this plane trivial. Consequently, the invariants are correctly
determined as 1;(111).

homo 22
wannier centers z0 wannier centers z1

S ;-
050 %g

£ 0.00 | e ——

050 | 4

1
-1.00 L& . ‘ . . . : : ‘ - . '

wannier centers x1 wannier centers y1

0.50 |
Looo}

-0.50

1.00 |
000 0.10 020 030 040 050 000 010 0.20 030 040 0.50
ky [27] ky [2n]

Fig. 3.32: Wannier centers and reference line for homo 22

In summary, the use of a reduce Wannier function model leads to a much faster TI procedure, which allows to use
finer grids, which in turn increase the accuracy of the results. Additionally, one could calculate surface spectra
using the same model.

3.4 Weyl semi metals

3.4. Weyl semi metals 117

pyfplo Documentation, Release 22.00-62

Note: You need to use the newer xfbp/xfplo version, which comes with pyfplo in order for the xpy scripts to
work properly.

In this example we discuss methods for Weyl semi metals. We demonstrate how to find Weyl points, how to prove
that they are indeed Weyl points and how to calculate surface spectra to analyse potential topological surface states
(Fermi arcs).

We start with MoTe,. This example is based on [Wang15]. The tutorial files are in FPLO. . . /DOC/pyfplo/
Examples/slabify/Weylpoints/MoTe?2. They contain a converged full relativistic calculation.

Figure The bulk unit cell and band structure of MoTe2. (page 118) shows the bulk unit cell and band structure.
There is clearly an isolated band complex between -6 and +5 eV, which makes the creation of a Wannier function
model especially easy.

‘:::::::::::? Mﬂ%
10.0 e
- Ay %§%£
— ——
| : — g =
0 ¢ \Q‘é S
. -10.0 _R::
r X S Y | u R T

Fig. 3.33: The bulk unit cell and band structure of MoTe,.

With a right mouse click close to the highest and lowest band in xfbp (when +band is loaded) we determined
that this band complex has 88 bands. From the available valence orbitals we guess that these must be the 4d-bands
of the 4 Mo atoms and the 5p-bands of the 8 Te atoms, which makes a total of 4*10+8%6=88 orbitals/bands. We
could also have used band weights to determine this. Fortunately, none of these 88 bands has a section somewhere
in the BZ where the sum of the weights of the considered orbitals is exactly zero. In other words there is no band
section which needs other orbitals to get a non-zero WF projector. This allows to build a very simple WF model.
The example directory contains the file makewandef . py which has the following content

#! /usr/bin/env python
from _ future import print_function
import pyfplo.wanniertools as wt

wdc=wt .WanDefCreator (rcutoff=25,wftol=0.001,coeffformat="bin',
wfgriddirections=[(1,0,0]1,([0,1,0],[0,0,111,
wfgridsubdiv=[1,1,1],savespininfo=False,
keeprunning=True, opendxinterface=False)

emin=-6
emax= 4
(continues on next page)

118 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

(continued from previous page)

delower=1
deupper=0

wdc.add (wt .MultipleOrbitalWandef ('Mo', range (1,4+1), ['4db'],
emin=emin, emax=emax,
delower=delower, deupper=deupper))

wdc.add (wt .MultipleOrbitalWandef ('Te', range(5,12+1), ['5pb'],
emin=emin, emax=emax,
delower=delower, deupper=deupper))

wdc.writeFile ('=.wandef'")

return
ommmmmmmmmmmmmmm e e e e e e e
R
===
R
if name == '__main !

main ()

Line 23 defines the projectors for the 4d-orbitals of Mo sites 1-4. Note, that we use the python expression
range (1,4+1) to obtain the list [1,2, 3, 4]. Similarily, line 26 defines the projectors for the Sp-orbitals
of Te sites 5-12. The energy window encompasses the isolated band complex and we use a zero upper energy
window tail to keep the higher bands out of the desired Hilbert space.

Please execute this script:

python makewandef.py

after which you should have the new file =. wandef. We run fplo now to obtain the necessary data for the WF
calculation in +wancoeff:

fplo.... > out

Convince yourself that the file +twancoeff has been created and re run fplo to calculate the Wannier functions:

fplo.... > outwf

Now, the file +hamdata was created, which contains the WF model. In order to check the quality of the WF fit
execute:

xfbp wband.xpy

You will see something like 7he WF fit. (page 120). The black curves are the DFT results, the red curves are the
exact WF transformed bands and the green curves the bands resulting from the real space WF model.

3.4. Weyl semi metals 119

pyfplo Documentation, Release 22.00-62

Compound X2YZ“°

[= A= 5N

‘+band’

*+wanband'
"+wanbandtb'

7710

V7

e
.

n

Energy ¢ (k) [eV]

%/////
I\

y
(
K
(

N

i
/1

i

|
)

—
x
w
<
-
N
c
)
—

Fig. 3.34: The WF fit.

If you use a zoom function you will notice that the green curves deviate from the exact transform around the
Fermi level by let’s say 20meV. We could do better by using larger WF cutoffs and more SCF k-points, but for our
purpose this is good enough.

To check the validity of the result we change into slabify/3d:
cd slabify/3d

and execute the two following commands:

python bands.py
xfbp bands3d.xpy

with the result The 3d bulk band structure from the WF model. (page 120).

4.0

2.0

IMAWIA'Y

Parads

n

Energy £ (k) [eV]

DAMIKG

AR AN

r X S Y TI'Z U

e
—

Fig. 3.35: The 3d bulk band structure from the WF model.

120 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

pyfplo Documentation, Release 22.00-62

Have a look at the script bands . py

#! /usr/bin/env python

from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import pyfplo.slabify as sla
import pyfplo.fploio as fploio

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla._ file_))
protect against wrong version

#1if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
m========—=———e—ee—ee oo ——— e

#

R

def work ()

p=fploio.INParser ()

p.parseFile('../../=.1in")
d=p () ('special_sympoints')
1=[1

for i in range(d.size()):
l.append ([d[i] ('label").S,d[1] ('kpoint') .1listD])

hamdata='../../+hamdata'

s=sla.Slabify ()
s.object="3d"'
s.printStructureSettings ()
s.prepare (hamdata)

bp=sla.BandPlot ()

bp.points=1
bp.calculateBandPlotMesh (s.dirname)
s.calculateBandStructure (bp)

In line 27-32 we read the high symmetry points from the fplo input file =. in which we then assign to the
BandP1lot (page 29) object in line 42. Lien 43 prepares the path through the BZ and line 44 does the actual cal-
culation. Do not forget to have a look at the xfbp script bands3d. xpy e.g. via the Edit->Script/Transformations
editor of xfbp.

3.4. Weyl semi metals 121

pyfplo Documentation, Release 22.00-62

Next, in xfbp use a right mouse click at the highest band between X and S below the Fermi level to read off the
band number of this band. You will get a popup menu with a number of bands (which might not be sorted). The
highest number in this list will be 56. This will be the band for which we check the Weyl points.

Now, that we are confident that the model looks like the DFT result we will try to find Weyl points. For this we

20

21

22

23

24

25

26

27

28

29

40

41

o)

43

44

45

46

47

48

49

50

51

52

change into . . /wpsearch:

cd ../wpsearch

and have a look at the script wpsearch.py

#! /usr/bin/env python

mmmmmmmmmememe e
file: auto.py

author: k.koepernik@ifw-dresden.de

date: 19 Jun 2017

from _ future_ import print_function
import sys

import numpy as np

import numpy.linalg as LA

import pyfplo.slabify as sla

print ('\npyfplo version=: \nfrom: \n'.format (sla.version,sla. file))

B
#
A e
def work () :

hamdata="'../../+hamdata’

s=sla.Slabify()
s.object="3d"
s.prepare (hamdata)

homo=56

nk=10
tol=1le-4

setup primitive reciprocal cell BoxMesh
G=s.hamdataRCell ()
print ('G=\n',G)

x=G[:,0]
y=G[:,1]
z=G[:,2]

dx=LA.norm(x)

dy=LA.norm(y)

dz=LA.norm(z)

with most isotropic mesh subdivision
nx=max (2, nk)

ny=max (2, int (dy/dx*nx))
nz=max (2, int (dz/dx*nx))

shift the origin by a small amount
k0=-(x/ (nx-1) +y/ (ny-1) +z/ (nz-1)) 0.5

(continues on next page)

122

Chapter 3. Examples

64

65

66

67

68

69

70

71

3

74

75

76

77

78

79

pyfplo Documentation, Release 22.00-62

(continued from previous page)
define the BoxMesh
box=sla.BoxMesh ()
box.setBox (xaxis=x,yaxis=y, zaxis=z,origin=k0)

box.setMesh (nx=nx, xinterval=[-dx/2,dx/2],
ny=ny,yinterval=[-dy/2,dy/21,
nz=nz, zinterval=[-dz/2,dz/2])

and try to find Weyl points
s.findWeylPoints (box, [homo],tol)

try:
from weylpoints import wps
except:
raise RuntimeError ('file weylpoints.py does not exist')

the conventional cell
A=s.hamdataCCell ()

its lattice parameters
a=LA.norm(A[:,0])
b=LA.norm(A[:,1])
c=LA.norm(A[:,2])

boa=b/a

coa=c/a

print in units of 2p/a_i
for i,w in enumerate (wps) :

print ('WP
o "\
.format (i,w.k[0],w.k[1]*boa,w.k[2]*coa,w.chirality,w.energy,
w.homo,w.spin))

return
=================—c=—=—=—c=—=—=—————c=—————————c——————————————=====
#
mmmmmmmmmmmm—m e e e
if name == '_ main__ '

work ()

In line 25-27 the default bulk 3d unit cell is setup. In line 30 we remember the number of the homo i.e. the band
which forms the lower two legs of a potential Weyl point crossing. Line 32 contains the number of points of the
initial search grid for the algorithm. Please consult findweylPoints (page 53) for a description of the search
algorithm. Line 33 defines the smallest bisection cell size.

In lines 35-47 we set up the primitive reciprocal unit cell vectors (x, y, z) in units of kscale (page 56) (usually
i—g). and their length (dx, dy and dz) as well as a subdivision in each direction which results in the most isotropic
mesh cells. These values are used to define a BoxMesh (page 56) in lines 54-58. Note line 51, in which we assign
-1/2 of the body diagonal of a mesh cell to k0. This is used to shift the origin of the BoxMe sh (page 56) such that
we do not miss WPs which lay on a mesh cell boundary. Note, that origin (page 58) shifts the mesh and is not
an absolute origin. Finally, line 61 executes the Weyl point search. First, for each cell of the BoxMesh (page 56)
the Berry curvature is integrated over the cell surface, which is done with compact formulas as described for 2d in
[FukuiO5]. If the cell has a nonzero Chern number it is registered for future adaptive search. The resulting number
of found Weyl points is shown in the output at the end of the progress message:

CPU TIME WeylScanner::scan box: 9.17 sec done 60% ETA=15.29 sec: 4 WP candidates

After the whole BoxMesh (page 56) was scaned a refined search takes place, in which each resulting cell is
bisected, which leads to a small Mesh with 8 sub cells. For these sub cells a new search as described above is
performed. Any cells with nonzero Chern number are registered for the next bisection step. The bisecting stops if
the sub cell size is smaller than tol. The alogrithm can search for several homos at once (just give a list). During

3.4. Weyl semi metals 123

pyfplo Documentation, Release 22.00-62

the bisections previously found WPs can vanish. This has to do with the fine structure of the Berry curvature and
the limited accuracy of the 8-point integration of the Berry curvature. An example of this could looks like this:

box size= 0.0155955, 4 WPs
finer scan of the currently 4 WPs:

box size= 0.0077977, 3 WPs
finer scan of the currently 3 WPs:

where two bisection steps are shown. After the first bisection one WP is lost. This also means that a large-tol
result is indicative of the existence WPs (or false positives). If a WP get’s lots the algorithm will redo the bisection
step with a small shift of the cell. This seems to help in many cases. Yet, it does not guarantee that no loss occurs.

It is in general a good idea to try several mesh sizes (nk=), especially also in small steps. E.g. we could test for
nk= 10, 11, 20, 21, 40, 41 and so on. Currently, there is no better way. It is not save to assume that a large nk will
detect all Weyl points! It is also very likely that the origin (page 58) matters. As you can see it can be quite
tricky.

After the search is over the file weylpoints.py is created which contains a 1ist of WeylPoints (page 64)
At the end of the script (lines 63-66) this file is imported to make the WPs available and in lines 68-80 the WPs
are printed in units of i—”

One last word about the fol parameter. If is is to large the accuracy of the resulting WP will be not so great. This
is disadvantageous for future tests oft these WPs.

We will now edit the script and put nk=10. Then we execute:

python —-u wpsearch.py | tee out

The results are written to st dout and into the file out. You will notice that no WPs where found.
Next, set nk to 20 and rerun. .. again no WPs.

Next, set nk to 24 and rerun. You will have found 4 WPs after the initial scan and also after bisections. The output
looks like:

WP[000]: k= -0.10121221 0.02978658 0.00001523 Chi=-1.00 E= 0.
—055099\

homo=56 spin=1
WP[001]: k= -0.10119098 -0.02980890 0.00001523 Chi= 1.00 E= 0.
—055192\

homo=56 spin=1
WP[002]: k= 0.10116975 0.02976426 0.00001523 Chi= 1.00 E= 0.
—0552009\

homo=56 spin=1
WP[003]: k= 0.10119098 -0.02980890 0.00001523 Chi=-1.00 E= 0.
—055192\

homo=56 spin=1

Slabify::findWeylPoints: END

WP 0: -0.101212 0.054301 0.000061 -1.0 0.055099 56 1
WP 1: -0.101191 -0.054342 0.000061 1.0 0.055192 56 1
WP 28 0.101170 0.054260 0.000061 1.0 0.055209 56 1
WP 3¢ 0.101191 -0.054342 0.000061 -1.0 0.055192 56 1

You will notice that the point coordinates, chirality and energy match the results of [Wang15]. You also notice
that time reversal related WPs have the same chirality (WPs 1 and 2 or 0 and 3) while WPs connected by mirror
symemtry have opposite chirality (WPsOand 1 or2 and 3 ...). In principle we could have restricted the BoxMesh
(page 56) to x,y, z > 0 in lines 56-58. We did not do this to make the script most generic.

124 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

Let’s now put nk=40 and rerun. .. you got 4 WPs after the initial scan but magically found 5 more (of which #3
and #4 are identical) in the second bisection step:

WP[000]: k= -0.10151555 -0.00971942 0.00001142 Chi=-1.00 E= 0.
—016153\

homo=56 spin=1
WP[001]: k= -0.10151555 0.00975960 0.00001142 Chi= 1.00 E= 0.
—016206\

homo=56 spin=1
WP[002]: k= -0.10121507 -0.02978769 -0.00001142 Chi= 1.00 E= 0.
—055082\

homo=56 spin=1
WP[003]: k= -0.10119629 0.02978769 0.00001142 Chi=-1.00 E= 0.
—055135\

homo=56 spin=1
WP[004]: k= -0.10117751 0.02976761 0.00001142 Chi=-1.00 E= 0.
—055175\

homo=56 spin=1
WP[005]: k= 0.10117751 -0.02976761 0.00001142 Chi=-1.00 E= 0.
—055175\

homo=56 spin=1
WP[006]: k= 0.10119629 0.02980778 0.00001142 Chi= 1.00 E= 0.
055162\

homo=56 spin=1
WP[007]: k= 0.10155311 -0.00973951 0.00001142 Chi= 1.00 E= 0.
—016018\

homo=56 spin=1
WP[008]: k= 0.10155311 0.00973951 -0.00001142 Chi=-1.00 E= 0.
—016018\

homo=56 spin=1

Slabify::findWeylPoints: END

WP 0: -0.101516 -0.017719 0.000046 -1.0 0.016153 56 1
WP 1: -0.101516 0.017792 0.000046 1.0 0.016206 56 1
WP 2: -0.101215 -0.054303 -0.000046 1.0 0.055082 56 1
WP 3: -0.101196 0.054303 0.000046 -1.0 0.055135 56 1
WP 4: -0.101178 0.054266 0.000046 -1.0 0.055175 56 1
WP 58 0.101178 -0.054266 0.000046 -1.0 0.055175 56 1
WP 6: 0.101196 0.054340 0.000046 1.0 0.055162 56 1
WP 78 0.101553 -0.017755 0.000046 1.0 0.016018 56 1
WP €8 0.101553 0.017755 -0.000046 -1.0 0.016018 56 1

What must have happend is that the two WPs at low resolution in the initial step must have looked like a cell with
chirality larger than one. This can easily happen because of the crude 8-point formula for the chirality of a mesh
cell.

The 9 WPs are basically two different ones if we do not count symmetry equivalent WPs (look at the coordinates
and energies). We cannot tell why this second WP was not been reported in [Wang15]. Either they missed it or it
is a computational differences.

The occureance of duplicates is due to the adaptive search and especially its internal cell shift to avoid loss of
WPs.

After finding the WPs we need to check if they are false positives. Such things actually exist, e.g. if the berry
curvature is locally cylindrical with outwards pointing vectors, in which case tiny roundoff errors will give a
nonzero Chern number although it is not a 3d monopole. We do this with another script, which calculates the
Chern number in a small sphere around the WP and which also produces a picture of the monopole (hedgehog).
Have a look at the script cherninsphere.py.

3.4. Weyl semi metals 125

20

21

22

23

24

25

26

27

28

29

30

31

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

pyfplo Documentation, Release 22.00-62

#! /usr/bin/env python

file: auto.py

author: k.koepernik@ifw—-dresden.de

date: 19 Jun 2017

from _ future import print_function

import sys
import numpy as np
import numpy.linalg as LA

import pyfplo.slabify as sla

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (sla.version,sla.__file_))

def work (iwp) :

hamdata='../../+hamdata'

s=sla.Slabify ()
s.object="3d’
s.prepare (hamdata)

try:

from weylpoints import wps
except:
raise RuntimeError ('file weylpoints.py does not exist')

wp=wps [1iwp]

s.calculateChernNumberInSphere (center=wp.k,
radius=wp.radius, homo=wp.homo,
nsubdiv=10,nradius=1)

return
== — — ———— ==
#
mmmmmmmmmmmmmmmmm e e e
if _name_ == '_ main_ '
if len(sys.argv)>1 and sys.argv[l]=='-h':
print ("usage: {} [-h] -1 wp-number".format (sys.argv([0]))
sys.exit (0)
try:
i=int (sys.argv.index ("-1i"))
iwp=int (sys.argv[i+1])
except:
raise RuntimeError ('need option —-i wp-number')
work (iwp)
sys.exit (0)
(continues on next page)
126 Chapter 3. Examples

63

64

65

66

pyfplo Documentation, Release 22.00-62

(continued from previous page)

In lines 24-27 we have the usual 3d setup. In lines 30-33 we try to import weylpoints.py (result of
wpsearch.py) and in lines 35-37 we pick a particular WP and calculate the Chern number in a sphere around
the WP center. The center and homo are taken from weylpoints.py as well as the radius of the sphere. The
radius saved in weylpoints.py is the size of the smallest bisection cell in which the WP was found. This is
usually a sensible radius. In some cases it might be better to take a larger or smaller radius. If a smaller radius
is chosen the WP might actually fall outside the sphere, which is not good. You most likely can judge this from
the graphical representation (see below). The script takes a command line option to specify which WP to look at.
Note, that WPs are numbered starting with 0.

Let’s start with WP No. 0O:

python -u cherninsphere.py -i 0

In the resulting output you find lines:

List of chern numbers with abs value larger than 0.01

chern up to band 56: —-0.387852580115874

In our case only one chern number is written (for homo 56, which is what we where looking at).However, the
printed Chern number is far from integer. So, let’s look at the picture first. The program writes files called
berrycurvsphere.net and so forth. You need to have the program opendx installed for this to work.
Please execute:

dx —-execute_on_change -image berrycurvsphere.net

From the menu Options in the main window chose View Control. In the dialog click the Reset button at
the bottom right. Then in the mode combobox select Rotate and use the left mouse click and drag to rotate the
picture. You will see something like The hedgehog (monopole) of WP 0. (page 127). (If your opendx works as
mine does you can use Ct r1+F for reset and Ct r1+R for rotate.)

Fig. 3.36: The hedgehog (monopole) of WP 0.

Please note that all vectors point inside, which indicates negative chirality which fits the data stored in
weylpoints.py and also the sign of the Chern number written to the output.

Now, in the control panel (menu windows -> Open All Control Panels) use the arrows on the
AutoGlyph upper limit to decrease/increase the vector length limit. If you click the arrows for a longer

3.4. Weyl semi metals 127

pyfplo Documentation, Release 22.00-62

time the changes will speed up. If you go to the lowest value (left arrow) the arrow will be of the same length
since each vector of larger length will be limited in length. If you however go to the highest limit (right arrow)
essentially no limit is applied and you see the actual length of the Berry curvature field. You will notice that the
vectors are rather long around the poles and very short around the equator. This is the reason for the non-integer
Chern number. The curvature field is highly anisotropic. This is also an issue for the Weyl point finding algorithm
(as you noticed it is not straight forward to find all 8 WPs). In such a situation we can increase the number of
points on the sphere nsubdiv in line 37.

Please increase it to nsubdiv=20 and rerun the script... the Chern number is -0.632.
Please increase it to nsubdiv=40 and rerun the script... the Chern number is -0.911.
Please increase it to nsubdiv=100 and rerun the script. .. the Chern number is -0.993.

So, we finally converged to the result, which we already knew. This is a somewhat extreme case. The more
important point is the graphical representation. If it shows a monopole (especially for limited vector length) the
Weyl point is valid. Btw. WP No. 3 is even more extreme.

Please revert the script to nsubdiv=10 and check the other Weyl points: have a look at the graphical representation.
We will have confirmed that all WPs are actually Weyl points by confirming the monopole. Indeed, it would have
sufficed to check the two WPs with different energies since the others are obtained by symmetry.

With this the WP search is complete. We can proceed e.g. with surface spectra. Please change into semi:

cd ../semi

Have a look at the script £s . py which calculates the surface spectral function for £ = 0 in the surface Brillouin
zone (the Fermi surface equivalent).

#! /usr/bin/env python

from _ future import print_function
import sys

If your pyfplo is not found you could also
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import numpy as np
import numpy.linalg as LA
import pyfplo.slabify as sla

print ('\npyfplo version=: \nfrom: \n'.format (sla.version,sla. file))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
R
#
===
def work () :
hamdata='../../+hamdata’

s=sla.Slabify ()
.object="semislab'
.zaxis=[0,0,-1]
.numberoflayers=1
.anchor=0.001
.printStructureSettings ()
.prepare (hamdata)

n n n n n 0

(continues on next page)

128 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

(continued from previous page)

the conventional cell
A=s.hamdataCCell ()

its lattice parameters
a=LA.norm(A[:,0])
b=LA.norm(A[:,1])
aob=a/b

Nk=200

fso=sla.FermiSurfaceOptions ()
fso.setMesh (Nk, [0,0.5],Nk, [0,0.5%aob])
fso.setPlane([1,0,0],[(0,1,0],[0,0,01)
fso.fermienergy=-0.02
fso.fermienergyim=1./Nkx1.

print (fso)

s.calculateFermiSurfaceSpectralDensity (fso,penetrationdepth=-1.)

In lines 29-35 we setup a semi infinite slab with a (00-1) surface. We anchor the surface such that a MoTe, layer is
the last layer. After executing the script (after the structure setup was executed, hence before the actual calculation
starts) the directory slabifyres contains the file =.in_final PLlayer. If you load it into xfplo you will
see the cell whose semi-infinite repetition will make up the semi-slab. Note, that the c-axis points downwards!
Hence the surface is the lower face of the cell while the infinte side grows on the upper cell face (not shown). If
you had chosen the (001) surface the c-axis would have pointed upwards. Note, that numberoflayers is set to 1.
Our 3d unit cell is already long enough to fulfill the condition that no hopping reaches further then between two
adjacent primary layers.

In lines 37-42 we setup the axis scales of the surface BZ and in lines 44-50 we set up the surface BZ and a mesh
which represents the upper right quadrant of the surface BZ. We set the Fermi surface to -20meV as in [Wang15].
The imaginary part is chosen in a resonable way such that the Lorentzian width is comparable to the mesh distance.
If we would take a much smaller imaginary part, the picture would tend to look spotty. A larger value will smear
it out.

In line 52 the actual calculation takes place. After the calculation finishes please execute:

xfbp fs.xpy

to produce this Figure (page 130). Compare this to Fig. 3 of [Wang15] and also read the discussion of the surface
state therein. Please note, that we show the whole quadrant, while [Wang15] shows a smaller part of the whole
surface BZ.

3.4. Weyl semi metals 129

L S

pyfplo Documentation, Release 22.00-62

0.50 0

0.40 =

0.30

ky

0.20

0.10

0.00 0.10 0.20 0.30 0.40 0.50

kx

Fig. 3.37: The surface Fermi surface spectral function for : £ = —20 meV. The two crosses denote the two WPs
of this quadrant.

FInally, we could also calculate energy distribution curves. This was, however already discussed in other exam-
ples. With this the basic Weyl point example shall come to it’s end.

3.5 FEDIT scripting examples

* Set bandplot points (page 130)
e Simple fedit example (page 131)
* BCC Iron (page 133)

* BCC and FCC Iron (page 137)

 Set Extended basis (page 142)
* BCC Iron, extended basis (page 144)
* mBJ XC-potential (page 148)

3.5.1 Set bandplot points

The tutorial files are in FPLO. . . /DOC/pyfplo/Examples/fploio/fedit_use/setbandplot where
FPLO. . . stands for your version’s FPLO directory, e.g. FPL0O21.00-61. Here are the files of this directory:

e setbandplot.py (page 130)
setbandplot.py

#! /usr/bin/env python

===== ——— SRR =
file: bandplot.py

author: k.koepernik@ifw-dresden.de

date: 19 Apr 2017

(continues on next page)

130 Chapter 3. Examples

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

pyfplo Documentation, Release 22.00-62

(continued from previous page)
from _ future import print_function
import sys
import pyfplo.fedit as fedit

mmmmmmmmmmmmmmmm e e e e e
#
R
def work () :
points=][
['$NG'7[OIOIO]]!
('x',[1,0,011,
(M, [1,1,011,
['$NG'7[OIOIO]]!
('z',10,0,111,
]
IMPORTANT:
We only want to change bandplot settings in an existing/new =.1in.
Hence, we set recreate=False, which DOES NOT resets non-symmetry input.
fed=fedit.Fedit (recreate=False)
fed.bandplot (active=True, points=points, weights=True,
interval=[2000,-1,11)
fed.pipeFedit ()
return
R
#
=================—c=—=———c=—=———————c=——————————————————————————===
if name == '_main__'
work ()

sys.exit (0)

3.5.2 Simple fedit example

This example runs fplo for pre-prepared input until convergence, then switches on the bandplot option and re-
runs to calculate the band structure. The tutorial files are in FPLO. ../DOC/pyfplo/Examples/fploio/
fedit_use/simple where FPLO. . . stands for your version’s FPLO directory, e.g. FPL0O21.00-61. Here
are the files of this directory:

* README (page 131)

* wrapp.sh (page 132)

* simple.py (page 132)
README

Read the script to understand what it is doing.
It just demonstrates how one could use python to run things.
The fedit part is actually very minimal.

(continues on next page)

3.5. FEDIT scripting examples 131

20

21

22

23

24

25

26

27

28

pyfplo Documentation, Release 22.00-62

run simple.py as
simple.py

then have a look what was created.

(continued from previous page)

If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.

wrapp.sh simple.py

A wrapper to setup paths wrapp. sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.
#

FHA A A A R R R R A A R R R R A

set your path here
pyfplopath=$HOME/FPLO/FPL0O22.00-62/PYTHON/

export PYTHONPATH=Spyfplopath:$PYTHONPATH

Sx

The python script simple.py

#! /usr/bin/env python

Sm=mmmmmmmmmmmmmmmme e e e e
file: simple.py

author: k.koepernik@ifw-dresden.de

date: 06 Jun 2017

from _ future import print_function
import sys

import os

import pyfplo.fedit as fedit

print ('\npyfplo version=: {0}\nfrom: {1}\n'.format (fedit.version,fedit._ file_))

protect against wrong version

#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')

def work () :

rm old files
os.system('rm +dos* +band +tbweighx*"')

get a Fedit instance
fed=fedit .Fedit (recreate=False)

set some stuff for the SCF run
fed.bzintegration (nxyz=[6,6,6])

switch off bandplot (if already set) so that we do

not
(continues on next page)

132

Chapter 3. Examples

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

59

pyfplo Documentation, Release 22.00-62

(continued from previous page)

calculate unnecessary stuff during self consistency
fed.bandplot (active=False)

write Input file

fed.pipeFedit ()

run fplo (SCF)
os.system(fedit.fploExecutable()+" |tee outscf")

now we re-run for bandplot.

Note that we use the Fedit () from before
fed.bandplot (active=True)

fed.pipeFedit ()
os.system(fedit.fploExecutable () +"|tee outb")

return
S=================c-=mco-o oo oo e e e e e e e e e e
#
ommmmmmmmmmmm e e
if name == '_ main_ '

work ()

sys.exit (0)

3.5.3 BCClron

This example prepares fplo input and optionally runs the calculations. The tutorial files are in FPLO. . . /DOC/
pyfplo/Examples/fploio/fedit_use/bccFe where FPLO. . . stands for your version’s FPLO direc-
tory, e.g. FPL0O21.00-61. Here are the files of this directory:

e README (page 133)

* wrapp.sh (page 134)

* simple.py (page 134)
README

Read the script to understand what it is doing.

It just demonstrates how one could use python to do things.
The fedit part is actually very small.

run simple.py as

simple.py

then have a look what was created.
Now run

simple.py -r -c
to do the calculations and collect the results.

(continues on next page)

3.5. FEDIT scripting examples 133

20

21

22

23

24

25

26

27

20

21

22

23

24

25

26

27

pyfplo Documentation, Release 22.00-62

(continued from previous page)

Or just
simple.py -c
to only collect results (if there are any yet).

If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.

wrapp.sh simple.py
wrapp.sh simple.py -r -c
wrapp.sh simple.py -c

A wrapper to setup paths wrapp . sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.

#

E

set your path here
pyfplopath=$HOME/FPLO/FPLO22.00-62/PYTHON/

export PYTHONPATH=$pyfplopath:$PYTHONPATH

Sx

The python script simple.py

#! /usr/bin/env python

#

Example script to create a series of calculations for varying lattice
constant for bcc Fe.

#

#
0l l la la al la al a a a a
from _ future import print_function

import sys

If your pyfplo is not found you could als
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import os

from optparse import OptionParser
import numpy as np

import pyfplo.fedit as fedit

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (fedit.version,fedit._ file_))
protect against wrong version

#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')

== == e e e = R

#

S mmm

(continues on next page)

134 Chapter 3. Examples

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

83

84

86

87

pyfplo Documentation, Release 22.00-62

(continued from previous page)

def INPUT (n) :
if sys.version_info[0] == 3:

return input (n)

else:

return raw_input (n)

def work (fplo, runit=False) :

sanity check
if runit:

else:

if INPUT("Shall I run the jobs: [y/n]")!='y':
print ("\nOK no running then.\n")
sys.exit (0)
if INPUT ("Shall I (re)create the input: [y/n]")!='y':

print ("\nOK, aborting.\n")
sys.exit (0)

Give all directories a name prefixed with the name of the parameter,
which is running, followed by the parameter itself
prefix="'al0="

Remember the current directory.
ROOT=o0s.getcwd ()

loop over the running parameter, in our case the lattice constant

for x in np.arange(4.4,6.01,0.4):

make sure we are in the root directory of our data directory tree
os.chdir (ROOT)

create the directory name as described above (example 'a0=6.00")
Use explicit format for x to ensure 2 digits after the comma.

dir="{0}{1}"'.format (prefix, '{0:12.2f}"'.format (x) .strip())

input creation branch

1f the directory does not yet exist, create it
if not os.path.exists(dir):
os.mkdir (dir)
print ('directory '+dir+' created')
else:
print ('directory {0} exists allready'.format (dir))

change into the directory of paramter $xx
os.chdir (dir)

do the fedit magic

fed=fedit.Fedit ()

fed.resetPipelnput (recreate=True) # important

fed.symmetry (compound="Fe, alO-variation",
spacegroup=229,

(continues on next page)

3.5. FEDIT scripting examples 135

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

pyfplo Documentation, Release 22.00-62

)
fed.b

(continued from previous page)
type='cry',
units='bohr',
latcon=[x,x, x],
angles=['90."]%3,
atoms=[['fe',[0,0,0111,

zintegration([16,16,16])

fed.vxc(version='5") # gga

fed.relativistic('scalar')
fed.spin(spin=2,initialspinsplit=1,initialspin=[[1,2.5]11])
fed.pipeFedit ()

do

we run the job?

if runit:

print (fplo+" running in "+dir+" ...")

now execute, whatever 1is nessecary to launch job in the current
directory (dir)

START Example

We just run the jobs sequentially on a single machine

and redirect stdout to file 'out' and stderr to /dev/null.

(In this way there will be no dangling output and the job could
run savely in the background, which is not done in our example
here.)

Furthermore, we use the +yes-file mechanism to avoid a crash

due to repeated inital polarization (spin split).

The "y" below enforces fplo to continue in such situation

without a repeated split and does nothing otherwise. See manual.

with open('+yes','w') as f:

o
#

jus

f.write('y")

s.system('cat +yes | {0} 2>/dev/null > out'.format (fplo))
END Example

t in case

os.chdir (ROOT)

and of

x—1oop

os.chdir (ROOT)

#
After t
#
./a0=4.
./a0=4.
./a0=5.
./a0=5.
./a0=6.
./simpl
#
where e
lattice
We may
#
#
#
#

he run we should have a directory structure like

40/
80/
20/
60/
00/
e.py

very directory contains the same setup, except for the
constant.
now perform converged calculations (option -r) in all directories.

If we want to change, say, the number of k-points, we edit this number
in the pipe-section above, re-run that script to change the input and
re—-converge the calculations (option -r).

(continues on next page)

136

Chapter 3. Examples

150

151

152

153

154

155

156

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

pyfplo Documentation, Release 22.00-62

(continued from previous page)

def collect():

collect the results
os.system("grepfplo -p 'al=' —-m EE | tee e")

os.system("grepfplo -p 'al0=' -m SS | tee s")
os.system("xfbp pic.cmd")

Set an FPLO version, you need to set this according to your
needs, including possibly a path. Or you use option -p.

A guess for the default name:

FPLO=fedit.fploExecutable ()

scan command line options

usage = "usage: %prog [-c] [-r] [-h] [-p fploexecname]"

parser = OptionParser (usage)

parser.add_option('-r','',action="'store_true',dest='run',default=False,
help='force fplo run')

parser.add_option('-c','',action="store_true',dest="'collect',default=False,
help='collect results')

parser.add_option('-p','',type='str',dest="fplo',default=FPLO,

help='optional: the name of an FPLO executable\n'+
'possibly with explicit path')
(options, args) = parser.parse_args ()

do the work
if not options.collect or options.run:
work (options.fplo,options.run)

if options.collect:
collect ()

3.5.4 BCC and FCC Iron

A more complex example, preparing input and running fplo is shown here. Note, that we run sequentially. If you
have a job queueing system you need to modify the script accordingly. The tutorial files are in FPLO. . . /DOC/
pyfplo/Examples/fploio/fedit_use/Fe where FPLO. . . stands for your version’s FPLO directory,
e.g. FPL0O21.00-61. Here are the files of this directory:

* README (page 137)

* wrapp.sh (page 138)

* simple.py (page 138)
README

Read the script to understand what it is doing.
It just demonstrates how one could use python to do things.
The fedit part is actually very small.

(continues on next page)

3.5. FEDIT scripting examples 137

20

21

22

23

24

25

26

27

pyfplo Documentation, Release 22.00-62

(continued from previous page)

run notsosimple.py as
notsosimple.py

then have a look what was created.
Now run

notsosimple.py -r -c
to do the calculations and collect the results.
Or just

notsosimple.py -c
to only collect results (if there are any yet).

If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.

wrapp.sh notsosimple.py
wrapp.sh notsosimple.py -r -c
wrapp.sh notsosimple.py -c

A wrapper to setup paths wrapp . sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.

#
FHEFHAH A A A A R R A R R R R R R

set your path here

pyfplopath=$HOME/FPLO/FPL0O22.00-62/PYTHON

export PYTHONPATH=S$PYTHONPATH:S$pyfplopath

Sx

The python script notsosimple.py

#! /usr/bin/env python

#

Example script to create a series of calculations for varying lattice
constant for bcc and fcc Fe.

#

#
FAHARRHAAAFAARFRAAAAA AR AR AR AA A A A AR AR HAARA AR A A A AR A AR H AR H AR A A AR
from _ future import print_function

import sys

If your pyfplo is not found you could als

explicitly specify the pyfplo version path:

#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import os
from optparse import OptionParser
(continues on next page)

138 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

pyfplo Documentation, Release 22.00-62

(continued from previous page)

import numpy as np
import pyfplo.fedit as fedit
import pyfplo.fploio as fploio

print ('\npyfplo version=: {0}\nfrom: {1}\n'.format (fedit.version,fedit._ file))
protect against wrong version

#if fedit.version!='22.00"': raise RuntimeError ('pyfplo version 1is incorrect.')

mmmmmmmmmmmmmmmemmm oo e e e =

#

R

def makeInput (a0, structure, vxc, spin) :

if structure=='bcc':
group=229

elif structure=='fcc':
group=225

if vxc=='lda':
xc="4"

elif vxc=='gga':
xc="'5"

fed=fedit .Fedit ()
fed.resetPipelnput (recreate=True) # important
fed.symmetry (compound="Fe, alO-variation",
spacegroup=group,
type='cry',
units='bohr',
latcon=[a0] *3,
angles=["'90."]1%3,
atoms=[['fe', [0,0,0]111,

fed.bzintegration([12,12,12])

fed.vxc (version=xc)

fed.relativistic('scalar')

fed.spin (spin=spin, initialspinsplit=1,initialspin=[[1,2.5]1])
fed.pipeFedit ()

B
#
=========================—===—=—==——=——=—c=—=—=—c===c=—==—========== =
def work (fplo, structure,vxc, spin, runit=False) :

Give all directories a name prefixed with the name of the parameter,

which is running, followed by the parameter itself

prefix="'v="

Remember the current directory.

ROOT=o0s.getcwd ()

loop over the running parameter, in our case the lattice constant (volume)

vvs=np.arange (60.,90.001, 3)

if structure=='bcc':

(continues on next page)

3.5. FEDIT scripting examples 139

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

pyfplo Documentation, Release 22.00-62

(continued from previous page)

nsite=2
else:
nsite=4

spdir="'NSP' if spin==1 else 'SP'
basedir=vxc+'/'+structure+'/"'+spdir

for v in vvs:
x=(v*nsite)xx (1./3)

make sure we are in the root directory of our data directory tree
os.chdir (ROOT)

create the directory name as described above (example 'V=60.00")
Use explicit format for x to ensure 2 digits after the comma.
This of course depends on the actual values.
dir="{2}/{0}{1}"'.format (prefix, '{0:12.2f}"' . format (v) .strip(),
basedir)
input creation branch
1f the directory does not yet exist, create it
if not os.path.exists (dir):
os.makedirs (dir);
print ('directory '+dir+' created')
change into the directory of paramter v
os.chdir (dir)
make input

makeInput (x, structure, vxc, spin)

do we run the job?
if runit:

print (fplo+" running in "+dir+" ...")

now execute, whatever is nessecary to launch job in the current

directory (dir)

START Example

We just run the jobs sequentially on a single machine

and redirect stdout to file 'out' and stderr to /dev/null.

(In this way there will be no dangling output and the job could
run savely in the background, which is not done in our example
here.)

Furthermore, we use the +yes-file mechanism to avoid a crash

due to repeated inital polarization (spin split).

The "y" below enforces fplo to continue in such situation

without a repeated split and does nothing otherwise. See manual.

with open('+yes','w') as f:
f.write('y")

os.system('cat +yes | {0} 2>/dev/null > out'.format (fplo))
END Example

(continues on next page)

140 Chapter 3. Examples

138

139

140

141

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

pyfplo Documentation, Release 22.00-62

just in case
os.chdir (ROOT)

and of x-loop
os.chdir (ROOT)

if runit:

os.chdir (basedir)
os.system("grepfplo -p
os.system("grepfplo -p
os.chdir (ROOT)

(continued from previous page)

ry="
ry="

-m EE |
-m SS |

tee e".format (prefix))
tee s".format (prefix))

def collect () :

collect the results

os.system ("xfbp

pic.cmd")

def INPUT (n) :

if sys.version_info[0] ==
return input (n)

else:

return raw_input (n)

Set an FPLO version,

needs,

you need to set this according to your
including possibly a path.

Or you use option -p.

A guess for the default name:
FPLO=fploio. fploExecutable ()

scan command line options

usage = "usage:

%$prog [—c]

[-r] [-h] [-p fploexecname]"

parser = OptionParser (usage)

parser.add_option('-r',

'',action="'store_true',dest="run',default=False,

help='force fplo run')

parser.add_option('-c','',action="store_true',dest="collect',default=False,
help='collect results')
parser.add_option('-p','',type='str',dest="fplo',default=FPLO,

(options, args)

sanity check

if (not options.
if INPUT ("Shall I run the jobs:

help='optional:

the name of an FPLO executable\n'+

'possibly with explicit path')
= parser.parse_args ()

collect)

and options.run:

ly/n]") !I="y"':

(continues on next page)

3.5. FEDIT scripting examples

141

199

200

201

202

203

205

206

207

208

209

210

211

212

214

215

217

218

220

221

222

223

pyfplo Documentation, Release 22.00-62

(continued from previous page)
print ("\nOK no running then.\n")
sys.exit (0)
elif (not options.collect) and (not options.run):
if INPUT("Shall I (re)create the input: [y/n]")!='y':
print ("\nOK, aborting.\n")
sys.exit (0)

do the work
if not options.collect or options.run:
for structure in ['bcc', "fcc']:
for vxc in ['lda','gga']:
for spin in [1,2]:
if structure=='fcc' and spin==2: continue
work (options. fplo, structure, vxc, spin, options.run)

if (not options.collect) and options.run:
print ('\nTo show results rerun with option -c.')
print ('To rerun (shorter output files) rerun -r or -r —-c.\n')

if (not options.collect) and (not options.run):
print ('\nTo calculate run with option -r or -r —-c\n')

if options.collect:
collect ()

3.5.5 Set Extended basis

To simply switch on an extended basis (as was used in some fplo publications) use the following example as orien-
tation (the actual code is three lines) The tutorial files are in FPLO. ../DOC/pyfplo/Examples/fploio/
set_extended_basis where FPLO. . . stands for your version’s FPLO directory, e.g. FPL0O21.00-61.
Here are the files of this directory:

* README (page 142)
* wrapp.sh (page 142)
* simple.py (page 143)
README
Read the script to understand what it is doing.
It just demonstrates how one can set an extended basis
in an existing =.in.
run extended_basis.py as
extended_basis.py
then have a look at =.in via fedit.
If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.
wrapp.sh extended_basis.py
A wrapper to setup paths wrapp. sh

#! /usr/bin/env sh
#

(continues on next page)

142 Chapter 3. Examples

20

21

22

23

2

25

26

27

28

29

31

32

34

35

37

38

40

41

42

43

44

pyfplo Documentation, Release 22.00-62

(continued from previous page)

Example wrapper script for path setting.
#
FHE A A A R R R R

set your path here
pyfplopath=$HOME/FPLO/FPL0O22.00-62/PYTHON/

export PYTHONPATH=Spyfplopath:$PYTHONPATH

Sx

The python script extended_basis.py

#! /usr/bin/env python

=====——=————————————————————————————c——————————c—————————————=——===
file: extended _basis.py

author: k.koepernik(@ifw—-dresden.de

date: 06 Jun 2017

from _ future import print_function
import sys

import os

import pyfplo.fedit as fedit

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (fedit.version,fedit.__file_))
protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
ommmmmmmmmmmmmmmee e e e e e e e =
#
$# mmmmmmmmmmmm—m e e e e e
def work () :
Get an Fedit instance:
We eant to change the basis in an existing =.in so recreate=False

fed=fedit .Fedit (recreate=False)

Set extensionlevel=2 and add H-3d and f-orbital if needed and

leave the rest as it 1is:

fed.basis (extensionlevel=2, add3d=True, addf=True)

If the rest of the basis menu should be reset to default use:

fed.basis (extensionlevel=2, add3d=True, addf=True,
multicore=[],multisemicore=[],
coredf=[],coredfNoValenceF=[])

fed.pipeFedit (prot=True)

return
B ==
#
mmmmm—————————— o == == — ==
if name_ == '_ main__ '

work ()

sys.exit (0)

(continues on next page)

3.5. FEDIT scripting examples

143

45

pyfplo Documentation, Release 22.00-62

(continued from previous page)

3.5.6 BCC Iron, extended basis

This example prepares fplo input and optionally runs the calculations to show the influence of an ex-
tended basis. The tutorial files are in FPLO.../DOC/pyfplo/Examples/fploio/fedit_use/
bcceFe_extended_basis where FPLO. . . stands for your version’s FPLO directory, e.g. FPL021.00-61.
Here are the files of this directory:

e README (page 155)

* wrapp.sh (page 144)

* extbasis.py (page 145)
README

Read the script to understand what it is doing.
It just demonstrates how to use pyfplo.fedit to
choose the basis.

run extbasis.py as

extbasis.py

then have a look what was created.
Now run

extbasis.py -r -c
to do the calculations and collect the results.
Or just

extbasis.py -c
to only collect results (if there are any yet).

If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.

wrapp.sh extbasis.py
wrapp.sh extbasis.py -r -c
wrapp.sh extbasis.py -c

A wrapper to setup paths wrapp. sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.

#
B i i i i

set your path here
pyfplopath=$HOME/FPLO/FPL0O22.00-62/PYTHON/
export PYTHONPATH=$pyfplopath:$PYTHONPATH

(continues on next page)

144 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

pyfplo Documentation, Release 22.00-62

(continued from previous page)

Sx

The python script extbasis.py

#! /usr/bin/env python

#

Example script to create a series of calculations for varying lattice
constant for bcc Fe.

#

#
lZddazdadazssdazasdadasdadatdadatdadatdadatsadadasdadaddadaddadaddidssdii
from _ future import print_function

import sys

If your pyfplo is not found you could als
explicitly specify the pyfplo version path:
#sys.path.insert (0, "/home/magru/FPLO/FPL0O22.00-62/PYTHON/doc") ;

import os

from optparse import OptionParser
import numpy as np

import pyfplo.fedit as fedit

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (fedit.version, fedit._file))
protect against wrong version
#1f fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')
B o= == e e e e ==
#
__
def INPUT (n) :

if sys.version_info[0] == 3:

return input (n)
else:

return raw_input (n)

def work (fplo,bases, runit=False) :

sanity check
if runit:

if INPUT ("Shall I run the jobs: [y/n]")!='y':
print ("\nOK no running then.\n")
sys.exit (0)
else:
if INPUT ("Shall I (re)create the input: [y/n]")!='y'

print ("\nOK, aborting.\n")
sys.exit (0)

Give all directories a name prefixed with the name of the parameter,
which is running, followed by the parameter itself
prefix="al0="

Remember the current directory.

(continues on next page)

3.5. FEDIT scripting examples 145

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

pyfplo Documentation, Release 22.00-62

(continued from previous page)

ROOT=o0s.getcwd ()
loop over the running parameter, in our case the lattice constant

for bas in bases:
os.chdir (ROOT)

if not os.path.exists (bas): os.mkdir (bas)
os.chdir (bas)

for x in np.arange(4.4,6.01,0.4):
make sure we are in the root directory of our data directory tree

create the directory name as described above (example 'a0=6.00")
Use explicit format for x to ensure 2 digits after the comma.

)

dir="{0}{1}"'.format (prefix, '{0:12.2f}"'.format (x) .strip())

input creation branch

1if the directory does not yet exist, create it
if not os.path.exists(dir):
os.mkdir (dir)
print ('directory '+dir+' created')
else:
print ('directory {0} exists allready'.format (dir))

change into the directory of paramter S$xx
os.chdir (dir)

do the fedit magic
fed=fedit.Fedit ()
fed.resetPipelnput (recreate=True) # important
fed.symmetry (compound="Fe, alO-variation",
spacegroup=229,
type='cry',
units='bohr',
latcon=[x,x,x],
angles=["'90."']x%3,
atoms=[['fe',[0,0,0]11],
)
fed.bzintegration([16,16,16])
fed.vxc (version='5") # gga
fed.relativistic('scalar')
if bas=='DT+f':
fed.basis (extensionlevel=2, addf=True, add3d=True)
fed.spin(spin=2,initialspinsplit=1,initialspin=[[1,2.5]])
fed.pipeFedit ()

do we run the job?
if runit:

print (fplo+" running in "+dir+" ...")

now execute, whatever is nessecary to launch job in the current
directory (dir)

START Example
We just run the jobs sequentially on a single machine

(continues on next page)

146

Chapter 3. Examples

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

pyfplo Documentation, Release 22.00-62

S R H

here.)

Furthermore,

The

W ¥ W W

and redirect stdout to file
(In this way there will be no dangling output and the job could
run savely in the background,

(continued from previous page)

'out' and stderr to /dev/null.

which is not done in our example

we use the tyes—-file mechanism to avoid a crash
due to repeated inital polarization (spin split).

"y" below enforces fplo to continue in such situation
without a repeated split and does nothing otherwise.

See manual.

with open('+yes','w') as f:
f.write('y")

os.system('cat +yes

END Example

just in case
os.chdir (ROOT)
os.chdir (bas)
and of x-loop
and of bas-loop

os.chdir (ROOT)

./a0=4.
./a0=4.
./a0=5.
./a0=5.60/
./a0=6.00/
./simple.py

40/
80/
20/

lattice constant.

If we want to change,

S H H H H I W H HH I H H W W W R

say,
in the pipe-section above,
re-converge the calculations (option -r).

where every directory contains the same setup,

{0} 2>/dev/null > out'.format (fplo))

After the run we should have a directory structure like

except for the

We may now perform converged calculations (option -r) in all directories.
the number of k-points,
re-run that script to change the input and

we edit this number

#
== == == == ==
def collect (bases) :
collect the results
ROOT=o0s.getcwd ()
for bas in bases:
os.chdir (ROOT)
os.chdir (bas)
os.system("grepfplo —-p 'al=' —-m EE | tee e")
os.system("grepfplo -p 'a0=' -m SS | tee s")
os.chdir (ROOT)
os.system("xfbp pic.xpy")
mmmmmmmmmmmmmmmmm e e e e =

(continues on next page)

3.5. FEDIT scripting examples

147

179

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

pyfplo Documentation, Release 22.00-62

(continued from previous page)

Set an FPLO version, you need to set this according to your
needs, including possibly a path. Or you use option -p.

A guess for the default name:

FPLO=fedit.fploExecutable ()

scan command line options

usage = "usage: %prog [-c] [-r] [-h] [-p fploexecname]"

parser = OptionParser (usage)

parser.add_option('-r','',action="store_true',dest="'run',default=False,
help='force fplo run')

parser.add_option('-c','',action="'store_true',dest='collect',default=False,
help='collect results')

parser.add_option('-p','',type="'str',dest="fplo',default=FPLO,
help='optional: the name of an FPLO executable\n'+
'possibly with explicit path')

(options, args) = parser.parse_args()

bases=["'def', 'DT+f "]

do the work

if not options.collect or options.run:
work (options.fplo,bases, options.run)

if options.collect:
collect (bases)

3.5.7 mBJ XC-potential

This example prepares fplo input and optionally runs the calculations to show the influence of an extended basis
on the gap-results for the mBJ XC-potential. The tutorial files are in FPLO. . ./DOC/pyfplo/Examples/
fploio/fedit_use/mBJ where FPLO. . . stands for your version’s FPLO directory, e.g. FPL.0O21.00-61.
Here are the files of this directory:

* README (page 148)

* wrapp.sh (page 149)

e mbj.py (page 149)
README

This example illustrates the use of fedit, mBJ-xc-potential,
an extended basis and pyfplo.fploio.OutGrep. It wi

to only create the input run as
mb j . py

run the calculations serially (you need to modify to run on batch systems)
mbj.py —-r

if done collect results like so

mbj.py -c

(continues on next page)

148 Chapter 3. Examples

20

21

22

23

24

25

20

21

22

23

24

25

26

27

28

29

30

pyfplo Documentation, Release 22.00-62

(continued from previous page)

If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.

wrapp.sh mbj.py -r

wrapp.sh mbj.py -c

A wrapper to setup paths wrapp. sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.
#

PR A R

set your path here
pyfplopath=$HOME/FPLO/FPLO22.00-62/PYTHON/

export PYTHONPATH=$pyfplopath:$PYTHONPATH

S %

The python script mbj . py

#! /usr/bin/env python3

file: mbj.py
author: k.koepernik@ifw-dresden.de
date: 30 Jun 2022

from _ future_ import print_function
import sys,os

import numpy as np

import argparse

import pyfplo.fedit as fedit

import pyfplo.fploio as fploio

ROOT=o0s.getcwd ()
FPLO=fedit.fploExecutable ()

def mkdir(dir) :
if not os.path.exists(dir): os.mkdir (dir)
return dir

def work (basis,xcfunctionals, cases,options) :

os.chdir (ROOT)

(continues on next page)

3.5. FEDIT scripting examples

149

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

65

66

67

68

69

70

71

2

73

74

5

76

77

78

79

pyfplo Documentation, Release 22.00-62

(continued from previous page)
for case in cases:
comp=case ['compound"']
al=case['a0"']

bO=case['b0'] if 'b0O' in case else a0

cO=case['c0'"] if '"cO0' in case else al
setting=case['setting'] if 'setting' in case else None
rel=case['rel'] i1f 'rel' in case else 'S'
spin=case['spin'] if 'spin' in case else 1
initialspin=(case['initialspin'] if 'initialspin' in case

else None)

os.chdir (ROOT)
dir=mkdir (dir="{co
for bas in basis:
dir=mkdir (' {comp}/{bas}'.format (comp=comp,bas=bas))
for xc in xcfunctionals:
dir=mkdir (' {cc }/ {bas}/ {xc}'
. format (comp=comp, bas=bas, xc=xc[1]))
os.chdir (dir)

mp} "' .format (comp=comp))

if (not options.collect):
fed=fedit .Fedit (recreate=True)
fed.symmetry (spacegroup=case(['spgr'],
setting=setting,
latcon=[a0,b0,c0],
units='ang',
atoms=case['atoms'])
fed.spin(spin=spin, initialspinsplit=True,
initialspin=initialspin,
fsm=[True if spin==2 else False,0])
fed.vxc (version=xc[0])
fed.relativistic (mode=rel)
if bas=='DT+f':
fed.basis (extensionlevel=2,
addf=True, add3d=True)
fed.pipeFedit ()

if (options.run) :
print ('running {} in {}'.format (FPLO,dir))
with open('+yes', 'w') as fh:
fh.write ('y\ny\ny\ny\n')
os.system('cat +yes | {} > out '.format (FPLO))

if (options.collect):
og=fploio.OutGrep ('out')

try:
gap=float (og.grep('gap') [-11])
except:
gap=-1le6
print (('{c s} {bas:<10s} {xc:<1
"¢).3f} eV last dev={1i
. format (comp=comp, bas=bas, xc=xc[1],gap=gap,
it=og.grep('it"') [-11))
os.chdir (ROOT)
return
Smmmmmmmmmmmmmmmm oo e e
#
R
def options():
parser = argparse.ArgumentParser (description="'",

(continues on next page)

150 Chapter 3. Examples

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

pyfplo Documentation, Release 22.00-62

(continued from previous page)

conflict_handler='resolve',
epilog="")
parser.add_argument ('-c', '—--collect',dest='collect',
action="'store_true',
help='""',default=False)
parser.add_argument ('-r', '--run',dest='run',action='store_true',
help='"',default=False)
args = parser.parse_args ()
return args

args=options ()

work (basis=['def', 'DT+f'],
xcfunctionals=[['4"','PW92'],['9', 'mBJLDAC']],
cases=[{'compound':'C', 'spgr':'227','a0':3.567,

'atoms':[['C',['1/8','1/8"','1/8"]1]],'rel':"'S"},
{'compound':'CaF2', 'spgr':'225','a0':5.462,
'atoms':[['Ca', ['0','0"','0"']],

['F',['1/4",'1/4"','1/4"11],"'rel":'S"'},
{'compound':'AlAs','spgr':'216"','a0':5.6620,
'atoms':[['Al',['0','0"','0"]],
['As',['1/4",'1/4','1/4"]1]1]1, 'rel':'F"},
{'compound':"'HfS2', 'spgr':'164",
'a0':3.631,'c0':5.841,
'atoms':[['Hf',['0','0"','0"']],
['s',[('1/3','2/3','1/4'111, 'xrel':'F'},
{'compound':'NiO', 'spgr':'166', 'setting':'E",
'a0':np.sqgrt (0.5)*x4.176, 'cO0':np.sqrt (12.)*4.176,
'atoms': [['Ni', ['0','0"','0"]],
['Ni', ['0','0",'1/2"']],
(ro,r'o','o",'1/4'111,
'spin':2, '"initialspin':[[1,4],[2,-4]1,[3,0]1},
]
,options=args
)
sys.exit (0)

3.6 FPLOIO examples

* Reading =.in files (page 152)

* =files to json (page 153)

* Reading cif-files (page 155)

» Write =.in with low level routines (page 158)
» Write =.in with mid level routines (page 159)
» Extract default basis into =.basdef (page 161)
» User defined basis (in =.basdef) (page 163)

» Extract =.basdef from output file (page 168)

3.6. FPLOIO examples 151

20

21

22

23

24

25

26

27

28

29

39

40

41

42

43

44

45

46

pyfplo Documentation, Release 22.00-62

* Grep results (page 170) I

3.6.1 Reading =.in files

This tutorial shows how to use INParser (page 16) and POb j (page 17) to read =. in-files.

The tutorial files are in FPLO.../DOC/pyfplo/Examples/fploio/fploio/readinfile where
FPLO. . . stands for your version’s FPLO directory, e.g. FPL0O21.00-61. Here are the files of this directory:

* readinfile.py (page 152)
e =.in
readinfile.py

#! J/usr/bin/env python

e
file: bandplot.py

author: k.koepernik(@ifw—-dresden.de

date: 19 Apr 2017

from _ future import print_function
import sys
import pyfplo.fploio as fploio

def work () :

print ('\nThis example shows how to parse =.in files.\n')

p=fploio.INParser ()

p.parseFile('=.in")

d=p ()

print ('sorts:',d('nsort').L)

print ('lattice constants:',d('lattice_constants').listD)
print ('or\nlattice constants:',d('lattice_constants').listS)

print ('\nWyckoff positions')
dw=d ('wyckoff positions')
for i in range(dw.size()):
dd=dw [1i]
print (dd('element').S,dd('tau').listS)

print ('\nAlternative way of doing it"')
for i in range(dw.size()):
dd=dw [1i]

print (dd('element').S,dd('tau') [0].S,dd('tau') [1].S5,dd('tau') [2].S)

print ('\nYet another way')
for i in range(dw.size()):
dd=dw [i]
print (dd('element').S,dd('tau[0]"').S,dd('tau[l]").S,dd('taul[2]").S)

print ('\nsingle shot')
print (d('wyckoff positions[0].element') .S,
d('wyckoff_positions[0].tau').listS)

print ('\noptions')
(continues on next page)

152 Chapter 3. Examples

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

pyfplo Documentation, Release 22.00-62

do=d ('options"')

for i in range(do.size()):
print (do[i].S,)
if ((1+1)%4)==

print ()

print ()

(continued from previous page)

print ('\nsetting CALC_PLASMON_FREQ and CALC_DOS')

do['CALC_PLASMON_FREQ'] .L=True
do['CALC_DOS'] .L=True

print ('\nwhich now are',bool (do['CALC_PLASMON_FREQ'].L)

, 'and',bool (do['CALC_DOS'].L))

print ('\nhave another look at options')

do=d ('options"')
for i in range(do.size()):
print (do[i].S,)

if (1i%4)== print ()
print ()
return
===== —— — e
#
mmmmmmmmmmmmmm e e
if _name_ == '_ main_ '

3.6.2 =.files to json

This tutorial shows how to convert files with the =. in syntax into json-files. It demonstrates the usage of POb j

(page 17).

The tutorial files are in FPLO. . . /DOC/pyfplo/Examples/fploio/equaldot2json where FPLO. . .
stands for your version’s FPLO directory, e.g. FPL0O21.00-61. Here are the files of this directory:

* equaldot2json.py (page 153)
e =.1in
equaldot2json.py

#! /usr/bin/env python

file: testscan.py
author: k.koepernik@ifw-dresden.de
date: 04 Okt 2018

from _ future import print_function
import pyfplo.fploio as fploio

import argparse

import json

version = 20181002

(continues on next page)

3.6. FPLOIO examples

153

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

59

60

61

62

63

64

65

66

67

68

69

71

2

73

pyfplo Documentation, Release 22.00-62

(continued from previous page)

parser = argparse.ArgumentParser (description='Translates “=.x" files \
(e.g., “=.in", "=.xef’, “=.dens”) into \
a JSON file without calling pyfplo. \
Works with Python 2, but the order \
of entries is retained in Python 3, \
only.', conflict_handler='resolve',
epilog="Please report any bugs to \
Oleg Janson <olegjanson@gmail.com>.")
parser.add_argument ('-i', '—--input', default='=.in',
type=str,dest="input',
help="'FPLO input file (default:$ (default)s)"')
—-—output', type=argparse.FileType('w'),

parser.add_argument ('-o', '
default="'-"', help='JSON output file')
parser.add_argument ('-n', '--nice', dest='nice', action='store_true',

help='add indents (otherwise just a single line)')
parser.set_defaults (nice=False)

parser.add_argument ('-v', '--version', action='version',\

help='print the version',\

version="'?% (prog)s version {:d}'.format (version))
args = parser.parse_args ()
jsonprintoptions = ({}, {'indent':4}) [args.nice]
R
#
R

def scanStruct (d,dictdata,ind=""):
n=d.first ()
while True:
if n.isScalar():
if n.isInt():
dictdata[n.name ()]=n.L
elif n.isReal():
dictdata[n.name ()]=n.D
elif n.isLogical():
dictdata[n.name ()]=bool (n.L)
elif n.isFlag():
dictdata[n.name ()]=bool (n.L)
else:
dictdata[n.name ()]=n.S
elif n.isArray():

dictdata[n.name ()]=1[]

scanArray (n,dictdata[n.name()],n.sizes (), len(n.sizes()))
elif n.isStruct () :

dictdata[n.name ()]={}

scanStruct (n,dictdata[n.name ()], ind+' ")
elif n.isStructArray():

dictdata[n.name ()]=1]
for i in range(n.size()):
dictdata[n.name ()] .append ({})
scanStruct (n[i],dictdata[n.name ()] [-1],ind+" ")
if not n.hasNext (): break

n=n.next ()

return
===== — — — — —_———— -
#
sS=============c=oo- R R R R R R R R
def scanArray(d,dictdata,sizes,dim,idx=[],ind=""):

(continues on next page)

154 Chapter 3. Examples

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

pyfplo Documentation, Release 22.00-62

(continued from previous page)

if dim==len(sizes):
idx=[0] *dim
for i in range(sizes[dim-1]):
idx [dim-1]=1
if dim==1:
n=d[tuple (idx)]
if n.isInt () :
dictdata.append(n.L)
elif n.isReal():
dictdata.append (n.D)
elif n.isLogical():
dictdata.append (bool (n.L))
elif n.isFlag():
dictdata.append ({n.S[0:-3] :bool(n.L)})
else:
dictdata.append(n.S)
else:
dictdata.append([])
scanArray (d,dictdata[-1],sizes,dim-1,idx,ind="")

return
mmmmmmmmmmmm—m e e e
#
R
if _name. == '_ main_ '

p=fploio.INParser ()
p.parseFile (args.input)

dictdata={}
scanStruct (p () ,dictdata)

with args.output as jsonfile:
json.dump (dictdata, jsonfile, =*xjsonprintoptions)

3.6.3 Reading cif-files

This tutorial demonstrates how to read cif-files. See st ructureFromCIFFile (page 21). The tutorial files
are in FPLO. ../DOC/pyfplo/Examples/fploio/cif where FPLO. . . stands for your version’s FPLO
directory, e.g. FPL0O21.00-61. Here are the files of this directory:

* README (page 155)
* fromcif.py (page 156)
* RuW.cif

README

This demonstrates the reading of cif files and some of the possible options.

(continues on next page)

3.6. FPLOIO examples 155

20

21

22

23

24

25

26

27

28

29

30

31

32

33

20

21

22

23

24

25

26

27

pyfplo Documentation, Release 22.00-62

(continued from previous page)

Execute:
python fromcif.py raw

which loads the cif as it is (which happens to have spacegroup 1).
Have a look at the output, especially the Wyckoff positions.

Next, execute:
python fromcif.py smoothed

and have a look at the output, especially the Wyckoff positions,
which are now fractionals.

Next, execute:

python fromcif.py raw detsym

and have a look at the output: we got space group 63 and

2 Ru positions, due to the approximate fractional 0.1666 and such.
Finally, execute:

python fromcif.py smoothed detsym

Now we have one Ru and W position with fractionals and spacegroup 194

fromcif.py

#! /usr/bin/env python

B oo
file: fromcif.py

author: k.koepernik(@ifw—-dresden.de

date: 22 Mar 2018

from _ future_ import print_function
import sys

import pyfplo.fploio as fploio

import pyfplo.fedit as fedit

def work (mode='raw',detsym=False) :

print ('\nThis example shows how to import cif files.')
whtol=le—-4 if mode=='smoothed' else 1le-6

Create FPLOInput object and read =.in or create new parser
content if =.in does not exist.
fio=fploio.FPLOInput ('=.in")
read cif file into parser
fio.structureFromCIFFile ('RuWW.cif',wyckofftolerance=whtol,
determinesymmetry=detsym)
write =.1in
(continues on next page)

156 Chapter 3. Examples

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

83

84

86

87

pyfplo Documentation, Release 22.00-62

(continued from previous page)

fio.writeFile("=.1n")

here we have =.1in with the structure from the cif file

use fedit to set further input
fed=fedit.Fedit ()

fed.iteration (n=100)
fed.bzintegration (nxyz=[12,12,6])
fed.pipeFedit ()

print ('\n\nNow we have read the raw cif content as is, '+
' which results in \n'+
'the following symmetry settings:\n\n')

printsettings ()

return
m===========——=——oe—ooeoooo .. ==
#
R

def printsettings() :

fio=fploio.FPLOInput ('=.in")

par=fio.parser ()

d=par ()

print ('spacegroup number : ',d('spacegroup.number').S)
print ('spacegroup setting: ',d('spacegroup.setting').S)
print ('lattice constants : ',d('lattice_constants').listS)
print ('axis angle : ',d('axis_angles') .listS)

dw=d ('wyckoff positions"')

print ('"Wyckoff positions: ',dw.size())

for i in range(dw.size()):
taus=dw[i] ('tau').listS

print ('{0:>2s} {1:>20s} {2:>20s} {3:>20s}'

.format (dw[i] ('element').S,taus[0],taus[1l],taus[2]))
R
#

================================—————===—=—=—c=—=c=——=—========== -
def usage():

print ('usage: ',sys.argv[0],' (raw | smoothed) [detsym]"')
mmmmmmmmmmmmmmme e e e e e e e e e e
#
=============================—=c——c=——=—=c=c=—c=——c———————————==== =
if name == '_ _main__ '

if len(sys.argv)<2:
usage ()
sys.exit (0)
mode=sys.argv[l]
mode=mode.replace('-","'")

(continues on next page)

3.6. FPLOIO examples 157

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

20

21

22

23

2

25

26

27

28

pyfplo Documentation, Release 22.00-62

(continued from previous page)

if not (mode=='raw' or mode=='smoothed') :
usage ()
sys.exit (0)

detsym=False
if len(sys.argv)>=3:
detsym=True

work (mode, detsym)

sys.exit (0)

3.6.4 Write =.in with low level routines

This tutorial shows how to use INParser (page 16) and POb j (page 17) to modify =. in-files. This should not
be done for symmetry input!

The tutorial files are in FPLO. . ./DOC/pyfplo/Examples/fploio/fploio/writinfilelowlevel
where FPLO. . . stands for your version’s FPLO directory, e.g. FPL0O21.00-61. Here are the files of this
directory:

* writinfilelowlevel.py (page 158)
e =.in
writinfilelowlevel.py

#! /usr/bin/env python

mmmmmmmmmmmmmmmmm e e e
file: bandplot.py

author: k.koepernik(@ifw-dresden.de

date: 19 Apr 2017

from _ future import print_function

import sys

import pyfplo.fploio as fploio

===== e ———— e =

def work () :

print ('\nThis example shows simple low level =.in writing.')
print ('DO NOT DO THIS UNLESS YOU ARE CONFIDENT YOUR DOING THE '+
'RIGHT THING.\n')
p=fploio.INParser ()
p.parseFile('=.in")
d=p ()
d('bzone_integration.nkxyz').listL=[16,16,16]
d('spin.mspin') .L=2
d('relativistic.type') .L=3
This illustrates one of the problems with the low level.
In order to keep =.in consistent for human readers
we should set the descriptions too.
It is better to use pyfplo.fedit instead.
d('relativistic.description') .S="'full relativistic'
(continues on next page)

158 Chapter 3. Examples

40

41

42

43

44

45

46

47

48

20

21

22

23

24

25

pyfplo Documentation, Release 22.00-62

(continued from previous page)

p.writeFile('=.in")

print ('done')

return
R [— -
#
===== e e e e e ==
if _ name_ == '_ main_ '

work ()

3.6.5 Write =.in with mid level routines

This tutorial shows how to use FPLOInput (page 20) to modify =. in-files. This should not be done for sym-
metry input!

The tutorial files are in FPLO. . ./DOC/pyfplo/Examples/fploio/fploio/writinfilemidlevel
where FPLO. . . stands for your version’s FPLO directory, e.g. FPL0O21.00-61. Here are the files of this
directory:

* writinfilemidlevel.py (page 159)
e =.in
writinfilemidlevel.py

#! /usr/bin/env python

=====——==——————————————————————————————————=————————————=————=——=======
file: bandplot.py

author: k.koepernik(@ifw—-dresden.de

date: 19 Apr 2017

from _ future import print_function
import sys,os
import pyfplo.fploio as fploio

def work () :

print ('\nThis fictitious example shows simple mid level =.in writing.')
print ('DO NOT DO THIS UNLESS YOU ARE CONFIDENT YOUR DOING THE '+
'RIGHT THING.\n')

fio=fploio.FPLOInput ()

if os.path.exists('=.in'"):
fio.parseInFile (True)

else:
fio.createNewFileContent ()

p=fio.parser ()
(continues on next page)

3.6. FPLOIO examples 159

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

81

82

84

85

pyfplo Documentation, Release 22.00-62

d=p() # the root of the data tree

set length units

d("lengthunit.type") .L=2

not really needed but good for human readers of =.in
d("lengthunit.description") .S="angstroem'

set wyckoff positions
d("nsort") .L=3

yes, we need to do this too.
dw=d ("wyckoff_ positions")
dw.resize (3)

i=0 ;

di=dw[i]

di('element') .S='"Fe'
di('tau').1listD=[0,0,0]

i+=1 ; di=dwl[i]
di('element').S="A1"
di('tau'").listS=['1/2"','1/2"','1/2"]

i+=1 ; di=dwl[i]
di('element').S="Mn"
di('tau').listS=['1/4"',"'1/4','1/4"]

d('lattice_constants') .listD=[5.4,5.4,5.4]
#or
d('lattice_constants') .listS=['5.4"','5.4"','5.4"]

symmetry update required
msg=fio.symmetryUpdate () ;
print (msg)

reset all other input, to get a default file
fio.resetNonSymmetrySections ()

here we can set other things
d('spin.mspin') .L=2

(continued from previous page)

fio.writeFile("=.in")

print ('done')

return
R
#
=============================—=—=c——c=—=c=c=—c=——c————————————=== =
if name == '__main__ '

work ()

sys.exit (0)

(continues on next page)

160 Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

(continued from previous page)

3.6.6 Extract default basis into =.basdef

This example extracts the default basis. The tutorial files are in FPLO.../DOC/pyfplo/Examples/
fploio/basis/extract_default_basdef where FPLO. . . stands for your version’s FPLO directory,
e.g. FPL0O21.00-61. Here are the files of this directory:

* README (page 161)

* wrapp.sh (page 161)

e extractdefaultbasis.py (page 161)
README

Read the script to understand what it is doing.

It demonstrates how to extract the default basis from an existing =.in

into =.basdef

for manual basis manipulation, which could be done by a script (demonstrated
—~elsewhere) .

run extractdefaultbasis.py as

extractdefaultbasis.py
then have a look at =.basdef.
If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.
wrapp.sh extractdefaultbasis.py

A wrapper to setup paths wrapp . sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.

#

FHEHHH A E A A A R R R

set your path here
pyfplopath=$HOME/FPLO/FPL0O22.00-62/PYTHON/

export PYTHONPATH=$pyfplopath:$PYTHONPATH

Sx

The python script extractdefaultbasis.py

#! /usr/bin/env python

O e e
file: basis.py

author: k.koepernik(@ifw—-dresden.de

date: 06 Jun 2017

(continues on next page)

3.6. FPLOIO examples 161

23

2

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

42

43

45

46

47

48

49

50

51

52

54
55

56

59

60

61

62

63

64

65

66

pyfplo Documentation, Release 22.00-62

(continued from previous page)

from _ future import print_function
import sys

import os

import pyfplo.fedit as fedit

import pyfplo.fploio as fploio

print ('\npyfplo version=: {0}\nfrom: {1}\n'.format (fedit.version,fedit.__ file_))
protect against wrong version

#1f fedit.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')
R e ——————o =

#

4 == == == == ————— =

def work_short_version (prot=True) :

if not os.path.exists('=.in'"):

print ('"ERROR: this script assumes the existence of an =.in-file.')

sys.exit (1)

p=fploio.INParser ()

p.parseFile('=.in")
d=p () ('wyckoff_positions')
elements=[d[i] ('element').S for i in range(d.size())]

bastype=p () ('basis.version.type').L
b=fploio.Basis (bastype,elements)
b.writeFile ()

os.system('ls —1ltr ; echo ; cat =.basdef')

return

def work_long _version (prot=True) :

if not os.path.exists('=.in'):

print ('ERROR: this script assumes the existence of an =.in-file.')

sys.exit (1)

1: Get info for hand—-made basis creation

Read =.1in to get basisversion (optional) and
element (optionally: atomic number) list
p=fploio.INParser ()

p.parseFile('=.in")

d=p () ('wyckoff_positions')

elements=[d[i] ('element') .S for i in range(d.size())]

atomicnumbers=1ist (map (lambda x: fploio.c_elements.index (x),elements))

if prot:

print (('\n=.in contains Wyckoff positions with\n\telements

+'{}\n\tatomic numbers {}\n')
.format (elements, atomicnumbers))

basversion=(p() ('basis.version.type') .L,p() ('basis.version.description') .S)

—_n 7

print ('basis version in =.in: key={0[0]} name="{0[1]}"\n'.format (basversion))
Al

\n')

print ('available versions:\n', fploio.Basis.versions,

(continues on next page)

162 Chapter 3. Examples

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

pyfplo Documentation, Release 22.00-62

(continued from previous page)

2: Get default basis, compatible with =.in-content.

We could use basversion[0], or basversion[l] as argument

to fploio.Basis or (in later fplo versions) another basis ID.
b=fploio.Basis('default FPLO9 basis',elements)

egiuvalent:

b=fploio.Basis(l,elements)

or like this:

b=fploio.Basis('default FPLO9 basis',atomicnumbers)

3: write basdeffile (=.basdef):
b.writeFile ()

#or

#b.writeFile ('=.basdef")

Now we have the default basis in '=.basdef' which would be used by fplo
on running. We could modify it by hand too.

os.system('ls —-1ltr ; echo ; cat =.basdef')

return
mmmmmmmmmemeee e
#
===== ==
if name == '_ _main__'

print ('-'%«72, '\nlong version\n', '-'x72)

work_long_version ()

print ('-'x72, '\nshort version\n',6 '-'x72)
work_short_version ()

sys.exit (0)

3.6.7 User defined basis (in =.basdef)

This example extracts the default basis, modifies it and creates =.basdef. The tutorial files are in FPLO. . . /DOC/
pyvfplo/Examples/fploio/basis/modify_basdef where FPLO. . . stands for your version’s FPLO
directory, e.g. FPL0O21.00-61. Here are the files of this directory:

* README (page 163)

e wrapp.sh (page 164)

* basis.py (page 164)
README

Read the script to understand what it is doing.

It demonstrates how to extract the default basis into =.basdef and how to
modify it to achieve non-standard basis settings.

In fact it mostly replicates the fedit basis modification options using
low-level manipulation. This serves as a starting point for user-made
basis modifications.

(continues on next page)

3.6. FPLOIO examples 163

20
21
22
23
24
25
26

27

pyfplo Documentation, Release 22.00-62

(continued from previous page)

run basis.py as

basis.py

If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.

wrapp.sh basis.py

A wrapper to setup paths wrapp. sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.

#

E

set your path here
pyfplopath=$HOME/FPLO/FPLO22.00-62/PYTHON/

export PYTHONPATH=$pyfplopath:$PYTHONPATH

S %

The python script basis.py

#! /usr/bin/env python

===== e e ———— e =
file: basis.py

author: k.koepernik(@ifw-dresden.de

date: 06 Jun 2017

from _ future import print_function
import sys

import os

import pyfplo.fedit as fedit

import pyfplo.fploio as fploio

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (fedit.version,fedit._ file_))

protect against wrong version
#if fedit.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')

FPLO=fploio.fploExecutable ()

def makeINFile (extensionlevel=1,cored4f=None, cored4fNoValenceF=None,
addf=False, add3d=False,multicore=None,) :
"' make a (hypothetical compound) =.in-file '''
fed=fedit.Fedit (recreate=True)
fed.symmetry (spacegroup=123, latcon=[8,8, 8], atoms=
[
["fe',[0,0,0]],

(continues on next page)

164 Chapter 3. Examples

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

pyfplo Documentation, Release 22.00-62

(continued from previous page)

['eu', ['1/2','1/2','1/2"']],
('s',['1/2','0','0'11,
1)
fed.basis (extensionlevel=extensionlevel, coredf=coredf,
coredfNoValenceF=cored4dfNoValenceF, addf=addf, add3d=add3d
multicore=multicore)
write input file
fed.pipeFedit ()

return

def getBasisIngredient (prot=False) :

rro

Read =.in to get basisversion (optional) and
element (optinal: atomic number) 1list

rro

p=fploio.INParser ()

’

p.parseFile('=.in")
d=p () ('wyckoff_positions')
elements=[d[i] ('element').S for i in range(d.size())]
atomicnumbers=1ist (map (lambda x: fploio.c_elements.index (x),elements))
if prot:
print (('\n=.in contains Wyckoff positions with\n\telements !
+' {}\n\tatomic numbers {}\n'")
.format (elements, atomicnumbers))
basversion=(p() ('basis.version.type') .L,p() ('basis.version.description') .S)

return (basversion,elements,atomicnumbers)

def writeBasdef (basdeffile='=.basdef',extensionlevel=1,coredf=[],
cored4fNoValenceF=[],addf=False, add3d=False,
multicore=None,
makesingle=False,doubleSemiCoreS=False) :

(basversion,elements, atomicnumbers)=getBasisIngredient ()
b=fploio.Basis ('default FPLO9 basis',elements)

modify

for bd in b:
for 1 in range(l,extensionlevel) :
for o in bd.valence:
mu=o.multiplicity

o.append (Q=0.Q (mu-1) +2,P=max (min (o.P (mu-1),1.),0.85))
if add3d:
for bd in b:
haved=any ([o.name[l]=="'d' for o in bd.core])
haved=haved or any([o.name[l]=='d' for o in bd.semicore])
haved=haved or any([o.name[l]=='d' for o in bd.valence])

if not haved:
bd.valence.append ('3d',Q=[5],P=[11])

add S*f (Dxf if uncommented)

(continues on next page)

3.6. FPLOIO examples

165

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

pyfplo Documentation, Release 22.00-62

if addf:

for bd in b:
nmain=3
for o in bd.core:
if o.name[l]=="f":
nmain=max (nmain, int (o.name[0]))
for o in bd.semicore:
if o.name[l]=="f":
nmain=max (nmain, int (o.name[0]))
for o in bd.valence:
if o.name[l]=="f":

(continued from previous page)

nmain=max (nmain, int (o.name[0])+o.multiplicity-1)

if nmain<4:

bd.valence.append (' {:

1) f' . format (nm=nmain+1),Q=[5],P=[1])

#bd.valence.append (' {nm}f'. format (nm=nmain+1),0=[5,7],P=[1,1])

move 4f to core, leave remaining f-valence
for ¢ in coredf:

if isinstance(c,int) :
isort=c
else:
isort=elements.index (c.capitalize())+1
bd=b[isort-1] # isort is one-based as in FPLO
for o in bd.valence:
if o.name=="4f":
o.removeFirst ()
bd.core.append('4£f")

move 4f to core, no f-valence
for ¢ in cored4fNoValenceF:

if isinstance(c,int) :
isort=c
else:
isort=elements.index (c.capitalize())+1
bd=b[isort-1] # isort is one-based as in FPLO
for i,o in enumerate (bd.valence) :
if o.name=="4f":
bd.valence.remove (i)
bd.core.append('4£f")
break

make all valence MultiOrbitals single orbitals
This option does not exist in fedit.
if makesingle:

for bd in b:
for o in bd.valence:
while o.multiplicity>1: o.removelast ()

make only semicore s-orbitals double

This option does not exist in fedit.
if doubleSemiCoreS:

for bd in b:
for o in bd.semicore:
mu=o.multiplicity

if o.name[l]=="s"':

o.append (Q=0, S=5,P=max (min (o.P (mu-1),1.

#o.set (0, 0=0, S=-5)

make double core

if

(multicore is not None) and len (multicore)>0:

),0.85))

(continues on next page)

166

Chapter 3. Examples

pyfplo Documentation, Release 22.00-62

(continued from previous page)

150 for bd in b:

151 for o in bd.core:

152 o.set (0,Q=multicore[0][0],S=multicore[0][1])

153 for m in range(l,len(multicore)):

154 o.append (Q=multicore[m] [0],S=multicore[m] [1])

155

156

157

158 b.writeFile (basdeffile)

159

160 return

161 # ===
16 #

163 # __________ e e e e === ==
164 def extractBasDefFromOut (outfile='out',basdeffile="'=.basdef'):

165 with open (outfile, 'r') as fh:

166 lines=fh.readlines ()

167

168 with open (basdeffile, 'w') as fh:

169 start=False

170 for line in lines:

171 if line.startswith('Start: content of =.basdef'):

172 start=True

173 continue

174 if line.startswith('End : content of =.basdef'):

175 break

176 if start:

177 if line.startswith('-——"'"): continue

178 fh.write (line)

179

180 return

181 # e
182 #

183 # =====================s=sssss=sssssSSSSsssssSSSSSSSs=ssss=SSSSS=ss==== ==

1ss def work():
185
186

187

188 I
189 # With basis level2 (from fedit) :

190 makeINFile (extensionlevel=2, addf=True, add3d=True,

191 coredfNoValenceF=[2], # sort of Eu

192 multicore=[[0,0],[0,10]1)

193 # Here we are all set ... including level2 basis defined in =.1in.
194 i memmmmsmmmems e e e e e e e s e e e e e s e e s e s e e s e s e s e ===
195

196 $#F -
197 # For later diff-checking, run fplo to extract the basis as defined
198 # in =.1in from the outfile section

199 # Start: content of =.basdef

200 # A

201 # End : content of =.basdef

202 #

203

204

205 fed=fedit.Fedit (recreate=False)

206 fed.iteration(n=1) # single step, since we run for =.basdef extraction
207 fed.pipeFedit ()

208

209 # we want =.1in to determine the basis, so delete =.basdef

210 os.system('rm —-f =.basdef')

(continues on next page)

3.6. FPLOIO examples 167

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

pyfplo Documentation, Release 22.00-62

(continued from previous page)

print ('running fplo to extract which basis was used, wait a few secs...')
os.system('/{} > out'.format (FPLO))

extractBasDefFromOut ('out',basdeffile='=.basdef_as_defined_by_in_file'")

Extract default =.basdef and modify it
writeBasdef (basdeffile='=.basdef',extensionlevel=2,
addf=True, add3d=True, coredfNoValenceF=[2],
multicore=[[0,0],([0,10]1,
makesingle=False, doubleSemiCoreS=False)
which now should have the same basis modifications as defined in =.1in.
Compare the two
print ('Executing: diff =.basdef =.basdef_as_defined by_in_file ":"') # same
os.system('diff =.basdef =.basdef_as_defined by _in_file') # same
print ('Nothing should be shown from the diff!'")

,,,

return
mmmmmmmmmmmm—m e e e e
#
R
if _name. == '_ main_ '

work ()

3.6.8 Extract =.basdef from output file

This example extracts =.basdef from an fplo output file. The tutorial files are in FPLO. . ./DOC/pyfplo/
Examples/fploio/basis/extract_basdef_ from outfile where FPLO. .. stands for your ver-
sion’s FPLO directory, e.g. FPL0O21.00~-61. Here are the files of this directory:

* README (page 168)
e wrapp.sh (page 169)
* extractbasdeffromout.py (page 169)

README

Read the script to understand what it is doing.

It extracts =.basdef from an FPLO output file. This =.basdef

will contain the basis actually used during the calculation

(as opposed to the defualt =.basdef). Once extracted, it

will be used henceforth during calculations (and can be modified).

(continues on next page)

168 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

pyfplo Documentation, Release 22.00-62

(continued from previous page)

run extractbasdeffromout.py as

extractbasdeffromout.py
then have a look at =.basdef.
If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.
wrapp.sh extractbasdeffromout.py

A wrapper to setup paths wrapp. sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.

#

FHF A A A R R R

set your path here
pyfplopath=$HOME/FPLO/FPL0O22.00-62/PYTHON/

export PYTHONPATH=Spyfplopath:$PYTHONPATH

Sx

The python script extractbasdeffromout .py

#! /usr/bin/env python3

R
file: extractbasdeffromout.py

author: k.koepernik@ifw-dresden.de

date: 24 Jun 2022

from _ future import print_function
import sys
import numpy as np

def extractBasDefFromOut (outfile='out',basdeffile='=.basdef'):

with open (outfile,'r') as fh:
lines=fh.readlines ()

with open (basdeffile, 'w') as fh:
start=False
for line in lines:
if line.startswith('Start: content of =.basdef'):
start=True

continue

if line.startswith('End : content of =.basdef'):
break

if start:
if line.startswith('-——-'): continue

(continues on next page)

3.6. FPLOIO examples 169

40

41

42

43

44

20

21

22

23

24

25

26

pyfplo Documentation, Release 22.00-62

(continued from previous page)

fh.write (1line)

return
mmmmmmmmmmmmmmmm e e e e
#
R
if _name_ == '_ main_ '

extractBasDefFromOut (outfile='out',basdeffile="=.basdef")

sys.exit (0)

3.6.9 Grep results

These examples extract all (or the latest) occurances via Out Grep (page 22) of some results in the outfile.

The tutorial files are in FPLO. . . /DOC/pyfplo/Examples/fploio/grep/ where FPLO. . .

your version’s FPLO directory, e.g. FPL0O21.00-61. Here are the files of this directory:
e README (page 170)
* wrapp.sh (page 171)
* grepintodict.py (page 171)
e grepEtot.py (page 172)
e grepiterationprogress.py (page 172)
README

Demonstration of how to grep from FPLO output from within python scripts.
Read the scripts to understand what they are doing.
run scripts as
grepintodict.py
or
grepEtot.py
or

grepiterationprogress.py

If pyfplo path needs to be set use wrapp.sh. First edit pyfplopath
in wrapp.sh and then just put it in front as in any of the following.

wrapp.sh grepintodict.py
wrapp.sh grepEtot.py

wrapp.sh grepiterationprogress.py

stands for

170 Chapter 3.

Examples

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

pyfplo Documentation, Release 22.00-62

A wrapper to setup paths wrapp . sh

#! /usr/bin/env sh

#

Example wrapper script for path setting.

#
igaasssasassassssssssssssisddsssdadadaddadadaiaiaaaaaaaaaRR Rt EEEsddi

set your path here
pyfplopath=$HOME/FPLO/FPL0O22.00-62/PYTHON/

export PYTHONPATH=$pyfplopath:$PYTHONPATH

Sx

The python script grepintodict.py

#! /usr/bin/env python3

B
file: g.py

author: k.koepernik(@ifw—dresden.de

date: 22 Jun 2022

from _ future import print_function
import sys

import numpy as np

import pyfplo.fploio as fploio

print ('\npyfplo version=: {0}\nfrom: {I1}\n'.format (fploio.version,fploio.__ file
—))

protect against wrong version

#if fploio.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')

================-= ——_——— e =

#

mmmmmmmmmmmmmmmmm e e e e

def work (printmodes=True) :

if printmodes: # print grep modes
for k in fploio.OutGrep.modes.keys () :
print ('mode: {0:15s} : {1}'.format (k, fploio.OutGrep.modes[k]))
print ('-'+72,'\n")

this will read the file
og=fploio.OutGrep ('out')
si=og.sites()

grep some results from last appearance in file (last iteration)
results={}

results['etot '] = float (og.grep('EE'") [-11])

results['total spin']= float (og.grep('SS') [-11])

for i,s in enumerate (si):
site=i+1
results['spin {0}{1:<3d}"'.format (s.element,site)]\
=float (og.grep('SSat',site) [-1])

(continues on next page)

3.6. FPLOIO examples 171

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

pyfplo Documentation, Release 22.00-62

(continued from previous page)

for k in results.keys():
1:>20.10f})".format (k, results[k]))

print (' {0:<20s}

if printmodes: print ('\n','-'%72)

return
f o mmmm e —
#
mmmmmmmmmem e I =
if name == '_ _main_ '

work ()

The python script grepEtot . py

/usr/bin/env python3

#1
#

file: g.py

author: k.koepernik@ifw-dresden.de
date: 22 Jun 2022

from _ future_ import print_function
import pyfplo.fploio as fploio

print ('\npyfplo version=: {0j}\nfrom: {1}\n'.format (fploio.version, fploio.__file_
—))

protect against wrong version

#if fploio.version!='22.00': raise RuntimeError ('pyfplo version is incorrect.')

og=fploio.OutGrep('out')
print ('etot=',o0g.grep('EE"') [-1],"', gap=',og.grep('gap') [-1])

The python script grepiterationprogress.py

#! /usr/bin/env python3

A e
file: g.py

author: k.koepernik@ifw-dresden.de

date: 22 Jun 2022

from _ future import print_function
import os
import pyfplo.fploio as fploio

print ('\npyfplo version=: {0}\nfrom: {1}\n'.format (fploio.version,fploio.__ file_
))

protect against wrong version

#if fploio.version!='22.00"': raise RuntimeError ('pyfplo version is incorrect.')

og=fploio.OutGrep('out')
si=og.sites ()

with open('res','w') as fh:
res=og.grep('it")
(continues on next page)

172 Chapter 3. Examples

20

21

22

23

24

25

26

27

28

29

38

39

41

42

43

44

45

46

pyfplo Documentation, Release 22.00-62

fh.write ('# step last_dev\n')

for i,r in enumerate (res) :
fh.write (' {}

fh.write('\n")

res=og.grep ('EE")
fh.write('# step Etot\n')
for i, r in enumerate (res) :
fh.write (' {}
fh.write('\n")

res=og.grep('gap')
EO=float (res[0])
fh.write ('# step gap\n')
for i,r in enumerate (res) :
fh.write (' /{}
fh.write('\n")

with open('resspins', 'w') as fh:

for i,s in enumerate (si) :
site=i+1
res=o0g.grep('SSat',site)

fh.write('# step \'atom spin
for it,r in enumerate (res):

{J\n'.format (i, r))

{J\n'.format (i, r))

{J\n'.format (i, r))

(continued from previous page)

"} {})\'\n'.format (s.element, site))

fh.write('{} {/\n'.format (it, r))

fh.write('\n'")

os.system('xfbp grepiterationprogress.xpy')

3.6. FPLOIO examples

173

pyfplo Documentation, Release 22.00-62

174 Chapter 3. Examples

BIBLIOGRAPHY

[Yu2011] Rui Yu et.al. Phys. Rev. B 84, 075119 (2011). https://doi.org/10.1103/PhysRevB.84.075119

[Sol2011] A. A. Soluyanov, D. Vanderbilt Phys. Rev. B 83, 235401 (2011)
https://doi.org/10.1103/PhysRevB.83.235401

[Wangl5] Zhijun Wang et.a. arxiv:1511.07440 (2015)

[FukuiO5] [Takahiro Fukui et.al. J. Phys. Soc. Jpn. 74, 1674 (2005)]

175

https://doi.org/10.1103/PhysRevB.84.075119
https://doi.org/10.1103/PhysRevB.83.235401

pyfplo Documentation, Release 22.00-62

176 Bibliography

PYTHON MODULE INDEX

pyfplo.common, 27
pyvfplo.fedit,3
pyfplo.fploio, 15
pyfplo.slabify,4l
pyfplo.wanniertools, 68

177

pyfplo Documentation, Release 22.00-62

178 Python Module Index

Symbols

__call__ () (INParser method), 16
__call__ () (PObj method), 17

__eq__ () (Version method), 39
__getitem__ () (BasDefSection method), 26
__getitem__ () (Basis method), 25
__getitem__ () (BerryCurvatureData method), 67
__getitem__ () (OptionSet method), 36
__getitem__ () (PObj method), 18
__len__ () (BasDefSection method), 25
__ne__ () (Version method), 39
__setitem__ () (OptionSet method), 36

_ str__ () (BandHeader method), 32
__str__ () (BasDef method), 25

__str__ () (BasDefSection method), 26
__str__ () (BfieldConfig method), 65
__str__ () (BoxMesh method), 58

__str__ () (EnergyContour method), 59
__str__ () (FermiSurfaceOptions method), 62
__str__ () (GreenOptions method), 63
__str_ () (MultiOrbital method), 27
__str__ () (OptionSet method), 36
__str__ () (PObj method), 19

__str__ () (Site method), 37

__str__ () (Version method), 39

__str__ () (WFSymOp method), 66
__str__ () (WeightDefinition method), 36

_ str__ () (WeightDefinitions method), 35
__str__ () (WeylPoint method), 64

A

absToRel () (BoxMesh method), 57
active (BandPlot attribute), 31

active (FermiSurfaceOptions attribute), 62
add () (WanDefCreator method), 70

add () (WeightDefinitions method), 34
addAtoms () (WeightDefinition method), 35
addContrib () (Wandef method), 73
addLabels () (WeightDefinition method), 35
addToPipelInput () (Fedit method), 5
addWeights () (BandWeights method), 33
A1l (Vlevel attribute), 40

alpha (WFSymOp attribute), 66

anchor (Slabify attribute), 55

append () (BasDefSection method), 25
append () (MultiOrbital method), 26

INDEX

axisl (WeylPoint attribute), 64
axis2 (WeylPoint attribute), 64
axis3 (WeylPoint attribute), 64

B

BandFileContext (class in pyfplo.common), 27
BandFileContext (in module pyfplo.slabify), 68
BandHeader (class in pyfplo.common), 32
BandHeader (in module pyfplo.slabify), 68
BandPlot (class in pyfplo.common), 29
BandPlot (in module pyfplo.slabify), 67
bandplot () (Fedit method), 8

BandWeights (class in pyfplo.common), 33
BandWeights (in module pyfplo.slabify), 67
BasDef (class in pyfplo.fploio), 25
BasDefSection (class in pyfplo.fploio), 25
Basis (class in pyfplo.fploio), 24

basis () (Fedit method), 13

berryCurvature () (Slabify method), 52
BerryCurvatureData (class in pyfplo.slabify), 67
bfield (Slabify attribute), 56

BfieldConfig (class in pyfplo.slabify), 65
BoxMesh (class in pyfplo.slabify), 56
bzintegration () (Fedit method), 6

C

c_abtoang (in module pyfplo.common), 40
c_angstroem_m (in module pyfplo.common), 40
c_echarge_C (in module pyfplo.common), 40
c_elements (in module pyfplo.common), 40
c_elements (in module pyfplo.fploio), 27
c_elements (in module pyfplo.slabify), 67
c_hatoev (in module pyfplo.common), 40
c_hbar_Js (in module pyfplo.common), 40
c_me_kqg (in module pyfplo.common), 40
c_speed_of_light_mpers (in module
plo.common), 40
calculate3dTIInvariants () (Slabify method),
49
calculateBandPlotMesh () (BandPlot method),
29
calculateBandStructure () (Slabify method),
43
calculateBerryCurvatureOnBox ()
method), 47

pyf-

(Slabify

179

pyfplo Documentation, Release 22.00-62

calculateBulkProjectedEDC () (Slabify
method), 43

calculateBulkProjectedFS () (Slabify
method), 43

calculateChernNumberInSphere () (Slabify
method), 47

calculateEDC () (Slabify method), 45

calculateFermiSurfaceCuts () (Slabify

method), 44

calculateFermiSurfaceSpectralDensity ()
(Slabify method), 45

calculateMirrorChernNumbers ()
method), 54

calculateZ2Invariant () (Slabify method), 48

charges () (Fedit method), 7

chirality (WeylPoint attribute), 64

close () (BandFileContext method), 28

close () (DensPlotContext method), 63

coDiagonalize () (Slabify method), 52

Contrib (class in pyfplo.wanniertools), 73

core (BasDef attribute), 25

coreoccupation () (Fedit method), 11

createNewFileContent () (FPLOInput method),
22

cutatoms (Slabify attribute), 55

cutlayersat (Slabify attribute), 55

D

D (PObj attribute), 20

DensPlotContext (class in pyfplo.slabify), 63
dhva () (Fedit method), 12

dhvaiso () (Fedit method), 11

diagonalize () (Slabify method), 51
diagonalizeUnitary () (Slabify method), 52
dirname (Slabify attribute), 54

Dk (WFSymOp attribute), 66

E

e0 (EnergyContour attribute), 59

el (EnergyContour attribute), 59

element (Site attribute), 37

enerqgy (WeylPoint attribute), 64
EnergyContour (class in pyfplo.slabify), 59
enlarge (Slabify attribute), 55
equivalentSites (WFSymOp attribute), 67
ewindow (BandPlot attribute), 32

F

Fedit (class in pyfplo.fedit), 3

fermienergy (FermiSurfaceOptions attribute), 62

fermienergyim (FermiSurfaceOptions attribute),
62

FermiSurfaceOptions (class in pyfplo.slabify),
60

findWeylPoints () (Slabify method), 53

finuc () (Fedit method), 8

first () (PObj method), 18

forces () (Fedit method), 14

(Slabify

fploExecutable () (in module pyfplo.fedit), 3
fploExecutable () (in module pyfplo.fploio), 15
FPLOInput (class in pyfplo.fploio), 20

fullName () (PObj method), 17

go () (Watch method), 38

GreenOptions (class in pyfplo.slabify), 63
grep () (OutGrep method), 23
gridoutput () (Fedit method), 10

H

hamAtKPoint () (Slabify method), 50
hamdataCCell () (Slabify method), 42
hamdataCell () (Slabify method), 42
hamdataRCell () (Slabify method), 42
hasbasisconnection (Slabify attribute), 56
hasNext () (PObj method), 18

hassigma (Slabify attribute), 56
hasxcfield (Slabify attribute), 56

header () (BandWeights method), 33

homo (WeylPoint attribute), 64

ilower (BandHeader attribute), 33
ime (EnergyContour attribute), 59
index (WFSymOp attribute), 66

Info (Vievel attribute), 40

INParser (class in pyfplo.fploio), 16
isArray () (PObj method), 18
isChar () (PObj method), 19

isFlag () (PObj method), 19
isimproper (WFSymOp attribute), 66
isinlittlegroup (WFSymOp attribute), 66
isInt () (PObj method), 19
isLogical () (PObj method), 19
isReal () (PObj method), 19
isScalar () (PObj method), 18
isString () (PObj method), 19
isStruct () (PObj method), 18
isStructArray () (PObj method), 18
iteration () (Fedit method), 14
iupper (BandHeader attribute), 33

K

k (WeylPoint attribute), 64
kdists (BandPlot attribute), 32
kpnts (BandPlot attribute), 32
kscale (Slabify attribute), 56

L

L (PObj attribute), 19

labels (BandHeader attribute), 33
layerCell () (Slabify method), 42
layerSites () (Slabify method), 42
1istD (PObj attribute), 19

1istL (PObj attribute), 19

180

Index

pyfplo Documentation, Release 22.00-62

1istS (PObj attribute), 19
lowerdepthdatalimit (BandPlot attribute), 32
1sdau () (Fedit method), 9

M

mainversion () (Version method), 39
Many (Vlevel attribute), 40

mesh () (BoxMesh method), 57

mesh () (EnergyContour method), 59
mesh () (FermiSurfaceOptions method), 60
modes (OutGrep attribute), 23

More (Vlevel attribute), 40
MultiOrbital (class in pyfplo.fploio), 26

MultipleOrbitalWandef (class in pyf-
plo.wanniertools), 71

multiplicity (MultiOrbital attribute), 27

N

name (MultiOrbital attribute), 27

name () (PObj method), 18

names (OptionSet attribute), 36

nband (BandHeader attribute), 32

ndiv (BandPlot attribute), 31

ne (EnergyContour attribute), 59

next () (PObj method), 18

nkp (BandHeader attribute), 32

norb (BandHeader attribute), 33

nsigiter (GreenOptions attribute), 64

nspin (BandHeader attribute), 32

nspin (Slabify attribute), 55

numberoflayers (Slabify attribute), 55

numerics () (Fedit method), 14

nvdim (Slabify attribute), 54

nx (BoxMesh attribute), 58

nx (FermiSurfaceOptions attribute), 62

ny (BoxMesh attribute), 58

ny (FermiSurfaceOptions attribute), 62

nz (BoxMesh attribute), 58

O

object (Slabify attribute), 55

off () (BandPlot method), 31

of £ () (FermiSurfaceOptions method), 60

on () (BandPlot method), 31

on () (FermiSurfaceOptions method), 60

opc () (Fedit method), 8

openBandFile () (BandPlot method), 30

openDensPlotFile () (FermiSurfaceOptions
method), 61

optics () (Fedit method), 7

options (Slabify attribute), 55

options () (Fedit method), 6

OptionSet (class in pyfplo.common), 36
OptionSet (in module pyfplo.slabify), 68
orbitalIndicesByDepth () (Slabify method), 45
orbitalIndicesBySite () (Slabify method), 46
orbitalNames () (Slabify method), 45
orbitalNamesByDepth () (Slabify method), 46

origin (BoxMesh attribute), 58

origin (FermiSurfaceOptions attribute), 62
OutGrep (class in pyfplo.fploio), 22
outputpartoccubands (BandPlot attribute), 32

P

P () (MultiOrbital method), 26

parseFile () (INParser method), 16
parseInFile () (FPLOInput method), 20
parser () (FPLOInput method), 22
partoccuoffset (BandPlot attribute), 32
pipeFedit () (Fedit method), 5

POb7j (class in pyfplo.fploio), 17

points (BandPlot attribute), 32

prepare () (Slabify method), 42
printProgress () (Watch method), 38
printStructureSettings () (Slabify method),
43

common (module), 27

fedit (module), 3

fploio (module), 15

slabify (module), 41
wanniertools (module), 68

pyfplo.
pyfplo.
pyfplo.
pyviplo.
pyfplo.

Q

Q () (MultiOrbital method), 26
qns () (MultiOrbital method), 26

R

radius (WeylPoint attribute), 64
readBandPlotMesh () (BandPlot method), 30
readBands () (BandPlot method), 31
readBandWeights () (BandWeights method), 34
relativistic () (Fedit method), 6
release () (Version method), 39
relToAbs () (BoxMesh method), 57
remove () (BasDefSection method), 25
removeFirst () (MultiOrbital method), 26
removeLast () (MultiOrbital method), 26
reset () (FPLOInput method), 22
reset () (Watch method), 38
resetNonSymmetrySections ()
method), 21
resetPipelInput () (Fedit method), 4
resize () (PObj method), 17

S

S (PObj attribute), 20

S () (MultiOrbital method), 26

semicore (BasDef attribute), 25

set () (MultiOrbital method), 26

setBox () (BoxMesh method), 56
setGlobalField () (BfieldConfig method), 65
setLocalFields () (BfieldConfig method), 65
setMesh () (BoxMesh method), 56

setMesh () (EnergyContour method), 59
setMesh () (FermiSurfaceOptions method), 60

(FPLOInput

Index

181

pyfplo Documentation, Release 22.00-62

setOutputRestrictions () (BandPlot method),
31

setPlane () (FermiSurfaceOptions method), 60

setProgress () (Watch method), 38

sigitermethod (GreenOptions attribute), 64

sigitertol (GreenOptions attribute), 64

Silent (Vievel attribute), 40

SingleOrbitalWandef
plo.wanniertools), 70

Site (class in pyfplo.common), 37

Site (in module pyfplo.slabify), 67

sites () (OutGrep method), 23

size () (PObj method), 17

sizes () (PObj method), 17

Slabify (class in pyfplo.slabify), 41

sort (Site attribute), 37

spin (WeylPoint attribute), 65

spin () (Fedit method), 6

status () (Watch method), 38

stop () (Watch method), 37

structureFromCIFFile () (FPLOInput method),
21

symbol (WFSymOp attribute), 66

symmetry () (Fedit method), 5

symmetryUpdate () (FPLOInput method), 21

T

tau (Site attribute), 37

tau (WFSymOp attribute), 66

ti () (Fedit method), 8

timerev (WFESymOp attribute), 66
type (Site attribute), 37

U

upperdepthdatalimit (BandPlot attribute), 32

\Y

valence (BasDef attribute), 25
varExists () (INParser method), 16
varExists () (PObj method), 17
verbosity () (Fedit method), 8
Version (class in pyfplo.common), 39
version (in module pyfplo.common), 40
Version (in module pyfplo.fploio), 277
version (in module pyfplo.fploio), 27
Version (in module pyfplo.slabify), 67
version (in module pyfplo.slabify), 67
versions (Basis attribute), 25
Vlevel (class in pyfplo.common), 39
Vlevel (in module pyfplo.slabify), 68
vxc () (Fedit method), 7

W

Wandef (class in pyfplo.wanniertools), 71
WanDefCreator (class in pyfplo.wanniertools), 69
wannierCenterMatrix () (Slabify method), 46
Watch (class in pyfplo.common), 37
WeightDefinition (class in pyfplo.common), 35

(class in pyf-

WeightDefinition (in module pyfplo.slabify), 67
WeightDefinitions (class in pyfplo.common), 34
WeightDefinitions (in module pyfplo.slabify), 67
WeylPoint (class in pyfplo.slabify), 64

WFSymOp (class in pyfplo.slabify), 66

write () (BandFileContext method), 28

write () (DensPlotContext method), 63
writeFile () (Basis method), 25

writeFile () (FPLOInput method), 21
writeFile () (INParser method), 16
writeFile () (WanDefCreator method), 70
X

xaxis (BoxMesh attribute), 58

xaxis (FermiSurfaceOptions attribute), 62
xcoptions () (Fedit method), 6

xinterval (BoxMesh attribute), 58
xinterval (FermiSurfaceOptions attribute), 62
xmesh () (BoxMesh method), 56

xmesh () (FermiSurfaceOptions method), 60
xyzFromIndex () (BoxMesh method), 57

Y

yaxis (BoxMesh attribute), 58

yvaxis (FermiSurfaceOptions attribute), 63
yinterval (BoxMesh attribute), 58
yvinterval (FermiSurfaceOptions attribute), 62
ymesh () (BoxMesh method), 56

ymesh () (FermiSurfaceOptions method), 60

Z

zaxis (BoxMesh attribute), 58
zaxis (Slabify attribute), 55
zinterval (BoxMesh attribute), 58
zmesh () (BoxMesh method), 56

182

Index

	Introduction
	General
	Installation

	Modules
	pyfplo.fedit
	Functions
	Fedit

	pyfplo.fploio
	INParser
	PObj
	FPLOInput
	OutGrep
	Basis
	BasDef
	BasDefSection
	MultiOrbital
	Data

	pyfplo.common
	BandFileContext
	BandPlot
	BandHeader
	BandWeights
	WeightDefinitions
	WeightDefinition
	OptionSet
	Site
	Watch
	Version
	Vlevel
	Constants

	pyfplo.slabify
	Slabify
	BoxMesh
	EnergyContour
	FermiSurfaceOptions
	DensPlotContext
	GreenOptions
	WeylPoint
	BfieldConfig
	WFSymOp
	BerryCurvatureData
	Site
	Data

	pyfplo.wanniertools
	WanDefCreator
	SingleOrbitalWandef
	MultipleOrbitalWandef
	Wandef
	Contrib

	Examples
	A basic tutorial
	The bulk band structure
	The bulk Fermi surface
	Fermi surface cuts
	Bulk projected bands
	Finite slab with 10 unit cells
	Finite slab with 10 unit cells (doubled in-plane cell)
	Finite slab with 10 unit cells (doubled in-plane cell), one atom removed
	Finite slab with 10 unit cells (doubled in-plane cell), 3 atoms removed
	Semi infinite slab
	Semi infinite slab, doubled planar cell

	2D topological insulator
	The topological phase
	The trivial insulator phase

	3D topological insulator
	Weyl semi metals
	FEDIT scripting examples
	Set bandplot points
	Simple fedit example
	BCC Iron
	BCC and FCC Iron
	Set Extended basis
	BCC Iron, extended basis
	mBJ XC-potential

	FPLOIO examples
	Reading =.in files
	=.files to json
	Reading cif-files
	Write =.in with low level routines
	Write =.in with mid level routines
	Extract default basis into =.basdef
	User defined basis (in =.basdef)
	Extract =.basdef from output file
	Grep results

	Bibliography
	Python Module Index
	Index

