
xfbp Documentation
Release 22.00-62

Klaus Koepernik

Jul 06, 2022

CONTENTS

1 Start here 1

2 Xfbp python bindings 3
2.1 General . 3
2.2 Examples . 4
2.3 Editor . 4
2.4 Help . 4

3 Commmand line parameters 7

4 Text Formating 9

5 Colors 11

6 Modules 13
6.1 pyxfbp . 13

6.1.1 Xfbp . 14
6.1.2 Graphs . 16
6.1.3 Graph . 18
6.1.4 Groups . 21
6.1.5 Group . 22
6.1.6 Sets . 25
6.1.7 Set . 27
6.1.8 SetVector . 35
6.1.9 Vector . 37
6.1.10 ZComponents . 39
6.1.11 Weights . 40
6.1.12 Weight . 41
6.1.13 NewGroup . 43
6.1.14 LineStyle . 43
6.1.15 FillStyle . 44
6.1.16 FontStyle . 45
6.1.17 SymbolStyle . 46
6.1.18 Frame . 47
6.1.19 Paper . 48
6.1.20 World . 49
6.1.21 View . 50
6.1.22 Axis . 52
6.1.23 Legend . 52
6.1.24 Title . 54
6.1.25 SubTitle . 55
6.1.26 XAxisLabel . 55
6.1.27 YAxisLabel . 55
6.1.28 OppositeXAxisLabel . 55
6.1.29 OppositeYAxisLabel . 56

i

6.1.30 TextBoxes . 56
6.1.31 TextBox . 57
6.1.32 TicMarks . 60
6.1.33 TicMajor . 63
6.1.34 TicMinor . 64
6.1.35 TicLabels . 65
6.1.36 UserTics . 66
6.1.37 Tic . 68
6.1.38 Lines . 69
6.1.39 Line . 70
6.1.40 Ellipses . 74
6.1.41 Ellipse . 75

7 XFBP 79
7.1 Python scripting . 80
7.2 Native Scripting . 80

7.2.1 Comments . 81
7.2.2 File loading . 81
7.2.3 Print commands . 82
7.2.4 Paper commands . 82
7.2.5 Graph/Group/Set/Weight descriptors . 83
7.2.6 With command . 84
7.2.7 World commands . 84
7.2.8 View commands . 85
7.2.9 Legend box commands . 85
7.2.10 Graph commands . 86
7.2.11 Shape commands . 86
7.2.12 Text box commands . 88
7.2.13 Tic mark commands . 89

7.2.13.1 Regular tic commands: . 90
7.2.13.2 Irregular tic commands . 91

7.2.14 Group commands . 92
7.2.15 Set commands . 93
7.2.16 Set attribute commands . 95
7.2.17 Weight commands . 96
7.2.18 Weight settings . 97
7.2.19 Weightlabel definitions . 98
7.2.20 Line style commands . 98
7.2.21 Fill style commands . 99
7.2.22 Font style commands . 99
7.2.23 Symbol style commands . 99
7.2.24 Kill commands . 100
7.2.25 Copy/Move commands . 100
7.2.26 Hook commands . 101
7.2.27 Cursor reference . 101
7.2.28 Assignments/Definitions . 101
7.2.29 Expressions . 102

7.3 GUI . 104
7.3.1 Plotting window . 104
7.3.2 Scripting window . 105

7.4 Logarithmic plots . 105
7.5 Data . 106
7.6 Files . 106
7.7 Command line options . 106

7.7.1 File type flags . 107
7.8 Data file types . 107
7.9 Set Dialog . 107
7.10 Color Model dialog . 109

ii

Python Module Index 111

Index 113

iii

iv

CHAPTER

ONE

START HERE

Non-python related help topics start here. These are the old help screens including the native scripting. Python
scripting is explained here.

1

xfbp Documentation, Release 22.00-62

2 Chapter 1. Start here

CHAPTER

TWO

XFBP PYTHON BINDINGS

Author Klaus Koepernik

2.1 General

The python binding of xfbp is hard coded into the program. There is no source code you can look at. Because
of this tight connection pyxfbp can only be used from within xfbp. For convenience we have decided to setup the
python environment in the following way:

The pyxfbp module is already imported as:

from pyxfbp import *

which injects all classes into the namespace. We also created an instance of the class pyxfbp.Xfbp called xfbp.
From this some methods/properties are loaded into the namespace

• G represents all Graphs

• killall clean slate

• printto guess what

• paper setup paper dimensions

• arrange arranges graphs

• setMouseHook set a mini-script to be executed on left mouse click

• cursor the cursor position on mouse click

All other properties/classes can be accessed hierarchically from G. Many classes can be used standalone, whatever
is more convenient. E.g.:

Title(1).text='some text'
#and
G[1].title.text='some text '

both change the text of the graph with id 1. However, indexing only works via the corresponding properties as in:

copy set 1 into set 1
G[1].Gr[1].S[2]=G[1].Gr[1].S[1]

For a better understanding of the indexing read the doc for Graphs. Some simple classes like FontStyle
behave differently in that they either represent the fontstyle of some object or can be created for assignment
reasons:

Here font returns a FontStyle object representing
the title's font
Title(1).font.color=0xff

(continues on next page)

3

xfbp Documentation, Release 22.00-62

(continued from previous page)

Here we create a free stranding FontStyle
fst=FontStyle(color=0xff)

and assign it to all textboxes (assuming some exist)
for t in G[1].textboxes:

t.font=fst

In the first case .font returns a FontStyle object representing the titles font and in the second the textboxes font is
hard copied from fst.

Note, that many data are implemented as properties and some as functions/methods. Properties can be gotten and
set, functions must be called:

G[1].title.text='some text' # set the property text

ti=G[1].title.text # get the property text

G[1].title.off() # call the method `off`.

2.2 Examples

There are examples of .xpy scripts scattered through out the pyfplo examples in FPLO.../DOC/pyfplo/
Examples and in FPLO.../DOC/Xfbp/Examples.

2.3 Editor

The code editor has two modes, the native xfbp script mode with (file extension .cmd) which is still available but
not as versatile and the python mode (file extension .xpy or .py). The .xpy extension is usefull for easy file
association e.g. in midnight-commander or desktop tools. It also signals that these python scripts need xfbp to
run. They cannot run standalone (yet).

A new script will have a file type marker at the beginning. This is only ment to tell you , which mode you are in.
It is not used for identification. The file extensions decide how the script is parsed.

Python uses indentation to mark blocks. The editor supports python style, where you use the tab key to indent by
4 spaces. You can select a bunch of lines and indent or unindent them via editing menu commands. If for some
reasons tab-characters find their way into the script they are highlighted to find them easier. You should use block
unindent and indent to convert them into space. Otherwise, python might consider wrong indentation, which can
change the meaning of the code. It might run but does not do what you expect.

Note, that if you copy text from some other source (help) the indentation might be wrong. If this happens select
the block, indented/unindent it with the edit commands as needed.

There is quite some code insertion available. The fastest is to adjust you textboxes, shapes and world and view and
then to insert the corresponding code into the script via the editors insert menu. Code insertion often uses direct
object access in contrast to hierarchical access for brevity. You will get the hang of it. After insertion select the
whole block and use the edit->indent functionality for proper python indentation, if needed.

2.4 Help

There are two versions of inbuilt help. The first is called when a python help command is written into the editor
and the script is executed while the editor is open. This will either display the content from the python help system
if the item does not belong to pyxfbp or display the pyxfbp help. The other version is just pressing F1 in the
editor, which displays pyxfbp help. The help browser has a search function (Ctrl-F). Type the search string. Hit

4 Chapter 2. Xfbp python bindings

xfbp Documentation, Release 22.00-62

Ctrl-F or ENTER to continue searching. If the search reaches the end of the file hit Ctrl-F/ENTER again to start
from the beginning. Hit ESCAPE to leave the search. Hit Ctrl-F twice to redo the previous search.

How to use it: if you don’t know what comes next do the following:

g=G[1] # g represents graph with id 1
help(g)

will tell you that g is a Graph instance and from there you can pick a property, say Gr and write instead:

help(g.Gr[1])

Yet another way is to type in help for a class member:

help(Graph.active) # help on property active in class Graph

which is not the same as:

help(G[1].active) # G[1] is a Graph instance and G[1].active an int
so you get help for the int class of python

You get the idea. If you know your way around just hit F1 and use the search function.

If you want help on python keywords like for type:

help('for') # yes as string!

On last note . . . the functions which where loaded into the namespace from xfbp will be treated like python
internal help. If you type:

help(Xfbp.killall)

you get the expected result.

2.4. Help 5

xfbp Documentation, Release 22.00-62

6 Chapter 2. Xfbp python bindings

CHAPTER

THREE

COMMMAND LINE PARAMETERS

In order to write generic scripts, command line parameters are implemented the following way. On the command
line you give something like:

xfbp -a filename:+band -a col:0xff -a unit:0.529177 -a i:3

where the part before the colon is the variable name and the part after the colon is the value. There shoudn’t
be a space before and after the colon! You can us quotes for longer str values. If the str value contains
$-formating use single quotes! The program will determine the easiest type of all values by trying to cast it in
the following order: hex(int), int, float and str. If any of the casts succeeds the parameter in python will
have this type, e.g. -a i:42 will be an int. If inside the script you want it to be a str use str(i). Please
note, that these parameters become normal variables in the script. You should be carefull with the names. Simple
example script called t.py:

killall()
G[1].read("band",filename)
G[1].Gr[1].line.color=col
G[1].title.text=title
G[1].yaxislabel.text='Energy [{}]'.format(sunit)
for s in G[1].Gr[1].S:

s.y/=unit
G[1].world.ymin/=unit
G[1].world.ymax/=unit

is called e.g. like this:

xfbp t.py -a filename:+band -a col:0xff -a title:'This works: FeO$_2$.' \
-a unit:13.60569193 -a sunit:Ry

More command line parameters are found under Command line options.

7

xfbp Documentation, Release 22.00-62

8 Chapter 3. Commmand line parameters

CHAPTER

FOUR

TEXT FORMATING

The various properties which can hold text can be formated in the following way.

• $~ next character is from the symbol font (greek) (hopefully works on your system)

• $i switch to italic font

• $n switch to regular font

• $_ switch to next subscript level

• $^ switch to next superscript level

• $. switch to normal level

• $x{real-number} shift the current position (for the following characters) to the right (positive number)
or left (negative number). Note that the shift scale is different before or after a sub/super script marker
($^, $_). Try:

X$_ij$.$x{-0.5}ab.

or:

X$_a$_i$.$x{-0.8}$^$~m$.

versus:

X$_ij$.ab.

or:

X$_a$_i$.$^$~m$.

• $y{real-number} vertical shift (see $x{} above)

• $arrowup, $arrowdown, $arrowleft, $arrowright, $angstroem, $infinity, $nabla
some special characters (hopefully works)

• $$ a $ sign

Note, that some special characters (e.g. $arrowup) switch the font to regular after they were printed (bug). To
continue with italic, use another $i. On some systems the display of symbol characters is wrong.

9

xfbp Documentation, Release 22.00-62

10 Chapter 4. Text Formating

CHAPTER

FIVE

COLORS

There are several classes which have colors. A color is given as a hex(int) constant. A color is coded as rgb
(red/green/blue) value. The format is as follows: There are three bytes (value 0..255) in a color the first byte
represents the red value, the second green and the third blue. Using hex notation the bytes are forming two digit
hex numbers. Hence a color contains 6 hex digits. The brightest colors are the highest value (ff). If red is zero it
does not have to be written explicitly. A hex constant starts with 0x The bytes are in the order left to right: r g b.
If a color is returned by pyxfbp it is returend as int (base 10) .To print it in hex form use print hex(c).
Examples:

hex color red green blue color
0xff00aa ff/255 0 aa/170 pink
0xffffff ff/255 ff/255 ff/255 white

0xff 0 0 ff/255 blue
0xff0000 ff/255 0 0 red

0xff00 0 ff/255 0 green
0xaa00 0 aa/170 0 darker green

0x0 0 0 0 black

Usefull defaults

hex amount (1==100%)
00 0
33 0.2
40 1/4
55 1/3
66 0.4
80 1/2
99 0.6
aa 2/3
c0 3/4
cc 0.8
ff 1

11

xfbp Documentation, Release 22.00-62

12 Chapter 5. Colors

CHAPTER

SIX

MODULES

6.1 pyxfbp

• Xfbp

• Graphs

• Graph

• Groups

• Group

• Sets

• Set

• SetVector

• Vector

• ZComponents

• Weights

• Weight

• NewGroup

• LineStyle

• FillStyle

• FontStyle

• SymbolStyle

• Frame

• Paper

• World

• View

• Axis

• Legend

• Title

• SubTitle

• XAxisLabel

• YAxisLabel

13

xfbp Documentation, Release 22.00-62

• OppositeXAxisLabel

• OppositeYAxisLabel

• TextBoxes

• TextBox

• TicMarks

• TicMajor

• TicMinor

• TicLabels

• UserTics

• Tic

• Lines

• Line

• Ellipses

• Ellipse

This is the one and only module to manipulate the data of xfbp.

6.1.1 Xfbp

class Xfbp
This is the main class of pyxfbp. It provides access to a few basic functions and to all Graphs via the
property G. An instance of this class called xfbp and all members of xfbp are loaded into the namespace
when the editor is activated (see Sec General). Note, that G should not be overwritten by doing something
like:

G="Helloworld" # now G is no longer a Graphs object but xfbp.G still is

killall()
remove everything and reset to initial state (a single empty graph)

printto(filename, dpi=300, quality=0.85)
print to file called filename with dot-per-inch set to dpi and with quality. Two file types are available:
eps and png. dpi and quality only apply to png-files.

Parameters

• filename (str) – a filename including extension: png or eps

• dpi (int) – dots per inch

• quality (float) – compression quality in [0,1]

Returns

self to allow call chaining as in

Xfbp.printto(...).setSomethingElse(...)

Return type Xfbp

arrange(paperwidth=800.0, Nx=1, leftgap=0.1, rightgap=0.1, hgap=0.1, Ny=1, topgap=0.1, bot-
tomgap=0.1, vgap=0.1, aspectratio=1.5, commonxaxis=True, commonyaxis=True, com-
montitle=True)

Arrange the first Nx * Ny graphs in a grid. The graphs can already exist. Otherwise they are cre-
ated. The graph ids run row by row. leftgap/rightgap are the spaces left/right of the first/last view-
box (View) in percent*100 of the paperwidth. topgap/bottomgap work similar. hgap/vgap are the

14 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

in-between gaps in percent*100 of the individual viewbox width/height. aspectratio determines the
individual viewbox’s aspect ratio. The paperheight depends on all these settings.

Note, that the point scale of the graphs depends on the paperwidth. You need to experiment with the
gap values a bit to get the labels/ticmarks/titles properly displayed in the page. If commonxaxis is
True the in-between-viewboxes tic labels and xaxis labels are switched off and in each column the
world x axis is made equivalent. Similarily, for commonyaxis. For this to work the arrange command
must be issued after setting up the graphs. If commontitle is True the titles in between rows are
switched off. Example:

killall()
arrange(800,2,0.12,0.05,0.1, 2,0.1,0.12,0.1, 1, 1,1,1)

Parameters

• paperwidth (float) – in pt (A4 is 595 x 842)

• Nx (int) – number of columns

• leftgap (float) – in percent*100 of paperwidth

• rightgap (float) – in percent*100 of paperwidth

• hgap (float) – in percent*100 of viewbox width

• Ny (int) – number of rows

• topgap (float) – in percent*100 of paperheight

• bottomgap (float) – in percent*100 of paperheight

• vgap (float) – in percent*100 of viewbox height

• aspectratio (float) –

• commonxaxis (int) – 0 or 1 (False or True)

• commonyaxis (int) – 0 or 1 (False or True)

• commontitle (int) – 0 or 1 (False or True)

Returns

self to allow call chaining as in

Xfbp.arrange(...).setSomethingElse(...)

Return type Xfbp

setMouseHook(button, script)
setup a miniscript to be executed at mouse click of button Currently button is always ‘left’. script
should contain valid python code and it must be valid in the context it is exceuted in (objects refered
to must exist) (see Xfbp.cursor)

Parameters

• button (str) – on which mouse button click to install the hook currently only ‘left’
works

• script (str) – a valid python mini script

Returns

self to allow call chaining as in

Xfbp.setMouseHook(...).setSomethingElse(...)

Return type Xfbp

6.1. pyxfbp 15

xfbp Documentation, Release 22.00-62

G
return a Graphs object, which provides access to all graphs. The following two are nearly equivalent:
G[1] and Graph(1) The former allows deletion, E.g. del G[1] will delete the graph with id 1.
Use it as in:

G[1].world.x=(-2,3)

Type Graphs

paper
return a Paper object to set its dimensions.

Type Paper

cursor
return current cursor position as a tuple (x,y). This is usefull inside a mouse click hook. Note, that the
graph must be the current graph to get expected results:

setMouseHook('left','''
G[1].title.toggle()
c=cursor
gr=G[1].Gr[1].on()
s=gr.S[4].on()
s.x=[c[0],c[0]]
s.y=[G[1].world.ymin,G[1].world.ymax]
print s.x
print s.y
''')

Type 2-tuple

6.1.2 Graphs

class Graphs
Graphs represents all Graph s. Xfbp returns an instance of Graphs via the property G. G is also loaded
into the namespace such that we can just use it without the Xfbp object. It behaves a bit like a python dict
with int keys and a bit like a list.

G[id] represents a reference to graph with id, it does not mean that this graph exists. On usage of G[i]
errors are raised when the graph was not yet created. A graph can be created by using a read command
(G[1].read(...)) or by switching its visibility as in G[i].active=1 or G[i].on(). Generally,
on, off, toggle and the property active will physically create a graph.

len(G) is the number of graphs not the highest id. Graphs can be created in any order of ids. The order of
graphs determines the plotting order.

You can do the following:

this iterates over all EXISTING graphs
for g in G:

g.title.off()

G[4].active=1 # switch on graph number 4

g=G[6] # g represents a reference to graph 6

if it does not exist yet errors will be raise when you use it
but you can write
g.active=True # now it exists and is visible

(continues on next page)

16 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

(continued from previous page)

iterate via index
for i in range(len(G)):

print G.at(i).id

#iterate over certain graph ids
for id in [1,4,6]:

G[id].title.off()

delete graph with id 4
del G[4]

__delitem__(id)
you can delete a graph with a certain id:

del G[2]

__len__()
len(G) returns the number of graphs not the highest id

at(i)
For index (not id) based iteration, use as in:

for i in range(len(G)):
G.at(i)...

Parameters i (int) – graph index (not id)

Returns graph at index i

Return type Graph

__getitem__()
G[id] returns the graph with a certain id:

killall() # only graph 1 will exist after killall
G[4].on() # switch on graph with id 4
G[2].on() # switch on graph with id 2
for g in G:

print g #now we have graphs 1,4 and 2

G[i] <==> G.__getitem__(i)

__iter__()
you can iterate over all graphs:

for g in G:
print g.id

next()
for the iterator interface, see __iter__

lastid
the highest id among all existing graphs (not the number of graphs):

G[G.lastid+1].on()# definitely a new graph

Type int

6.1. pyxfbp 17

xfbp Documentation, Release 22.00-62

6.1.3 Graph

class Graph(graphid)
This class represents a single graph. This class can be used by itself to address a particular graph with id
graphid:

Graph(1) # represents graph 1

Another way would be:

G[1]

To delete a graph there is only one way:

del G[1]

Parameters graphid (int) – the graphid as shown in the GUI

read(type, filename, groupid=0)
read file called filename of intended type type into the graph (and optionally into a specific group in
this graph) and return a list of NewGroup object, which provide easy access to all newly created
groups and sets. The return value can be ignored. If a groupid was given the group will be created if
it does not exist.

The type can be:

‘xny’ Data sets are read, assuming that an empty line starts a new data block. In each multi
column block with N columns the first column is 𝑥 and the other 𝑁 − 1 columns are 𝑦𝑖,
resulting in 𝑁 − 1 sets for each data block in the file. All sets end up in a new group.

‘xynw’ The first column of each block is 𝑥. The second is 𝑦 and the following columns are
weights.

‘xynz’ First comes a block of 𝑁𝑥 𝑥-values, each line one value, followed by a blank line.
Then comes a similar block of 𝑁𝑦 𝑦-values followed by a blank line. Finally a block of
𝑁𝑥 ·𝑁𝑦 𝑧-values, one value per line. The resulting plot will be a density plot where the
𝑧-values define the color.

‘band’ An FPLO band structure file.

‘bandweight’ or ‘bandweights’ An FPLO band weights file.

‘akbl’ An FPLO Bloch-Spectral-Density file. (CPA FPLO5, pyfplo.Slabify)

Examples for return value:

gr=G[1].read('xny','grid.dat')[0].group
new gr is a Group object

ret=G[1].read('xny','grid.dat')
for r in ret:

for s in r.sets:
print 'new group',r.group.id,'new set',s.id

Parameters

• type (str) – file type marker: ‘xny’, ‘band’, ‘bandweight’, ‘xynw’ ,’xynz’ ‘akbl’

• filename (str) – the filename

• groupid (int) – optionally, read into a specific group

Returns a list of all newly created groups and sets

18 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Return type list of NewGroup

on()
switch graph on

Returns

self to allow call chaining as in

Graph.on(...).setSomethingElse(...)

Return type Graph

off()
switch graph off

Returns

self to allow call chaining as in

Graph.off(...).setSomethingElse(...)

Return type Graph

toggle()
toggle graph visibility

Returns

self to allow call chaining as in

Graph.toggle(...).setSomethingElse(...)

Return type Graph

autoscale(what=’all’)
autoscale graph using the currently set World.offset

Parameters what (str) – ‘all’ ,’x’ or ‘y’

Returns

self to allow call chaining as in

Graph.autoscale(...).setSomethingElse(...)

Return type Graph

id
the graph id as shown in the GUI

Type int

active
get/set if the graph is visible. A nonzero value is True zero is False.

Type bool

Gr
return a Groups object, which provides access to all groupsof this graph.

Type Groups

linewidthscale
get/set an overall line width scale for the graph. This affects all line widths.

Type float

pointsizescale
get/set an overall point size scale for the graph. This affects font and symbol sizes and line widths.

Type float

6.1. pyxfbp 19

xfbp Documentation, Release 22.00-62

title
return a Title object

Type Title

subtitle
return a SubTitle object

Type SubTitle

xaxislabel
return a XAxisLabel object

Type XAxisLabel

yaxislabel
return a YAxisLabel object

Type YAxisLabel

oppositexaxislabel
return a OppositeXAxisLabel object

Type OppositeXAxisLabel

oppositeyaxislabel
return a OppositeYAxisLabel object

Type OppositeYAxisLabel

textboxes
return a TextBoxes object, which provides access to all textboxes of this graph.

Type TextBoxes

legend
get/set a Legend object which represents the legendbox.

Type Legend

world
get/set the World object of this graph.

Type World

view
get/set the View object of this graph.

Type View

xaxis
get/set the x-axis object of this graph.

Type Axis

yaxis
get/set the y-axis object of this graph.

Type Axis

xtics
return the x-ticmarks of this graph

Type TicMarks

ytics
return the y-ticmarks of this graph

Type TicMarks

usertics
return the irregular user defined tickmarks of this graph

20 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Type UserTics

lines
return a Lines object, which provides access to all Line shapes of this graph.

Type Lines

ellipses
return an Ellipses object, which provides access to all ellipses shapes of this graph.

Type Ellipses

6.1.4 Groups

class Groups(graphid)
The Groups object represents all Group s. It is organized id-based like Graphs. The groups need not be
ordered with monotonous ids. The group order determines the plotting order. IDs are just the names of the
groups in the GUI. Names should not change, thats why they cannot behave like linear indices. A groups
object can be used standalone or probably better be obtained via the class hierarchy:

G[1].Gr # this is the Groups object of graph(id 1)
Groups(1) # and this too

G[1].Gr[2] # and this is the Group with id 2 in graph(id 1)
Group(1,2) # and this too

lets do useful things, assuming we loaded some data
gr=G[1].Gr[1]
gr.useattributes=True
gr.line.color=0xff # all sets in group(id 1) will be blue

We cannot straight forwardly copy groups, since there is an issue with
the way weightlabels are handled internally.
But we can do this:
gr=G[1].Gr[1]
G[1].Gr[2].on()
for s in gr.S:

G[1].Gr[2].S.append(s)
A note on weightlabels.
weightlabels are shared among the set of a bandweights/xynw plot
after our copy above we need to set weightlabels to a consistent state
G[1].Gr[2].unifyWeightLabels()
this will make sure that the original group and the new group
have different weightlabel-data and that all sets in the group
have the same.

Parameters graphid (int) – the graph id

__delitem__(id)
you can delete a group with a certain id:

del G[1].Gr[2]

__len__()
len(G[1].G) returns the number of groups not the highest id

at(i)
For index (not id) based iteration, use as in:

6.1. pyxfbp 21

xfbp Documentation, Release 22.00-62

for i in range(len(G[1].Gr)):
G[1].Gr.at(i)...

Parameters i (int) – group index (not id)

Returns group at index i

Return type Group

__getitem__()
G[1].Gr[id] returns the group with a certain id

G[1].Gr[i] <==> G[1].Gr.__getitem__(i)

__iter__()
you can iterate over all groups:

for gr in G[1].Gr:
print gr.id

next()
for the iterator interface, see __iter__

new()
create and return a new Group

Returns a new Group

Return type Group

len
return the number of groups not the highest id

Type int

lastid
the highest id among all existing groups of this graph (not the number of groups)

Type int

6.1.5 Group

class Group(graphid, groupid)
A group is a collection of Sets. They allow easy application of collective properties on many sets as it
occurs in band structure plots. The Graph.read method will create Group s for the new Set s in a
reasonable fashion. If needed all sets can be displayed with identical properties via the useattributes
flag. Similarily, Weight properties can also be accessed From groups. You can access a group through the
Groups property of a Graph:

G[1].Gr[2] # this is group(id 2) in graph(id 1)
Group(1,2) # is the same

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

on()
switch group on

Returns

self to allow call chaining as in

22 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Group.on(...).setSomethingElse(...)

Return type Group

off()
switch group off

Returns

self to allow call chaining as in

Group.off(...).setSomethingElse(...)

Return type Group

toggle()
toggle the group’s visibility

Returns

self to allow call chaining as in

Group.toggle(...).setSomethingElse(...)

Return type Group

setWeightsStyle(style=’dots’, factor=1, min=0.2, max=6, showinlegend=True)
this is another interface to the weight. . . properties. A prototype of this method can be inserted from
the editor insert menu.

Parameters

• style – ‘dots’, ‘connected’ or ‘individual’ see(weightstyle)

• factor (float) – see weightfactor

• min (float) – see weightmin

• max (float) – see weightmax

• showinlegend (int) – see showinlegend

Returns

self to allow call chaining as in

Group.setWeightsStyle(...).setSomethingElse(...)

Return type Group

unifyWeightLabels()
This function will only be needed in rare cases, since all Graph.read commands already call this
internally. One case, in which it is needed is when a xynw sets are created by script.

If all sets in this group have the same number of weights we can unify the group such that the groups
and all it’s sets refer to the same weight labels.

Returns

self to allow call chaining as in

Group.unifyWeightLabels(...).setSomethingElse(...)

Return type Group

id
the group’s id

Type int

graph
return the graph, the group is in

Type Graph

6.1. pyxfbp 23

xfbp Documentation, Release 22.00-62

active
get/set if the group is visible. A nonzero value is True, zero is False.

Type bool

S
this gives access to all sets of the group

G[1].Gr[1].S[2].line.color=0xff0000
G[1].Gr[1].S[2].line.width=2
#
G[1].Gr[1].S[2].line=LineStyle(color=0xff0000,width=2,style='Dot')

Type Sets

W
this gives acces to all weights. This is usefull in conjunction with useattributes. See also
Sets.W.

G[1].Gr[1].W[1].off()
G[1].Gr[1].W[5].on().setStyle(...)
G[1].Gr[1].W[5].color=0xff

Type Weights

useattributes
if nonzero/True, the group’s attributes will be used for each set of the group. When switched off,
each set’s individual properties will be used. This flag is used e.g. when band structures are loaded.

Type bool

line
get/set the linestyle.

Type LineStyle

legend
a group can be displayed as a single legend entry. This is usefull in conjunction with
useattributes.

Type str

comment
get/set the ‘set-comment’ of the group. Set-comments denote, where the data came from. This is
mostly set by file-loading routines.

Type str

showinlegend
get/set if this group is shown in the legend box.

Type bool

symbol
get/set the symbolstyle. Not used for Weight s, which have their own limited settings.

Type SymbolStyle

weightstyle
get/set the style of the weights

‘dots’ one filled circles for each data point
‘connected’ connect the circles by linear intepolation
‘individual’ each weight can have its own symbol

24 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Type str

weightfactor
get/set the weight factor. All weights are scaled by this factor, before applying weightmax and
weightmin. (This is somehow superfluous, but usefull anyway).

Type float

weightmin
get/set the weight symbol size, under which no symbols will be plotted. This depends on weightmax
since it scales everything up. It actually also depends on other scales, so just do trial & error for the
desired result.

Type float

weightmax
get/set the symbol size, which represents a weight value of 1. weightmax is in a scale like font sizes.

Type float

showweightsinlegend
get/set if weight legend entries are shown.

Type bool

usertics
irregular user defined tickmarks

Type UserTics

6.1.6 Sets

class Sets(graphid, groupid)
The Sets object gives access to all sets of a Group. It is ID bases as Graphs. The Sets class allows access
to the sets, deletion and copying of sets:

access to set 1
G[1].Gr[1].S[1].line.color=0xff

copy set 1 to set 3
G[1].Gr[1].S[3]=G[1].Gr[1].S[1]

delete set 1
del G[1].Gr[1].S[1]

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

__delitem__(id)
you can delete a set with a certain id:

del G[1].Gr[1].S[1]

__len__()
len(G[1].Gr[1].S) returns the number of sets not the highest id

at(i)
For index (not id) based iteration, use as in:

for i in range(len(G[1].Gr[1].S)):
G[1].Gr[1].S.at(i)...

6.1. pyxfbp 25

xfbp Documentation, Release 22.00-62

Parameters i (int) – set index (not id)

Returns set at index i

Return type Set

__getitem__()
use as in in: print x[i]

__iter__()
you can iterate over all sets:

for s in G[1].Gr[1].S:
s.line.color=0xff

next()
for the iterator interface, see __iter__

new(s=None)
create and return a new set. If argument s is a Set, copy it:

killall()
gr=G[1].Gr[1]
s=gr.S[1].on()
s.x=[-2,-1,0,1,2,3,4]
s.y=s.x**2
s.line.color=0xff
new set - copy
s=gr.S.new(s)
s.x-=1
s.line.color=0xcc00
G[1].autoscale()

Parameters s (Set) – an optional set to copy into the new set

Returns a new set

Return type Set

append(s)

Parameters s (Set) – an existing set

Returns

self to allow call chaining as in

Sets.append(...).setSomethingElse(...)

Return type Sets

append set s to the sets, the set is hard copied, such that the original and the new set are physically
distinct with the exception of weightlabel-data. The copied set shares the same weightlabels-data with
the source set. This means that changing the name of a weight in the newly copied set will change the
name in the source set as well. See Group.unifyWeightLabels.

len
return the number of sets not the highest id

Type int

lastid
the highest id among all existing sets of this group (not the number of sets)

Type int

26 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

6.1.7 Set

class Set(graphid, groupid, setid)
The Set class represents an actual data set. It can be accessed from the S property of a Group or directly:

G[1].Gr[2].S[3].color=0xff
or
Set(1,2,3).color=0xff

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

• setid (int) – set set id

on()
switch set on

Returns

self to allow call chaining as in

Set.on(...).setSomethingElse(...)

Return type Set

off()
switch set off

Returns

self to allow call chaining as in

Set.off(...).setSomethingElse(...)

Return type Set

toggle()
toggle the set’s visibility

Returns

self to allow call chaining as in

Set.toggle(...).setSomethingElse(...)

Return type Set

setWeightsStyle(style=’dots’, factor=1, min=0.2, max=6, showinlegend=True)
this is another interface to the weight. . . properties. A prototype of this method can be inserted from
the editor insert menu.

Usually you will use Group.useattributes and set weight properties from the group.

Parameters

• style – ‘dots’, ‘connected’ or ‘individual’ see(weightstyle)

• factor (float) – see weightfactor

• min (float) – see weightmin

• max (float) – see weightmax

• showinlegend (int) – see showinlegend

Returns

self to allow call chaining as in

6.1. pyxfbp 27

xfbp Documentation, Release 22.00-62

Set.setWeightsStyle(...).setSomethingElse(...)

Return type Set

convolute(width)
replace current set data by a convolution with Gaussians of a given width.

Parameters width (float) – the Gaussin width

Returns

self to allow call chaining as in

Set.convolute(...).setSomethingElse(...)

Return type Set

integrate()
replace the current set by a running integral of the data. The last value of the y-data is the total integral
(if needed):

s=G[1].Gr[1].S[1].integrate() # returns the set itself
print 'integral',s.y[-1]

Returns

self to allow call chaining as in

Set.integrate(...).setSomethingElse(...)

Return type Set

moment(order, interval=None, normalized=True)
calculate the order-th moment of the y-data over the whole x-data interval (if interval is None or
missing) or over a given interval.

If normalized is True these are normalized moments 𝑀𝑛 =

∫︀ 𝑥1
𝑥0

𝑓(𝑢)𝑢𝑛𝑑𝑢∫︀ 𝑥1
𝑥0

𝑓(𝑢)𝑑𝑢
, hence 𝑀1 ≡ 1. The

second moment corrected for the center of gravity is defined as ⟨(𝑥−𝑀1)
2⟩

⟨⟩ = 𝑀2 −𝑀2
1 .

Otherwise, they are unnormalized 𝑀𝑛 =
∫︀ 𝑥1

𝑥0
𝑓 (𝑢)𝑢𝑛𝑑𝑢,

The unnormalized moment of order 0 is the same as the integral:

gr=G[1].Gr[1]
s=gr.S[1] # assume it exists
s2=gr.S.new(s)
s.integrate()
m=s2.moment(0,normalized=False)
print s.y[-1],m

Example:

import numpy as np

killall()
g=G[1]
gr=g.Gr[1].on()
N=1000
a=0.5
x0=-0.6
x1=1.6
w=0.2
s=gr.S[1].on()
s1 length N
s.x=Vector(N,x0,x1)

(continues on next page)

28 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

(continued from previous page)

s.y=np.exp(-((s.x-a)/w)**2/2)*3
m1=s.moment(1,[x0,x1])
m2=s.moment(2,[x0,x1])
calculate the normalized width
wi=np.sqrt(m2-m1**2)
t=g.textboxes.new()
t.text='calculated width={} input width={}'.format(wi,w)

gr.usertics.on()
gr.usertics.append(Tic(type='xmajor',position=m1,label='m1',

labelside='Opposite',length=1,line=LineStyle(style='Solid')))\
.append(Tic(type='xmajor',position=m1+wi,label='wi',

labelside='Opposite',length=1,line=LineStyle(style='Dash')))\
.append(Tic(type='xmajor',position=m1-wi,label='wi',

labelside='Opposite',length=1,line=LineStyle(style='Dash')))

g.title.text='Moment example'
g.title.restriction=('y',0.02)
g.autoscale()

Parameters

• order (int) – the requested order

• interval (2-tuple or 2-sequence) – x-interval on which to calculate

• normalized (int) – normalized or not

Returns the moment of requested order

Return type float

bspline(order, derivorder, xvector=None)
Replace this set’s y-data with the derivorder-th derivative of the bspline of order order, evaluated at
the set’s x-data if xvector is missing (or None), or on the provided xvector, in which case the set’s
x-data is set to xvector

Parameters

• order (int) – the requested spline order

• derivorder (int) – the requested derivative order

• xvector (None, seqence(list, Vector, tuple, numpy.ndarray) of float) – a possible
alternative x-mesh

Returns

self to allow call chaining as in

Set.bspline(...).setSomethingElse(...)

Return type Set

adjustDensPlot()
adjust data range settings according to a guess for the current zcomponent. Affected are scalemax
and z0. See Set Dialog.

Returns

self to allow call chaining as in

Set.adjustDensPlot(...).setSomethingElse(...)

Return type Set

6.1. pyxfbp 29

xfbp Documentation, Release 22.00-62

id
the set’s id

Type int

group
return the group, the set is in

Type Group

graph
return the graph, the set is in

Type Graph

active
get/set if the set is visible. A nonzero value is True, zero is False.

Type bool

line
get/set the linestyle.

Type LineStyle

legend
get/set what is displayed in the legend.

Type str

comment
get/set the “set-comment” of the set. Set-comments denote, where the data came from. This is mostly
set by file-loading routines.

Type str

showinlegend
get/set if this set is shown in the legend box.

Type bool

symbol
get/set the symbolstyle. Not used for Weight s, which have their own limited settings.

Type SymbolStyle

interpolationdepth
get/set the interpolation depth for density plots (xynz plots). A density plot can have a limited number
of data points (pixels) due to resource restrictions. These data can be interpolated to give a smoother
picture. interpolationdepth determines on how many sub pixels the data re-interpolated. See Set
Dialog.

Type int

scalemin
set the lower cutoff for density plots. (see Set Dialog)

Type float

scalemax
set the upper cutoff for density plots. (see Set Dialog)

Type float

z0
data below this z-value will be considered background in grid/density plots (see Set Dialog)

Type float

databackgroundcolor
the data background color in grid/density plots. (see Set Dialog)

30 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Type int

zpower
set the power law for mapping of z-values onto colormaps for grid/density plots (see Set Dialog)

Type int

colormap
get/set the colormap for density plots. (see Set Dialog)

A colormap can be a

a name (str) of a predefined map

‘Terrain’ ‘RainBow’ ‘Magma’ ‘Inferno’ ‘Hot’ ‘Heat’
‘Spring’ ‘Summer’ ‘Autumn’ ‘Winter’ ‘Gnuplot’ ‘Seismic’
‘Rainbow2 ‘Rainbow3’

a tuple of two colors which are RGB-interpolated between e.g. (0xff00,0xff0000)

a colormap which has the shape [[z0,color0], [z1,color1] ,...,
interpolrgb] where zi should be in [0,1] and monotonous and colori are hex
numbers representing rgb colors. interpolrgb must evaluate to bool and determines the
interpolation space.

The getter returns a full colormap. Example:

s.colormap=[
[0.0 , 0x0ff] ,
[0.333333333333 , 0xff00dd] ,
[0.666666666667 , 0xff0000] ,
[1.0 , 0xffff00] ,
True

]

Type str or sequence

weightstyle
get/set the style of the weights

Usually you will use Group.useattributes and set weight properties from the group.

‘dots’ individual filled circles for each data point
‘connected’ connect the circles by linear intepolation
‘individual’ each weight can have its own symbol

weightfactor
get/set the weight factor. Usually you will use Group.useattributes and set weight properties
from the group.

All weights are scaled by this factor, before applying weightmax and weightmin. (This is some-
how superfluous, but usefull anyway).

Type float

weightmin
get/set the weight symbol size, under which no symbols will be plotted. Usually you will use Group.
useattributes and set weight properties from the group.

This depends on weightmax since it scales everything up. It actually also depends on other scales,
so just do trial & error for the desired result.

Type float

6.1. pyxfbp 31

xfbp Documentation, Release 22.00-62

weightmax
get/set the symbol size, which represents a weight value of 1. weightmax is in a scale like font sizes.
Usually you will use Group.useattributes and set weight properties from the group.

Type float

showweightsinlegend
get/set if weight legend entries are shown. Usually you will use Group.useattributes and set
weight properties from the group.

Type bool

W
this gives acces to all weights. Usually you will use Group.useattributes and set weight prop-
erties from the group.

G[1].Gr[1].S[1].W[1].off()
G[1].Gr[1].S[1].W[5].on().setStyle(...)
G[1].Gr[1].S[1].W[5].color=0xff

Type Weights

type
get/set data type. Possible values:

‘xy’ y=function(x), x can be non monotonous

‘xynw’ y=function(x), additional n weights w=weightfunc(x) are defined

‘xynz’. z=function(x,y), there can be several components i.e. several z(x,y)

Warning: usually one does not need to set this. It can leave a confusing state.

Type str

zcomponent
get/set which zcomponent (densplot, xynz type) is plotted. This is a zero-based index. The first
component is zcomponent==0. See Set Dialog.

Type int

x
get/set the vector of the abscissa or x-values. You can use Vector, which is used to allow standard
arithmetic. It is mostly a class for intermediate results:

s=G[1].Gr[1].S[1]
s.x=Vector(100,-2.,10.) # !!! note, that N is first argument not last

as for numpy.linspace !!!

s.x*=0.529177
s.y=((s.x+2)*3)**2 # intermediate results are Vector instances

#or
import math as m
s.y=map(m.sin,s.x) # awkward but working if numpy is not available

or do this
for i,x in enumerate(s.x):

s.y[i]=m.sin(x)

You can freely convert to and from numpy.ndarray:

import numpy as np
arr=np.array(G[1].Gr[1].S[1].x)

set from numpy array like this:

32 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

import numpy as np
G[1].Gr[1].S[1].x=arr

For example

import numpy as np
s=G[1].Gr[1].S[1]
s.x=np.linspace(-2.,10.,100)
s.y=s.x**2 # intermediate Vector instance

#or simply

s.x*=0.529177

s.y=np.sin(s.x)

#or
for i,x in enumerate(s.x):

s.y[i]=np.sin(x)

Type SetVector

y
return the vector of the ordinate or y-values. See x.

Type SetVector

z
get/set the z-components (densplot (xynz type) or band weights (xynw type)). You can set z-
components in a block or access its individual data via S[i].z[iw]. ZComponents behaves dif-
ferently for xynw and xynz data types.

For xynw, each zcomponent represents one weight. So in general you have Nband sets and each set
has Norbital weights. This is reflected by Norbital z-components for each set. S[3].z[iw] is the
vector of weigths for set 3 and weight iw. S[3].z[iw,ik] is the weigth for set 3 and weight iw at
k-point ik.

You can set the z-components in bulk S[3].z=arr, where arr must be a sequence of Norbital
sequences of length len(S[i].x) (Nk). All sets should have the same length. A 2d numpy array
can be used for arr. In general the outer (first) dimension is Norbital and the second (inner) Nk:
S[3].z=[[weight1],[weight2],...], where weight1 . . . are sequences of Nk weights.

If you construct xynw sets by yourself you need to call Group.unifyWeightLabels after the
act, if you want the result to behave like a bandweights plot.

Example:

import numpy as np

killall()

gr=G[1].Gr[1].on()

N=100
x0=0.
x1=np.pi

for id in [1,2,3]: # 3 sets
s=gr.S[id].on()
s.x=np.linspace(x0,x1,N)
s.y=np.cos(s.x*id)
set weight plot type

(continues on next page)

6.1. pyxfbp 33

xfbp Documentation, Release 22.00-62

(continued from previous page)

s.type='xynw'
three weights
s.z.len=3 # this is important to set up internal weightlabels
set at once
s.z=[3*s.x,2*s.x,1*s.x] # assign list of three weight vectors
or
w=np.array([3*s.x,2*s.x,1*s.x]) # we got some numpy array
s.z=w # and assign it

or via indices
for i in range(N):

s.z[0,i]=3*np.abs(s.x[i]) # weight 1
s.z[1,i]=2*np.abs(s.x[i]) # weight 2
s.z[2,i]=1*np.abs(s.x[i]) # weight 3

gr.unifyWeightLabels()
gr.useattributes=1
gr.setWeightsStyle(style='connected',factor=1,min=0.2,max=6,
showinlegend=True)

for w in gr.W: w.on()

gr.W[1].color=0xaa00
gr.W[2].color=0xff00ff
gr.W[3].color=0xffff00

G[1].autoscale()

For the xynz data type the ZComponents represent Nc z(x,y) functions, where Nc is z.len. Only one
can be plotted at once, which is given by zcomponent. Some FPLO programs produce multiple z-
components (ugly, I know). Each z-component contains s.x.len*s.y.len values z(x,y). The data
can be accessed in bulk: s.z returns a list of Nc flat sequences, where each sequence is one component.
In these flat sequences the x-coordinate runs first. s.z can be set from such a list or from a numpy
array with shape=(Nc,len(s.x)*len(s.y)).

Another option is to obtain the ic-th zcomponent (still flat) via s.z[ic] this returns or assigns one
whole z(x,y) from a flat sequence, where x runs first.

The last option is to access each element separately via s.z[ic,ix,iy]. This option is the slowest.
To illustrate we give an example, where all possibilities are shown:

import numpy as np

def f(x,y):
return np.cos(x)+np.cos(x*(x**2+y**2))

killall()

g=G[1]
gr=g.Gr[1].on()
s=gr.S[1].on()
s.type='xynz' # set the data type

Nx=200
Ny=100
set the x and y values from numpy arrays
s.x=np.linspace(-np.pi*3,np.pi*3,Nx)
s.y=np.linspace(-np.pi*3,np.pi*3,Ny)

the number of components
s.z.len=1

(continues on next page)

34 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

(continued from previous page)

construct a flat numpy array containing z(x,y)
x runs first
w=np.array([f(x,y) for x in s.x for y in s.y])

assign in bulk
s.z=[w]

or assign single component
s.z[0]=w

or assign each data point separately
for i,xx in enumerate(s.x):

for j,yy in enumerate(s.y):
s.z[0,i,j]=f(xx,yy)

which component to plot
s.zcomponent=0
setup some default scalemax, z0
s.adjustDensPlot()
not good enough
s.z0=-2
pick colormap
s.colormap='heat'

make it smoother
s.interpolationdepth=2

#and
g.autoscale()

g.title.text='Illusion'

Type ZComponents

6.1.8 SetVector

class SetVector(graphid, groupid, setid, xyz, ic=-1)
A SetVector object is returned by Set.x, Set.y and z[] for some versions of indexing. It represents
the x-data, y-data or z-component data (depending on the data type). You can assign a list or 1d numpy.
ndarray or change single values. You can get/set the size via len. In this case there are two cases.
For Set.type ‘xy’ and ‘xynw’ the size of Set.x and Set.y are the same since it represents y=f(x).
Chaning the len of either changes the length of the other. For ‘xynz’ data the len of x and y can be
different, since both are independent variables.

If the SetVector represent a z-component of a ‘xynw’ type, the length is the same as x.len and y.len.
Setting the x.len is automatically setting the z-component length.

If the SetVector represents a z-component of a ‘xynz’ type (density plot) the s.z.len is s.x.len*s.
y.len.

Instead of individual element access x[12]=7 one can assign a sequence (see Set.x). In the latter case
automatic resizing will take place.

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

• setid (int) – the set id

6.1. pyxfbp 35

xfbp Documentation, Release 22.00-62

• xyz (str) – axis id ‘x’ or ‘y’ or ‘z’

• ic (int) – if used: which z-component

__len__()
len(...S[1].x) returns the size of the vector (see also len)

__iter__()
you can iterate over a vector:

su=0
for d in G[1].Gr[1].S.x:

su+=d
su/=G[1].Gr[1].S.x.len

This is NOT usefull for assignment.

next()
for the iterator interface, see __iter__

__getitem__()
return the i-th element:

...S[1].x[2]=...S[1].x[2]+0.1

__setitem__()
assign the i-th element:

...S[1].x[2]=...S[1].x[2]+0.1

__add__()
enable adding as in:

s=G[1].Gr[1].S[1]
s.x+=0.1
s.x=s.x+2

__sub__()
enable sutraction as in:

s=G[1].Gr[1].S[1]
s.x-=0.1
s.x=s.x-2

__mul__()
enable multiplication as in:

s=G[1].Gr[1].S[1]
s.x*=0.529177
s.y=(s.x+2)*3

__div__()
enable division as in:

print s.x/5 # same as [x/5 for x in s.x]
print 5/s.x # same as [5/x for x in s.x]

__pow__()
enable power as in:

s=G[1].Gr[1].S[1]
s.y=s.x**2

36 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

__neg__()
enable unary minus:

s=G[1].Gr[1].S[1]
s.y=-s.x

__pos__()
enable unary plus:

s=G[1].Gr[1].S[1]
s.y=+s.x

__abs__()
abs(objects)

len
get/set the length of the vector

Type int

6.1.9 Vector

class Vector(size=0, x0=0, x1=0)
Create a new Vector with size linearly spaced elements reaching from x0 to x1. This is a minimal implemen-
tation of a float vector, to obtain simple element wise list math for SetVector without compiling with
numpy. It should be more or less invisible to the user that this class appears here and there.

The point is that expressions like s.x+2 must return a list with element wise arithmetic capabilities in
order to be able to write (s.x+2)*7. Here the s.x is a SetVector. SetVector itself is not suited since
it is a reference to real data and not data itself. We can implement __add__ for SetVector to return the
expression in parentheses as a list, but it must return more than a python list since (..)*7 should
also work. Ideally, we would return a numpy array, but this requires more dependencies. Numpy can still
be used on this object as in

X=Vector(10,0,1) #instead of np.linspace, X is a Vector
Y=np.cos(X*2+3)

However, it also works without numpy:

from math import *
s.x=Vector(10,0,1)
s.y=map(cos,s.x+2)

s.y+=0.1
s.y=-((s.x+2)*7)**2

Manipulate vector elements in the following way:

v=Vector() # zero length
v.len=10 # lenght 10
v[2]=42 # element wise assignment
print v[2] # __getitem__

v=Vector() # zero length
v.append(1)
v.append(2)
v.append(4) # v contains [1,2,4]

Parameters

• size (int) – number of elements

6.1. pyxfbp 37

xfbp Documentation, Release 22.00-62

• x0 (float) – first value

• x1 (float) – last value

__add__()
enable adding as in:

s=G[1].Gr[1].S[1]
s.x+=0.1
s.x=s.x+2

__sub__()
enable sutraction as in:

s=G[1].Gr[1].S[1]
s.x-=0.1
s.x=s.x-2

__mul__()
enable multiplication as in:

s=G[1].Gr[1].S[1]
s.x*=0.529177
s.y=(s.x+2)*3

__div__()
enable division as in:

v=Vector(5,1,5) # v=[1,2,3,4,5]
print v/5 # [0.2,0.4,0.6,0.8,1]
print 5/v # [5,2.5,1.666..,1.25,1]

__pow__()
enable power as in:

s=G[1].Gr[1].S[1]
s.y=s.x**2

__neg__()
enable unary minus:

s=G[1].Gr[1].S[1]
s.y=-s.x

__pos__()
enable unary plus:

s=G[1].Gr[1].S[1]
s.y=+s.x

__abs__()
enable absolute value:

s=G[1].Gr[1].S[1]
s.y=abs(s.x)

__len__()
len(v) returns the size of the Vector.

__getitem__()
return i-th item (float)

38 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

__setitem__()
assign a float to the i-th item

__iter__()
you can iterate over a Vector:

v=Vector(11,0.,10.)
su=0
for x in v:

su+=x
su/=v.len

next()
for the iterator interface, see __iter__

append(d)
append d to the end of the Vector.

Parameters d (float) – a new value

Returns

self to allow call chaining as in

Vector.append(...).setSomethingElse(...)

Return type Vector

len
get/set the size of the vector. After setting a larger len some elements can be uninitialized.

Type int

6.1.10 ZComponents

class ZComponents(graphid, groupid, setid)
This class is returned by z. It can be used to manipulate the weigths (xynw type) or densplot functions
z(x,y) (xynz type). Please read the doc for z.

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

• setid (int) – the setid

__len__()
len(s.z) returns the number of z-components.

xynw Number of weigths

xynz Number of independent z(x,y) functions stored in the data

__getitem__()
indexing works the following way:

xynw

z[iw] : the iw-th weight vector (length s.x.len==s.y.len) Note, that here
iw is zero based, while weight ids start with id 1 (Sorry).

z[iw,ix] : the iw-th weight at xvalue[ix] (a number)

xynz

z[ic] : the whole z[: , :] for the ic-th component as flat vector, where
ix runs first”

6.1. pyxfbp 39

xfbp Documentation, Release 22.00-62

z[ic,ix,iy] : z[ix,iy] for the ic-th component (a number)

__setitem__()
see __getitem__. When a certain index structure for __getitem__ returns a sequqence, assignment
has also to occur from a sequence. If it returns a number you must assign a number.

As an exception from this rule you can always assign a single number, which sets the whole sequence
to this number if the index structure result in a sequence:

s.z=0

len
get/set the number of z-components.

xynw this is the number of weights

xynz this is the number of independent z(x,y) functions stored in the data.

see examples in Set.z.

Type int

6.1.11 Weights

class Weights(graphid, groupid, setid=0)
The Weights class gives access to all available Weigth objects, which in turn determine the properties of
plotted weights. As usual there is standalone and hierarchical acces. Weigths can be accessed from Group
s or Set s:

G[1].Gr[2].W # Weigths class of grap(id 1), group(id 2)
Weights(1,2) # the same

G[1].Gr[2].S[3].W # Weigths class of grap(id 1), group(id 2), set(id3)
Weights(1,2,3) # same

A single Weight can be obtained by indexing, either with an int index or a str index. int indices are
the weight number (one-based counting). str indices are the name of a weight. The name has to match
exactly:

G[1].Gr[2].W[5] # weight number 5
G[1].Gr[2].W['Al(001)3p+0'] # a specific weight

Note, that you can change the weight name in which case the new name can be used as index (the old no
longer).

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

• setid (int) – missing (group weigth access) or set id

__delitem__(id)
you can delete a weight with a certain id:

del G[1].Gr[2].W[11]

__len__()
len(G[1].Gr[2].W) returns the number weights

__getitem__()
A single Weight can be obtained from an int index or a str index. int indices are the weight
number (one-based counting). str indices are the name of a weight. The name has to match exactly.

40 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

__iter__()
you can iterate over all weights:

for w in G[1].Gr[1].W:
w.skip=3

next()
for the iterator interface, see __iter__

6.1.12 Weight

class Weight(graphid, groupid, setorweightid, weightid=1)
A funtion or set of functions can have associated weigths, which can be used for a fat-band plot. The
Weight class determines the appearance of the individual weights in such a plot. If all sets of a group share
the same weightlabel set the weight properties can be set from the group for all sets at once if Group.
useattributes is True. This sharing is setup by the Graph.read methods. If the user creates
weights on the fly Group.unifyWeightLabels will setup this sharing (see Set.z). Normal usage is:

gr=G[1].Gr[1]
gr.W[1].off()
for id in [5,6,7]:

gr.W[id].on()
gr.W[id].skip=4

gr.W[5].color=0xff0000
gr.W[6].color=0xaa00
gr.W[7].color=0xff

If the class is accessed directly (Weight(1,2,...)) and called with three arguments they are: graphid,
groupid, weightid. If called with four: graphid, groupid, setid, weightsid.

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

• setorweightid (int) – set/weight id

• weightid (int) – weightid

on()
switch the weight on

Returns

self to allow call chaining as in

Weight.on(...).setSomethingElse(...)

Return type Weight

off()
switch the weight off

Returns

self to allow call chaining as in

Weight.off(...).setSomethingElse(...)

Return type Weight

toggle()
toggle the weight’s visibility

Returns

self to allow call chaining as in

6.1. pyxfbp 41

xfbp Documentation, Release 22.00-62

Weight.toggle(...).setSomethingElse(...)

Return type Weight

setStyle(style=’square’, color=255, skip=0, linewidth=1, fill=1)
convenience method to set the style at once. name and plotorder must be set separately.

Parameters

• style – see style

• color (int) – see color

• skip (int) – see skip

• linewidth (int) – see linewidth

• fill (int) – see fill

Returns

self to allow call chaining as in

Weight.setStyle(...).setSomethingElse(...)

Return type Weight

id
the weight id

Type int

active
get/set if the Weight is visible

Type bool

name
get/set the name of the weight.

Type str

plotorder
get/set the plot order. Weights with higher plot order are plotted later.

Type int

color
get/set the color as int. To print in hex form use e.g. hex(...W[1].color). To set, use W[1].
color=0xff00ff (magenta) (see Colors)

Type int

skip
get/set how many data points are skiped before the next weight symbol is plotted. If there are many
data points in the sets, which carry weights it might be advantageous to only plot a diluted number of
weight symbols.

Type int

style
get/set the weight style either from int or from str (If ‘individual’ weight style is set via Group.
weightstyle/Set.weightstyle) The str version has short forms.

str short int str short int str short int
‘none’ ‘’ 0 ‘triangleup’ ‘^’ 4 ‘plus’ ‘+’ 8
‘circle’ ‘o’ 1 ‘triangleleft’ ‘<’ 5 ‘cross’ ‘x’ 9
‘square’ ‘q’ 2 ‘triangledown’ ‘v’ 6 ‘star’ ‘*’ 10
‘diamond’ ‘d’ 3 ‘triangleright’ ‘>’ 7

42 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Type str/int

linewidth
get/set the line width of a weight symbol (If ‘individual’ weight style is set via Group.
weightstyle/Set.weightstyle)

Type float

fill
get/set if the the weight symbols are filled (If ‘individual’ weight style is set via Group.
weightstyle/Set.weightstyle)

Type bool

6.1.13 NewGroup

class NewGroup(graphid, groupid)
The NewGroup object is an element of the list returned by Graph.read and provides access to newly
read Group s and Set s. This way one does not need not know, which groups/sets where created:

a simple case: non-spinpolarized or relativistic bandstructure
(only 1 group)
gr=G[1].read('band','+band')[0].group
gr.line.color=0xff00

same but spin polarized
grps=G[1].read('band','+band')
gr=grps[0].group
gr.line.color=0xff
gr=grps[1].group
gr.line.color=0xff00

another example
grps=G[1].read('xny','+band') # note the xny type
for r in grps:

for s in r.sets:
s.line.width=2
s.legend='group {grid} set {sid}'.format(grid=r.group.id,sid=s.id)

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

group
the new Group object

Type Group

sets
the list of new Set objects

Type list of Set

6.1.14 LineStyle

class LineStyle(width=1, color=0, style=’solid’, extracolor=1)
A LineStyle object is returned from other object’s properties such that we can change it:

G[1].Gr[1].S[1].line.color=0xff00 # here line returns LineStyle

6.1. pyxfbp 43

xfbp Documentation, Release 22.00-62

Or we can create it separately and use it:

l=LineStyle(width=1.5,color=0xff,style='Dash')

for s in G[1].Gr[1].S:
s.line=l

Parameters

• width (float) – the line width

• color (int) – the line color

• style – see style

• extracolor (int) – see extracolor

width
get/set the line width

Type float

color
get/set the line color as int(hex.) To print in hex form use e.g. hex(...line.color). To set the
color use rim.color=0xff00ff (see Colors).

Type int

style
get/set the line style as int or str. Invalid numbers are folded back into the allowed range (modulus).
Valid styles are defined below.

‘none’ 0 ‘solid’ 1 ‘dash’ 2
‘dot’ 3 ‘dashdot’ 4 ‘dashdotdot’ 5
‘dotdashdash’ 6 ‘longdash’ 7 ‘longdashdot’ 8
‘longdashdotdot’ 9
‘dotlongdashlongdash’ 10

Type str/int

extracolor
get/set if separate line color is used for symbols. (in SymbolStyle)

Type bool

6.1.15 FillStyle

class FillStyle(active=1, color=16777215, extracolor=1)
A FillStyle object is returned from other object’s properties such that we can change it:

G[1].legend.frame.fill.color=0xff00 # here fill returns FillStyle

Or we can create it separately and use it:

fs=FillStyle(active=True,color=0xffffff,extracolor=True)

for s in G[1].Gr[1].S:
s.symbol.style='d'
s.symbol.fill=fs

Parameters

44 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

• active (int) – fill or not

• color (int) – fill color

• extracolor (int) – see extracolor

on()
switch filling on

Returns

self to allow call chaining as in

FillStyle.on(...).setSomethingElse(...)

Return type FillStyle

off()
switch filling off

Returns

self to allow call chaining as in

FillStyle.off(...).setSomethingElse(...)

Return type FillStyle

active
get/set if filling is active.

Type bool

extracolor
get/set if separate fill color is used. (not used by all objects) If this property is used
extracolor=False will trigger the use of the line color for filling. Otherwise color will be
used.

Type bool

color
get/set the fill color. To print in hex form use e.g. hex(...fill.color) Set it via fill.
color=0xff00ff (see Colors)

Type int/hex

6.1.16 FontStyle

class FontStyle(size=12, subscriptscale=0.75, color=0)
A FontStyle object is returned from other object’s properties such that we can change it:

G[1].title.font.size=18

Or we can create it separately and use it:

ft=FontStyle(size=18,subscriptscale=0.75,color=0xff)

for t in G[1].textboxes:
t.font=ft

Parameters

• size (int) – font size

• subscriptscale (float) – relative subscript font size scale

• color (int) – font color

6.1. pyxfbp 45

xfbp Documentation, Release 22.00-62

color
get/set the color as int. To print in hex form use e.g. hex(...rim.color) Set color form as
font.color=0xff00ff (see Colors)

Type int/hex

size
get/set the font size.

Type float

subscriptscale
get/set the relative scale of the subscripts font size compared to normal font size.

Type float

6.1.17 SymbolStyle

class SymbolStyle(style=’none’, size=12, line=None, fill=None)
A SymbolStyle object is returned from Set/Group object’s such that we can change it:

G[1].Gr[1].S[2].symbol.style='circle'

Or we can create it separately and use it:

sy=SymbolStyle(style='',size=12,
line=LineStyle(style='Solid',width=1,color=0x0,extracolor=False),
fill=FillStyle(active=False,color=0xffffff,extracolor=False))

for s in G[1].Gr[1].S:
s.symbol=sy

Parameters

• style (str) – see style

• size (float) – symbol size

• line (LineStyle) – symbol’s line style

• fill (FillStyle) – symbol’s fill style

style
get/set the symbol style either as int or as str

str short int str short int str short int
‘none’ ‘’ 0 ‘triangleup’ ‘^’ 4 ‘plus’ ‘+’ 8
‘circle’ ‘o’ 1 ‘triangleleft’ ‘<’ 5 ‘cross’ ‘x’ 9
‘square’ ‘q’ 2 ‘triangledown’ ‘v’ 6 ‘star’ ‘*’ 10
‘diamond’ ‘d’ 3 ‘triangleright’ ‘>’ 7

Type str/int

size
get/set the symbol size.

Type float

line
get/set the line style of the symbol. If LineStyle.extracolor is False the line color will be
the same as the color of the Set.line style.

46 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Type LineStyle

fill
get/set the fill style of the symbol. If FillStyle.extracolor is False the fill color will be the
same as the color of the Set.line style.

Type FillStyle

6.1.18 Frame

class Frame(active=1, borderspacing=0.2, rim=None, fill=None)
A Frame object is returned e.g. by Legend or TextBox. It can be manipulated or use standalone for
assignment:

G[1].legend.frame.off()

Legend(1).on()\
.setFrame(Frame(active=1,borderspacing=0.4,

rim=LineStyle(style='Solid',width=1,color=0x0,extracolor=True),
fill=FillStyle(active=True,color=0xffffff,extracolor=True)))

Parameters

• active (int) – is the frame visible?

• borderspacing (float) – see borderspacing

• rim (LineStyle) – rim line style

• fill (FillStyle) – frame fill style

on()
show the frame

Returns

self to allow call chaining as in

Frame.on(...).setSomethingElse(...)

Return type Frame

off()
don’t show the frame

Returns

self to allow call chaining as in

Frame.off(...).setSomethingElse(...)

Return type Frame

toggle()
toggle the frame’s visibility

Returns

self to allow call chaining as in

Frame.toggle(...).setSomethingElse(...)

Return type Frame

active
get/set if the frame is visible

Type bool

6.1. pyxfbp 47

xfbp Documentation, Release 22.00-62

borderspacing
get/set the space between the rim and the content.

Type float

rim
get/set the rim line style. The getter returns a reference object such that changing it changes the object
which owns rim. The setter makes a hard assignment of the rim data of the underlying object. The
reference stays intact:

fr=G[1].textboxes[1].frame # fr refers to the textbox frame

ls=fr.rim # ls and fr are references ...

ls.width=2 # changes width in ls, fr and textbox(id 1)

fr.rim=LineStyle() #will hard set new rim data

ls.width=3 # now ls,fr and textbox have width 3

Type LineStyle

fill
get/set the fill style. See rim for reference logic.

Type FillStyle

6.1.19 Paper

class Paper
This class represents the paper which is the white area in the GUI containing everything. It is returned by
global namespace paper or Xfbp.paper. Examples:

paper.size='a4'
paper.orientation='portrait'
or
paper.size=(500,800) # not the same size but close

That’s all there is to it.

size
get/set the paper size. There are two options. First one can give the paper size as a sequence (tu-
ple,list,. . .) of two int:

paper.size=(500,800)

or one can give a paper size str

a0 . . . a10
b0 . . . b10
c1 . . . c7
isob0 . . . isob10
letter legal . . .

Type str or 2-sequence of int

orientation
get/set the orientation to ‘landscape’ or ‘portrait’

Type str

48 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

6.1.20 World

class World(graphid)
The World object determines the part of the data range, which is shown inside the Graph’s viewport
(View). A free standing object can be created or the hierarchy can be used:

World(1).x=[-1,11] # the world object of the graph with id 1

G[1].world.x=[-1,11] # the same thing

g=G[1]
do somthing with graph 1
....
w=g.world
w.x=[-1,11] # yet the same thing
w.offset=(0,0.1) # leave some space in y-direction
w.autoscale('y') # let it be done
#or
g.autoscale('y') # let it be done, its all the same

print w.xmin,w.xmax # printing will be shown in the console (xterm)
print w.ymin,w.ymax

Parameters graphid (int) – the graph id

autoscale(what=’all’)
autoscale graph using the currently set offset

Parameters what (str) – ‘all’ ,’x’ or ‘y’

Returns

self to allow call chaining as in

World.autoscale(...).setSomethingElse(...)

Return type World

setX(x0=0, x1=0)
convenience function to set the x-world extend

Parameters

• x0 (float) – leftmost x-value

• x1 (float) – righttmost x-value

Returns

self to allow call chaining as in

World.setX(...).setSomethingElse(...)

Return type World

setY(y0=0, y1=0)
convenience function to set the y-world extend

Parameters

• y0 (float) – lowest y-value

• y1 (float) – highest y-value

Returns

self to allow call chaining as in

World.setY(...).setSomethingElse(...)

6.1. pyxfbp 49

xfbp Documentation, Release 22.00-62

Return type World

setOffset(x=0, y=0)
convenience function to set the autoscale offset

Parameters

• x (float) – the relative offset in x

• y (float) – the relative offset in y

Returns

self to allow call chaining as in

World.setOffset(...).setSomethingElse(...)

Return type World

x
get/set the x-world extend

Type 2-tuple of float

y
get/set the y-world extend

Type 2-tuple of float

xmin
get/set the leftmost x-value

Type float

ymin
get/set the lowest y-value

Type float

xmax
get/set the rightmost x-value

Type float

ymax
get/set the highest y-value

Type float

offset
get/set autoscale offset in percent*100 of the autoscale interval. The setter argument is a sequence of
2 float: (offsetx,offsety).

Type 2-tuple or 2-list of float

6.1.21 View

class View(graphid)
The View object describes the viewport of a Graph, the area which is usually inside a frame with ticmarks
and such stuff. It is where the data are plotted in on the screen. A free standing object can be created or the
hierarchy can be used:

View(1).x0=0.18 # dont ask why we use x0,y0,width,height here
View(1).width=0.77 # it's historical
View(1).y0=0.166
View(1).height=0.668

or the same

(continues on next page)

50 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

(continued from previous page)

G[1].view.setGeometry(0.18,0.166,0.77,0.668)
or more verbose
G[1].view.setGeometry(x0=0.18,y0=0.166,width=0.77,height=0.668)

G[1].view.setFrame(Frame(active=1,
rim=LineStyle(style='Solid',width=1,color=0x0),
fill=FillStyle(active=True,color=0xffffff)))

Parameters graphid (int) – the graph id

setFrame(frame)
convenience function for setting the frame

Parameters frame (Frame) – the frame

Returns

self to allow call chaining as in

View.setFrame(...).setSomethingElse(...)

Return type View

setGeometry(x0=0.18, y0=0.166, width=0.7, height=0.668)
convenience function for setting the x0, y0, width and height

Parameters

• x0 (float) – relative left border

• y0 (float) – relative top border

• width (float) – relative width

• height (float) – relative height

Returns

self to allow call chaining as in

View.setGeometry(...).setSomethingElse(...)

Return type View

frame
get/set the frame. The getter returns a reference object such that changing the returned frame changes
the object which owns frame. The setter makes a hard assignment of the frame data of the underlying
object while not changeing the reference.

Type Frame

x0
get/set the border left of the view frame in percent*100 of the paper width

Type float

y0
get/set the border above of the view frame in percent*100 of the paper height

Type float

width
get/set the width of the view frame in percent*100 of the paper width

Type float

height
get/set the height of the view frame in percent*100 of the paper height

6.1. pyxfbp 51

xfbp Documentation, Release 22.00-62

Type float

6.1.22 Axis

class Axis(graphid, xy)
The Axis object controls the axis scaling of the Graph:

G[1].xaxis.scaling='log'
#or
Axis(1,'x').scaling='log'

Note, that we use a trick to allow for logarithmic axes with negative world values. In a case where e.g.
World.xmin<0 we adjust xmin to take the smallest representable positive number. This way no error
message pops up but your graph looks weird.

Parameters

• graphid (int) – graph id

• xy (str) – axis id ‘x’ or ‘y’

scaling
get/set the axis scaling ‘lin’ or ‘log’

Type str

6.1.23 Legend

class Legend(graphid)
The Legend object represents the legend box of the Graph. The legend entries are not defined here. They
are Set/Group properties:

G[1].legend.on()
G[1].legend.symbolwidth=2
G[1].legend.frame.borderspacing=0.2

#or
Legend(1).symbolwidth=2
...

Parameters graphid (int) – the graph id

on()
switch legend box on

Returns

self to allow call chaining as in

Legend.on(...).setSomethingElse(...)

Return type Legend

off()
switch legend box off

Returns

self to allow call chaining as in

Legend.off(...).setSomethingElse(...)

Return type Legend

52 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

toggle()
toggle legend box visibility

Returns

self to allow call chaining as in

Legend.toggle(...).setSomethingElse(...)

Return type Legend

setText(font=None, linespacing=0.2)
convenience function to compactly set the text related properties

Parameters

• font (FontStyle) – the font style

• linespacing (float) – the spacing between lines

Returns

self to allow call chaining as in

Legend.setText(...).setSomethingElse(...)

Return type Legend

setGeometry(position=(0.98, 0.02), origin=(0.98, 0.02))
convenience function to compactly set the geometry of the box

Parameters

• position (sequence (list,tuple,..)) – the position of the boxes ori-
gin

• origin (sequence (list,tuple,..)) – the boxes origin

Returns

self to allow call chaining as in

Legend.setGeometry(...).setSomethingElse(...)

Return type Legend

setFrame(frame)
convenience function to compactly set the frame properties

Parameters frame (Frame) – the frame settings

Returns

self to allow call chaining as in

Legend.setFrame(...).setSomethingElse(...)

Return type Legend

setSymbol(spacing=0.5, width=3.0)
convenience function to compactly set the symbol properties

Parameters

• spacing (float) – symbol-text spacing

• width (float) – symbol width

Returns

self to allow call chaining as in

Legend.setSymbol(...).setSomethingElse(...)

Return type Legend

6.1. pyxfbp 53

xfbp Documentation, Release 22.00-62

active
get/set if the legend box’s visiblity. A nonzero value is True zero is False.

Type bool

font
get/set the font. The getter returns a reference object such that changing the returned font changes the
object which owns font. The setter makes a hard assignment of the font data of the underlying object
while not changeing the reference.

Type FontStyle

position
the legendbox has an origin, which is considered the point in the box which is pinned to a position
in the viewport of the graph. Ths position is relative to the viewport. So, position=(1,0) puts
the origin of the box at the upper right corner of the viewport.

Type 2-tuple or 2-sequence of float

origin
the legendbox has an origin, which is considered the point in the box which is pinned to a position
in the viewport of the graph. Ths origin is relative to the legendbox. So, origin=(1,0) puts the
origin of the box at the upper right corner of the box.

Type 2-tuple or 2-sequence of float

symbolspacing
the symbol spacing is the distance between the symbol marker and the legend entry text. It is in units
of the font size.

Type float

symbolwidth
the symbol width determines the width of the symbol marker in units of the font size.

Type float

linespacing
the line spacing determines the distance between the individual lines of legend entries in units of the
font height. Note, that the font height is taller than the a capital letter. Hence linespacing=0 does not
close the visible gap between the lines, negative values do.

Type float

frame
get/set the frame. The getter returns a reference object such that changing the returned frame changes
the object which owns frame. The setter makes a hard assignment of the frame data of the underlying
object while not changeing the reference.

Type Frame

6.1.24 Title

class Title(graphid)
Bases: TextBox

Title is a TextBox and only here for convenience (editor code insert functionality). Access the title of a
Graph in the following way:

G[1].title.text="A title"
#or
Title(1).text="A title"

Parameters graphid (int) – the graph id

54 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

6.1.25 SubTitle

class SubTitle(graphid)
Bases: TextBox

SubTitle is a TextBox and only here for convenience (editor code insert functionality). Access the subtitle
of a Graph in the following way:

G[1].subtitle.on()
G[1].subtitle.text="A subtitle"
#or
SubTitle(1).on().text="A subtitle"

Parameters graphid (int) – the graph id

6.1.26 XAxisLabel

class XAxisLabel(graphid)
Bases: TextBox

XAxisLabel is a TextBox and only here for convenience (editor code insert functionality). Access the
xaxis label of a Graph in the following way:

G[1].xaxislabel.text="moment [$~m$_B$.]"
#or
XAxisLabel(1).text="moment [$~m$_B$.]"

Parameters graphid (int) – the graph id

6.1.27 YAxisLabel

class YAxisLabel(graphid)
Bases: TextBox

YAxisLabel is a TextBox and only here for convenience (editor code insert functionality). Access the
yaxis label of a Graph in the following way:

G[1].yaxislabel.text="Energy [eV]"
#or
YAxisLabel(1).text="Energy [eV]"

Parameters graphid (int) – the graph id

6.1.28 OppositeXAxisLabel

class OppositeXAxisLabel(graphid)
Bases: TextBox

OppositeXAxisLabel is a TextBox and only here for convenience (editor code insert functionality). Access
the opposite xaxis label of a Graph in the following way:

G[1].oppositexaxislabel.on()
G[1].oppositexaxislabel.text="occupation"
#or
OppositeXAxisLabel(1).on().text="occupation"

Parameters graphid (int) – the graph id

6.1. pyxfbp 55

xfbp Documentation, Release 22.00-62

6.1.29 OppositeYAxisLabel

class OppositeYAxisLabel(graphid)
Bases: TextBox

OppositeYAxisLabel is a TextBox and only here for convenience (editor code insert functionality). Access
the opposite yaxis label of a Graph in the following way:

G[1].oppositeyaxislabel.active=True
G[1].oppositeyaxislabel.text="Volume [a$_B$.$x{-0.6}$^$y{-0.4}3$.]"
#or
OppositeYAxisLabel(1).on().text="Volume [a$_B$.$x{-0.6}$^$y{-0.4}3$.]"

Parameters graphid (int) – the graph id

6.1.30 TextBoxes

class TextBoxes(graphid)
The TextBoxes class represents all user defined text boxes of the Graph. This class can be indexed
in a similar way as Graphs with IDs which are not necessarily contiguous indices. The standard way to
access a textbox would be:

G[1].textboxes[2].on().text="(A)"
G[1].textboxes[2].on().frame.off()
G[1].textboxes[2].on().position=(0.1,0.05)

One can use the class on it’s own as with many others:

TextBoxes(1)[2].on() # same thing as before

On can delete a textbox:

del G[1].textboxes[2]
#or
#del TextBoxes(1)[2]

and one can copy one textbox onto another if ever needed:

G[1].textboxes[1].on().text="(a)"
G[2].on()
G[2].view.frame.fill.off()
G[2].textboxes[5]=G[1].textboxes[1];
G[2].textboxes[5].position=(0.2,0.15)

Parameters graphid (int) – the graph id

__delitem__(id)
you can delete a textbox with a certain id:

del G[1].textboxes[2]

__len__()
len(G[1].textboxes) returns the number of textboxes not the highest id

at(i)
For index (not id) based iteration, use as in:

for i in range(len(G[1].textboxes)):
G[1].textboxes.at(i).text='T{I}'.format(I=i+1)

56 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Parameters i (int) – textbox index (not id)

Returns textbox at index i

Return type TextBox

__getitem__()
G[1].textboxes[id] returns the textbox with a certain id:

g=G[1]
tbs=g.textboxes
for i in range(1,6,2):

t=tbs[i].on()
t.text='Textbox id={0}'.format(t.id)
t.position=[t.position[0]+i*0.03,t.position[1]+i*0.05]
t.font.color=0xff

G[1].textboxes[i] <==> G[1].textboxes.__getitem__(i)

__setitem__()
Assign one textbox to another:

G[1].textboxes[2]=G[1].textboxes[1]
G[]1.textboxes[2].position=(0.5,0.5)

G[1].textboxes[i]=x <==> G[1].textboxes.__setitem__(i,x)

__iter__()
you can iterate over all textboxes:

for t in G[1].textboxes:
print t.id

next()
for the iterator interface, see __iter__

new()
create and return a new TextBox

Returns a new TextBox

len
G[1].textboxes.len returns the number of textboxes not the highest id

Type int

lastid
the highest id among all existing textboxes (not the number of textboxes)

Type int

6.1.31 TextBox

class TextBox(graphid, textboxid)
TextBox represents a text box with textboxid in the graph with graphid. TextBox IDs are not necessarily
ordered. You access a textbox from a TextBoxes object:

t=G[1].textboxes[2] # textbox 2 in graph 1
or directly
t=TextBox(1,2)

The acces via TextBoxes allows deletion.

Use the GUI to set up the line and then use the menu->insert->textboxes-> to get something like:

6.1. pyxfbp 57

xfbp Documentation, Release 22.00-62

TextBox(1,1).on()\
.setText("$isymbols: $arrowup, $arrowdown, $arrowleft, "

"$arrowright, $angstroem, "
"$infinity $imore italic, $nnormal",

font=FontStyle(size=12,subscriptscale=0.75,color=0xff))\
.setFrame(Frame(active=1,borderspacing=0.2,

rim=LineStyle(style='Solid',width=1,color=0x0,extracolor=True),
fill=FillStyle(active=True,color=0xffffff,extracolor=True)))\

.setGeometry(system='View',position=(0.03,0.25),angle=0,
origin=(0,0), restriction=None,offsets=[])

Parameters

• graphid (int) – the graph id

• textboxid (int) – the textbox id

on()
switch textbox on

Returns

self to allow call chaining as in

TextBox.on(...).setSomethingElse(...)

Return type TextBox

off()
switch textbox off

Returns

self to allow call chaining as in

TextBox.off(...).setSomethingElse(...)

Return type TextBox

toggle()
toggle textbox visibility

Returns

self to allow call chaining as in

TextBox.toggle(...).setSomethingElse(...)

Return type TextBox

setText(text=’some text’, font=None)
convenience function to set text related properties.

Parameters

• text (str) – the textbox’ text

• font (FontStyle) – the font style

Returns

self to allow call chaining as in

TextBox.setText(...).setSomethingElse(...)

Return type TextBox

setFrame(frame)
convenience function to set the frame

Parameters frame (Frame) – the frame

58 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Returns

self to allow call chaining as in

TextBox.setFrame(...).setSomethingElse(...)

Return type TextBox

setGeometry(system=’view’, position=(0, 0), origin=(0, 0), angle=0.0, restriction=None, off-
sets=[])

convenience function to set the geometry

Parameters

• system (str) – coordinate system, ‘view’ or ‘world’

• position (sequence (list,tuple,..)) – the position: (x,y)

• origin (sequence (list,tuple,..)) – the box origin: (x,y)

• angle (float) – the rotation angle

• restriction – restrictions

• offsets (list) – additional offsets

Returns

self to allow call chaining as in

TextBox.setGeometry(...).setSomethingElse(...)

Return type TextBox

active
get/set if the textbox is visible. A nonzero value is True, zero is False.

Type bool

text
get/set the actual text of the box. Use text formating if needed.

Type str

id
the textbox id

Type int

font
get/set the font. The getter returns a reference object such that changing the returned font changes the
object which owns font. The setter makes a hard assignment of the font data of the underlying object
while not changeing the reference.

Type FontStyle

position
the textbox has an origin, which is considered the point in the box which is pinned to a position in
the viewport of the graph. Ths position is relative to the viewport. So, position=(0,0) puts the
origin of the box at the upper left corner of the viewport.

Type 2-tuple or 2-sequence of float

origin
the textbox has an origin, which is considered the point in the box which is pinned to a position in
the viewport of the graph. Ths origin is relative to the textbox. So, origin=(0,0) puts the origin
of the box at the upper left corner of the box.

Type 2-tuple or 2-sequence of float

angle
the rotation angle of the whole box

6.1. pyxfbp 59

xfbp Documentation, Release 22.00-62

Type float

frame
get/set the frame. The getter returns a reference object such that changing the returned frame changes
the object which owns frame. The setter makes a hard assignment of the frame data of the underlying
object while not changeing the reference.

Type Frame

coordinatesystem
the position of the box is either specified in viewport coordinates or in world coordinates. In
the latter case the box moves when the world is moved. Possible values: ‘view’ or ‘world’.

Type str

restriction
a textbox can have restrictions, which pin it in relation to other objects (e.g. used for the title and axis
lables). A restriction is either None or a tuple (str,float) where the str can be ‘x’or ‘y’. A
restriction moves the box from its position into the specified direction by a viewport-relative amount
given by the float (which can be negative).

Type tuple

offsets
additional offsets, which take into account the space occupied by other objects. If the list is empty
no offsets are considered. Otherwise it can contain any of the following int:

1 opposite x tic label height
2 opposite x tic label offset
3 normal x tic label height
4 normal x tic label offset
5 opposite y tic label width
6 opposite y tic label offset
7 normal y tic label width
8 normal y tic label offset
9 subtitle offset
10 subtitle height
11 opposite x-axis label offset
12 opposite x-axis label height

Type list of int

6.1.32 TicMarks

class TicMarks(graphid, xy)
TicMarks represents the default tic marks and tic labels of the Graph s xaxis and yaxis. For user defined
Tic s look into Graph.usertics and Group.usertics. You can access individual properties via
the object hierarchy:

G[1].ytics.labels.decimals=2
G[1].ytics.major.line.color=0xff0000
G[1].ytics.minor.line.width=2

To setup handmade tic spacings/subdivisions you need to switch off the auto-tic production:

G[1].xtics.auto=False

Note, that for logarithmic axis scaling labels.decimals and major.spacing will be ignored, since
they only make sense for linear scales.

60 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

It might probably be the easiest to use the editor insert menu to get and edit this (After insertion select the
whole block and use the edit->indent functionality for proper python indentation.):

G[1].xtics.auto=True
G[1].xtics.side='Normal'
G[1].xtics.setLabels(side='Normal',offset=0.03,decimals=-1,
font=FontStyle(size=16,subscriptscale=0.75,color=0x0))\
.setMajor(active=1,spacing=1,length=0.02,separatelength=0,
line=LineStyle(style='Solid',width=1,color=0x0,extracolor=True))\
.setMinor(active=1,subdiv=2,length=0.01,separatelength=0,
line=LineStyle(style='Solid',width=1,color=0x0,extracolor=True))
G[1].ytics.auto=True
G[1].ytics.side='Normal'
G[1].ytics.setLabels(side='Normal',offset=0.03,decimals=-1,
font=FontStyle(size=16,subscriptscale=0.75,color=0x0))\
.setMajor(active=1,spacing=1,length=0.02,separatelength=0,
line=LineStyle(style='Solid',width=1,color=0x0,extracolor=True))\
.setMinor(active=1,subdiv=2,length=0.01,separatelength=0,
line=LineStyle(style='Solid',width=1,color=0x0,extracolor=True))

Parameters

• graphid (int) – the graph id

• xy (str) – axis id ‘x’ or ‘y’

setLabels(side=’normal’, offset=0.03, decimals=-1, font=None)
convenience function to set the tic label properties. This is another way of doing the following:

G[1].xtics.labels.side='both'
G[1].xtics.labels.offset=0.02
G[1].xtics.labels.decimals=2
G[1].xtics.labels.font.color=0xff #...

Parameters

• side (str) – ‘none’, ‘normal’, ‘opposite’ or ‘both’ (TicLabels.side)

• offset (float) – see TicLabels.offset

• decimals (int) – see TicLabels.decimals

• font (FontStyle) – see TicLabels.font

Returns

self to allow call chaining as in

TicMarks.setLabels(...).setSomethingElse(...)

Return type TicMarks

setMajor(active=1, spacing=1.0, length=0.02, separatelength=False, line=None)
convenience function to set the major tic mark properties. This is another way of doing the following:

G[1].xtics.auto=False
G[1].xtics.major.spacing=2
G[1].xtics.major.length=0.05

Parameters

• active (int) – see TicMajor.active

• spacing (float) – see TicMajor.spacing

• length (float) – see TicMajor.length

6.1. pyxfbp 61

xfbp Documentation, Release 22.00-62

• separatelength (int) – see TicMajor.separatelength

• line (LineStyle) – see TicMajor.line

Returns

self to allow call chaining as in

TicMarks.setMajor(...).setSomethingElse(...)

Return type TicMarks

setMinor(active=1, subdiv=2, length=0.01, separatelength=False, line=None)
convenience function to set the minor tic mark properties. This is another way of doing the following:

G[1].xtics.auto=False
G[1].xtics.minor.subdiv=5
G[1].xtics.minor.length=0.03

Parameters

• active (int) – see TicMinor.active

• subdiv (int) – see TicMinor.subdiv

• length (float) – see TicMinor.length

• separatelength (int) – see TicMinor.separatelength

• line (LineStyle) – see TicMinor.line

Returns

self to allow call chaining as in

TicMarks.setMinor(...).setSomethingElse(...)

Return type TicMarks

auto
get/set if the tic mark positions shall be automatically determined.

Type bool

side
get/set the side on which to plot the tics. Can be ‘none’, ‘normal’, ‘opposite’ and ‘both’

Type str

labels
get/set a TicLabels object which gives access to the label properties.

This is intended for hierarchical use to change a few properties only as in:

G[1].ytics.labels.decimals=2

Type TicLabels

major
get/set a TicMajor object which gives access to the major tic mark properties.

This is intended for hierarchical use to change a few properties only as in:

G[1].ytics.major.line.color=0xff0000

Type TicMajor

62 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

minor
get/set a TicMinor object which gives access to the minor tic mark properties.

This is intended for hierarchical use to change a few properties only as in:

G[1].ytics.minor.line.width=2

Type TicMinor

6.1.33 TicMajor

class TicMajor(graphid, xy)
TicMajor is returned by G[1].xtics.major or G[1].ytics.major and allows hierarchical access:

G[1].xtics.major.line.color=0xff

Parameters

• graphid (int) – the graph id

• xy (str) – axis id ‘x’ or ‘y’

on()
switch major tics/labels on

Returns

self to allow call chaining as in

TicMajor.on(...).setSomethingElse(...)

Return type TicMajor

off()
switch major tics/labels off

Returns

self to allow call chaining as in

TicMajor.off(...).setSomethingElse(...)

Return type TicMajor

toggle()
toggle major tics/labels visibility

Returns

self to allow call chaining as in

TicMajor.toggle(...).setSomethingElse(...)

Return type TicMajor

active
get/set if the major tics and tic labels are visible. A nonzero value is True, zero is False.

Type bool

spacing
get/set the spacing between major tics in world units. This takes effect, if TicMarks.auto is
switched off. Note, that for logarithmic axis scaling the spacing will be ignored.

Type float

6.1. pyxfbp 63

xfbp Documentation, Release 22.00-62

length
get/set the major tic’s length in relative viewport units. (1 means the whole viewport width/height).
See separatelength.

Type float

separatelength
(get/set) normally this is False such that the physical tic length of both axes is the same. In this case
the xaxis determines the tic length. If separatelength is True, the tic length for both axes can be set
separately. Note, that due to bad design both x- and y-tics have this property. So, if you have:

G[1].xtics.major.separatelength=True
G[1].ytics.major.separatelength=False

in your script, the second line will win.

Type bool

line
get/set the line (LineStyle). The getter returns a reference object such that changing it changes the
TicMajor-object which owns line. The setter makes a hard assignment of the TicMajor-objects
data. The reference of the assigned LineStyle stays intact.

Type LineStyle

6.1.34 TicMinor

class TicMinor(graphid, xy)
TicMinor is returned by G[1].xtics.minor or G[1].ytics.minor and allows hierarchical access:

G[1].xtics.minor.line.color=0xff

Parameters

• graphid (int) – the graph id

• xy (str) – axis id ‘x’ or ‘y’

on()
switch minor tics/labels on

Returns

self to allow call chaining as in

TicMinor.on(...).setSomethingElse(...)

Return type TicMinor

off()
switch minor tics/labels off

Returns

self to allow call chaining as in

TicMinor.off(...).setSomethingElse(...)

Return type TicMinor

toggle()
toggle minor tics/labels visibility

Returns

self to allow call chaining as in

64 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

TicMinor.toggle(...).setSomethingElse(...)

Return type TicMinor

active
get/set if the minor tics and tic labels are visible. A nonzero value is True, zero is False.

Type bool

subdiv
get/set the number of subdivions-intervals between major tics between which to plot a minor tic.

Type int

length
get/set the major tic’s length in relative viewport units. (1 means the whole viewport width/height).
See separatelength.

Type float

separatelength
(get/set) normally this is False such that the physical tic length of both axes is the same. In this case
the xaxis determines the tic length. If separatelength is True, the tic length for both axes can be set
separately. Note, that due to bad design both x- and y-tics have this property. So, if you have:

G[1].xtics.minor.separatelength=True
G[1].ytics.minor.separatelength=False

in your script, the second line will win.

Type bool

line
get/set the line (LineStyle). The getter returns a reference object such that changing it changes the
TicMinor-object which owns line. The setter makes a hard assignment of the TicMinor-objects
data. The reference of the assigned LineStyle stays intact.

Type LineStyle

6.1.35 TicLabels

class TicLabels(graphid, xy)
TicLabels is returned by G[1].xtics.labels or G[1].ytics.labels and allows hierarchical ac-
cess:

G[1].xtics.labels.decimals=2

Parameters

• graphid (int) – the graph id

• xy (str) – axis id ‘x’ or ‘y’

side
get/set the side on which to plot tic labels. It can be ‘none’, ‘normal’, ‘opposite’ and ‘both’

Type str

offset
get/set the offset between the tic labels and the axis in relative viewport units.

Type int

decimals
get/set how many decimals will be plotted. -1 means automatic. Note, that for logarithmic axis scaling
decimals will be ignored.

6.1. pyxfbp 65

xfbp Documentation, Release 22.00-62

Type int

font
get/set the font. The getter returns a reference object such that changing the returned font changes the
object which owns font. The setter makes a hard assignment of the font data of the underlying object
while not changeing the reference.

Type FontStyle

6.1.36 UserTics

class UserTics(graphid, groupid=0)
UserTics allow to define irregular individual tic marks/labels. They can be Graph specific: Graph.
usertics and Group specific: Group.usertics. The difference is that their visibility is coupled to
the respective parent object’s visibility.

Unfortunately, tics are indexed by zero based indices as normal lists in contrast to all other objects in
pyxfbp. The easiest way to deal with them when creating is:

G[1].usertics.clear().on()\
.append(Tic(label="G",position=0.2,length=1,type='xmajor'))\
.append(Tic(label="X",position=0.6,length=1,type='xmajor'))\
.append(Tic(label="M",position=0.9,length=1,type='xmajor'))

When changing existing tics do this (you will anyway have looked at the GUI to figure out which tics where
created by a read command):

G[1].usertics[1].label="P" # change label

del G[1].usertics[5] # dont want this

Some more explanantions: usertics[2] is the 2nd tic and not the tic with id 2 as for graphs. . . Deleting tics
changes the index of all tics with higher index by -1. Furthermore, if we have reference objects they are
now dangling:

G[1].usertics.clear().on()\
.append(Tic(label="G",position=0.2,length=1,type='xmajor'))\
.append(Tic(label="X",position=0.6,length=1,type='xmajor'))\
.append(Tic(label="M",position=0.9,length=1,type='xmajor'))

t=G[1].usertics[0]
t.label="GG"
del G[1].usertics[0]

t.line.color=0xff0000 # this is allowed

for u in G[1].usertics:
print u.label

now t is a dangling Tic. You can change it without any visible
changes in the GUI, well it's dangling.
But you can assign it to another tic.

G[1].usertics.new()
G[1].usertics[2]=t # assign to new 3rd tic

Now the tics are there in a different order

for u in G[1].usertics:
print u.label

66 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Parameters

• graphid (int) – the graph id

• groupid (int) – the group id

__delitem__(i)
you can delete a tic with index i:

del G[1].usertics[2]

on()
switch usertics on

Returns

self to allow call chaining as in

UserTics.on(...).setSomethingElse(...)

Return type UserTics

off()
switch usertics off

Returns

self to allow call chaining as in

UserTics.off(...).setSomethingElse(...)

Return type UserTics

toggle()
toggle usertics visibility

Returns

self to allow call chaining as in

UserTics.toggle(...).setSomethingElse(...)

Return type UserTics

__len__()
len(G[1].usertics) returns the number of usertics

__getitem__()
G[1].usertics[i] returns the usertic with index i

G[1].usertics[i] <==> G[1].usertics.__getitem__(i)

__setitem__()
Assign one usertic to another:

G[1].usertics[2]=G[1].usertics[1]
G[1].usertics[2].position=0.67
G[1].usertics[2].label="M"

G[1].usertics[i]=x <==> G[1].usertics.__setitem__(i,x)

__iter__()
you can iterate over all usertics:

for t in G[1].usertics:
t.line.color=0xff00

next()
for the iterator interface, see __iter__

6.1. pyxfbp 67

xfbp Documentation, Release 22.00-62

clear()
delete all usertics

Returns

self to allow call chaining as in

UserTics.clear(...).setSomethingElse(...)

Return type UserTics

new()
create and return a new Tic

Returns a new Tic

append(tic)
append Tic to the list of usertics.

Parameters tic (Tic) – a tic object

Returns

self to allow call chaining as in

UserTics.append(...).setSomethingElse(...)

Return type UserTics

active
get/set if these usertics (Graph or Group owned) are visible. A nonzero value is True, zero is False.

Type bool

6.1.37 Tic

class Tic(type=’xmajor’, position=0, length=0.02, label=’label’, ticside=’normal’, label-
side=’normal’, labeloffset=0.03, line=None)

The Tic object is used to either append a new Tic to UserTics or to follow the object hierarchical:

G[1].usertics.\
append(Tic(type='xmajor',position=0.1,label='M',

ticside='Normal',labelside='Normal',length=1,labeloffset=0.03,
line=LineStyle(style='Solid',width=1,color=0x0,extracolor=True)))

G[1].usertics[0].label='M' # here usertics[1] returend a Tic object

Parameters

• type (str) – ‘xmajor’, ‘xminor’, ‘ymajor’ or ‘yminor’ type

• position (float) – see position

• length (float) – see length

• label (str) – see label

• ticside (str) – ‘none’, ‘normal’, ‘opposite’ and ‘both’, see ticside

• labelside (str) – ‘none’, ‘normal’, ‘opposite’ and ‘both’, see labelside

• labeloffset (float) – see labeloffset

• line (LineStyle) – see line

type
get/set the type of the tic, ‘xminor’, ‘xmajor’, ‘yminor’ or ‘ymajor’

68 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Type str

position
get/set the tic position in world units.

Type float

label
get/set the tic label.

Type str

ticside
get/set the tic side, ‘none’, ‘normal’, ‘opposite’ and ‘both’

Type str

labelside
get/set the label side, ‘none’, ‘normal’, ‘opposite’ and ‘both’

Type str

length
get/set the tic length in relative viewport units

Type float

labeloffset
get/set the label offset between the tic labels and the axis in relative viewport units.

Type float

line
get/set the linestyle. The getter returns a reference object such that changing it changes the Tic-object
which owns line. The setter makes a hard assignment of the Tic-objects data. The reference of the
assigned LineStyle stays intact.

Type LineStyle

6.1.38 Lines

class Lines(graphid)
Lines represent all line shapes in a Graph. Lines work ID-based, the same way as Graphs. You can
delete line shapes and copy them onto each other:

G[1].lines[1].on()
do some settings
G[1].lines[5]=G[1].lines[1]
del G[1].lines[1]

You can directly access Lines via:

lns=Lines(1)
lns[1].on()

Parameters graphid (int) – the graph id

__delitem__(id)
you can delete a line shape with a certain id:

del G[1].lines[2]

__len__()
len(G[1].lines) returns the number of line shapes not the highest id

6.1. pyxfbp 69

xfbp Documentation, Release 22.00-62

at(i)
For index (not id) based iteration, use as in:

for i in range(len(G[1].lines)):
G[1].lines.at(i).line.color=0xff

Parameters i (int) – line shape index (not id)

Returns line shape at index i

Return type Line

__getitem__()
G[1].lines[id] returns the line shape with a certain id:

g=G[1]
lns=g.lines
for i in range(1,6,2):

t=lns[i].on()
t.line.color=0xff0000
t.startat=(0.2,0.2)
t.endat=[t.endat[0]+i*0.03,t.endat[1]+i*0.0]

G[1].lines[i] <==> G[1].lines.__getitem__(i)

__setitem__()
Assign one line shape to another:

G[1].lines[2]=G[1].lines[1]
G[1].lines[2].startat=(0.9,0.5)

G[1].lines[i]=x <==> G[1].lines.__setitem__(i,x)

__iter__()
you can iterate over all line shapes:

for l in G[1].lines:
l.line.color=0xff00

next()
for the iterator interface, see __iter__

new()
create and return a new Line

Returns a new Line

len
G[1].lines.len returns the number of line shapes not the highest id

lastid
the highest id among all existing line shapes (not the number of line shapes)

Type int

6.1.39 Line

class Line(graphid, lineid)
Line is a single line shape with optional arrows belonging to a particular graph. Access lines through the
lines object or directly:

70 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

l=G[1].lines[4].on() # graph1 line4 now exists and is visible and
assigned to variable l

Line(1,4).on() # does the same thing

G[1].lines[1]=G[1].lines[4] # now we have two lines

del G[1].lines[4] # and delete the first

l.line.color=0xff0000 # error: line4 does not exist, we deleted it

but

l.on().line.color=0xff0000 # back alive

Use the GUI to set up the line and then use the menu->insert->shapes to get something like:

Line(1,1).on().setName('')\
.setGeometry(startat=(0.2,0),endat=(0.8,1),system='View')\
.setLine(capat='None',style=LineStyle(style='Solid',width=1,\

color=0x0,extracolor=True))\
.setArrow(at='End',style='Closed',size=16,sharpness=2,

fill=FillStyle(active=False,color=0x0,extracolor=True))

Parameters

• graphid (int) – graph owning the line

• lineid (int) – line shape id

on()
switch line shape on

Returns

self to allow call chaining as in

Line.on(...).setSomethingElse(...)

Return type Line

off()
switch line shape off

Returns

self to allow call chaining as in

Line.off(...).setSomethingElse(...)

Return type Line

toggle()
toggle line shape visibility

Returns

self to allow call chaining as in

Line.toggle(...).setSomethingElse(...)

Return type Line

setArrow(at=’end’, style=’closed’, size=16, sharpness=2, fill=None)
convenience function to set arrow related properties.

Parameters

• at (str) – where does the arrow sit (arrowat). ‘none’, ‘end’, ‘start’ or ‘both’

6.1. pyxfbp 71

xfbp Documentation, Release 22.00-62

• style (str) – ‘open’ or ‘closed’ (arrowstyle)

• size (float) – the arrowsize

• sharpness (float) – the arrowsharpness

• fill (FillStyle) – the arrowfill

Returns

self to allow call chaining as in

Line.setArrow(...).setSomethingElse(...)

Return type Line

setName(name)
convenience function to set the line shape name

Parameters name (str) – a name

Returns

self to allow call chaining as in

Line.setName(...).setSomethingElse(...)

Return type Line

setGeometry(startat=(0.2, 0), endat=(0.8, 1), system=’view’)
convenience function to set the line geometry

Parameters

• startat (2-sequence (tuple,list,..)) – see startat

• endat (2-sequence (tuple,list,..)) – see endat

• system (str) – ‘view’ or ‘world’ (coordinatesystem)

Returns

self to allow call chaining as in

Line.setGeometry(...).setSomethingElse(...)

Return type Line

setLine(capat=’none’, style=None)
convenience function to set the line’s properties

Parameters

• capat – ‘none’, ‘end’, ‘start’ or ‘both’ (capat)

• style (LineStyle) – see line

Returns

self to allow call chaining as in

Line.setLine(...).setSomethingElse(...)

Return type Line

id
the line shape’s id

Type int

active
get/set if the line shape is visible. A nonzero value is True, zero is False.

Type bool

72 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

name
get/set a name for the line shape for easier orientation

Type str

line
get/set the linestyle. The getter returns a reference object such that changing it changes the Line-
object which owns line. The setter makes a hard assignment of the Line-objects data. The reference
of the assigned LineStyle stays intact.

Type LineStyle

coordinatesystem
get/set/ the coordinate system. startat and endat of the line shape are either specified in
viewport coordinates or in world coordinates. In the latter case the line moves when the world is
moved. Possible values: ‘view’ or ‘world’.

Type str

startat
get/set the line starting position:

l=G[1].lines[1].on()
l.coordinatesystem='world'
l.startat=(0.1,0.2)
l.endat=(0.8,0.6)
G[1].world.setX(-1,1.5).setY(-0.5,1.3)
the line is still at the intended coordinates

Type 2-tuple or 2-sequence of float

endat
get/set the line end position.

Type 2-tuple or 2-sequence of float

capat
get/set the line cap. A line can have a cap at either end. A cap is a little round thing, which makes the
line end look smoother. Possible options are:

‘none’, ‘end’, ‘start’ or ‘both’

Type str

arrowat
get/set the arrow. A line can have an arrow at either end. Possible options are:

‘none’, ‘end’, ‘start’ or ‘both’

Type str

arrowstyle
get/set the arrow style. There are two styles: ‘open’ and ‘closed’.

Type str

arrowsize
get/set the arrow size in point units (as font size).

Type float

arrowsharpness
get/set the arrow sharpness. This is accuteness of the opening.

Type float

6.1. pyxfbp 73

xfbp Documentation, Release 22.00-62

arrowfill
get/set the arrowfill (FillStyle). If arrowfill.active is False/0 and the style is ‘closed’
a full arrow head with the line color is drawn, if arrowfill.active is True/!=0 the arrow
head has a separate fill color.

The getter returns a reference object such that changing it changes the Line-object which owns ar-
rowfill. The setter makes a hard assignment of the Line-objects data. The reference of the assigned
FillStyle stays intact.

6.1.40 Ellipses

class Ellipses(graphid)
Ellipses represent all ellipse shapes in a Graph. Ellipses work ID-based, the same way as Graphs.
You can delete ellipse shapes and copy them onto each other:

G[1].ellipses[1].on()
do some settings
G[1].ellipses[5]=G[1].ellipses[1]
del G[1].ellipses[1]

You can directly access Ellipses via:

els=Ellipses(1) # all ellipses of graph with id 1
els[1].on()

Parameters graphid (int) – the graph id

__delitem__(id)
you can delete an ellipse shape with a certain id:

del G[1].ellipses[2]

__len__()
len(G[1].ellipses) returns the number of ellipse shapes not the highest id

at(i)
For index (not id) based iteration, use as in:

for i in range(len(G[1].ellipses)):
G[1].ellipses.at(i).line.color=0xff

Parameters i (int) – ellipse shape index (not id)

Returns ellipse shape at index i

Return type Ellipse

__getitem__()
G[1].ellipses[id] returns the ellipse shape with a certain id:

g=G[1]
els=g.ellipses
for i in range(1,6,2):

e=els[i].on()
e.line.color=0xff0000
e.radii=0.03*(i+1)
e.center=(e.center[0],e.center[1]+i**2*0.01)

G[1].ellipses[i] <==> G[1].ellipses.__getitem__(i)

74 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

__setitem__()
Assign one ellipse shape to another:

G[1].ellipses[2]=G[1].ellipses[1]
G[1].ellipses[2].center=(0.9,0.5)

G[1].ellipses[i]=x <==> G[1].ellipses.__setitem__(i,x)

__iter__()
you can iterate over all ellipse shapes:

for l in G[1].ellipses:
l.line.color=0xff00

next()
for the iterator interface, see __iter__

new()
create and return a new ellipse

Returns a new Ellipse

len
G[1].ellipses.len returns the number of ellipse shapes not the highest id

lastid
the highest id among all existing ellipse shapes (not the number of ellipse shapes)

Type int

6.1.41 Ellipse

class Ellipse(graphid, ellipseid)
Ellipse is a single ellipse shape belonging to a particular graph. Access ellipses through the ellipses
object or directly:

e=G[1].ellipses[4].on() # graph1 ellipse4 now exists and is visible and
assigned to variable e

Ellipse(1,4).on() # does the same thing

G[1].ellipses[1]=G[1].ellipses[4] # now we have two ellipses

del G[1].ellipses[4] # and delete the first

e.line.color=0xff0000 # error: ellipse4 does not exist, we deleted it

but

e.on().line.color=0xff0000 # back alive

Use the GUI to set up the ellipse and then use the menu->insert->shapes to get something like:

Ellipse(1,4).on().setName('')\
.setGeometry(center=(4.47214,60),radii=(1.11474,18),angle=0,system='World')\
.setLine(LineStyle(style='Dot',width=4,color=0xff0000,extracolor=True))\
.setFill(FillStyle(active=True,color=0xaa00,extracolor=True))

Parameters

• graphid (int) – graph owning the ellipse

• ellipseid (int) – ellipse shape id

6.1. pyxfbp 75

xfbp Documentation, Release 22.00-62

on()
switch ellipse shape on

Returns

self to allow call chaining as in

Ellipse.on(...).setSomethingElse(...)

Return type Ellipse

off()
switch ellipse shape off

Returns

self to allow call chaining as in

Ellipse.off(...).setSomethingElse(...)

Return type Ellipse

toggle()
toggle ellipse shape visibility

Returns

self to allow call chaining as in

Ellipse.toggle(...).setSomethingElse(...)

Return type Ellipse

setName(name)
convenience function to set the ellipse shape name

Parameters name (str) – a name

Returns

self to allow call chaining as in

Ellipse.setName(...).setSomethingElse(...)

Return type Ellipse

setGeometry(center=(0, 0), radii=(0.1, 0.2), angle=0.0, system=’view’)
convenience function to set the line geometry

Parameters

• center (2-sequence (tuple,list,..)) – see center

• radii (float or 2-sequence (tuple,list,..)) – see radii

• angle (float) – see angle

• system (str) – ‘view’ or ‘world’ (coordinatesystem)

Returns

self to allow call chaining as in

Ellipse.setGeometry(...).setSomethingElse(...)

Return type Ellipse

setLine(style)
convenience function to set the ellipse’s linestyle

Parameters style (LineStyle) – : see line

Returns

self to allow call chaining as in

76 Chapter 6. Modules

xfbp Documentation, Release 22.00-62

Ellipse.setLine(...).setSomethingElse(...)

Return type Ellipse

setFill(fill)
convenience function to set the ellipse’s fillstyle

Parameters fill (FillStyle) – : see fill

Returns

self to allow call chaining as in

Ellipse.setFill(...).setSomethingElse(...)

Return type Ellipse

id
the ellipse shape’s id

Type int

active
get/set if the ellipse shape is visible. A nonzero value is True, zero is False.

Type bool

name
get/set a name for the ellipse shape for easier orientation

Type str

line
get/set the linestyle. The getter returns a reference object such that changing it changes the Ellipse-
object which owns line. The setter makes a hard assignment of the Ellipse-objects data. The
reference of the assigned LineStyle stays intact.

Type LineStyle

fill
get/set the fillstyle. The getter returns a reference object such that changing it changes the Ellipse-
object which owns fill. The setter makes a hard assignment of the Ellipse-objects data. The refer-
ence of the assigned FillStyle stays intact.

Type FillStyle

center
get/set the ellipse starting position:

e=G[1].ellipses[1].on()
e.coordinatesystem='world'
e.center=(0.1,0.2)
e.radii=(0.2,0.1)
G[1].world.setX(-1,1.5).setY(-0.5,1.3)
the ellipse is still at the intended coordinates

Type 2-tuple or 2-sequence of float

radii
get/set radii/radius. The 2-sequence (tuple,list,. . .) denotes [x-radius,y-radius]. If a circle is needed
just us a single float (no sequence):

ellipse.radii=0.2 # a circle

Type float or 2-tuple of float

6.1. pyxfbp 77

xfbp Documentation, Release 22.00-62

angle
get/set rotation angle of the ellipse

Type float

coordinatesystem
get/set/ the coordinate system. center and radii of the ellipse shape are either specified in
viewport coordinates or in world coordinates. In the latter case the ellipse moves when the world
is moved. Possible values: ‘view’ or ‘world’.

Type str

78 Chapter 6. Modules

CHAPTER

SEVEN

XFBP

Author Klaus Koepernik

• Python scripting

• Native Scripting

– Comments

– File loading

– Print commands

– Paper commands

– Graph/Group/Set/Weight descriptors

– With command

– World commands

– View commands

– Legend box commands

– Graph commands

– Shape commands

– Text box commands

– Tic mark commands

* Regular tic commands:

* Irregular tic commands

– Group commands

– Set commands

– Set attribute commands

– Weight commands

– Weight settings

– Weightlabel definitions

– Line style commands

– Fill style commands

– Font style commands

– Symbol style commands

– Kill commands

79

xfbp Documentation, Release 22.00-62

– Copy/Move commands

– Hook commands

– Cursor reference

– Assignments/Definitions

– Expressions

• GUI

– Plotting window

– Scripting window

• Logarithmic plots

• Data

• Files

• Command line options

– File type flags

• Data file types

• Set Dialog

• Color Model dialog

7.1 Python scripting

If the program was compiled with python support the pyxfbp help is displayed when F1 is hit in the script/transform
dialog if the editor is set to python mode. The python scripts should have the extension .xpy since they do not
work in other python shells.

7.2 Native Scripting

The Transform Dialog is actually a script editor, where xfbp commands from the file description language and
some more commands can be used. For python mode go here.

The commands can be saved to file or loaded from file (extension .cmd). To get familiar with the commands you
can use the insert functionality of the editor. We also recommend to look at the .xfp files: save the current plot
(.xfp) (not the current script) and look at the .xfp file.

We try to describe the scripting language in the following, including examples. To copy these examples into the
script editor, select and copy them via Ctrl-C and paste them (Ctrl-V) into the script editor.

The language is made of statements. Each statement is a single line.

In the following optional parts of a statement are enclosed in square brackets []. A construct like (a|b|c|...
.) means that at this position in the command either a or b or c . . . can be used. If parentheses (and) appear
without a | between them they are literals, which means you have to type them (example: sin(x)). They will
be set in bold face in the command description. Similarly square brackets [and] can appear in vector element
constructs (example: s1.x[6]=12.5).

In the following key words are denoted by keyword. They are not case sensitive. Values are denoted by value.
There are different values:

• sub commands like linestylecommands

• expressions like exp, which can be numbers, variables, parameters and some other constructs. They evaluate
to scalars or vectors

80 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

• strings, which are used for file names and text. They must be enclosed within double quotes, example:

read xny "+dos.total"
read bandweight "+bweights"

• parameters are values defined on the command line via option -a and are available in the script editor via
$parametername. Example: Create a command file t.cmd with the content:

kill all
read xny $pp
with g1.gr1.s1
line width $w
legend $leg
title "Density of states"

From the command line call:

xfbp t.cmd -a pp:"+dos.sort001" -a leg:"Fe" -a w:2

Of course, you have to make sure that there is actually a file +dos.sort001 for this to work.

Important: when graphs, groups, sets or weights are referenced in the script, they will be made current, which
means that they will be remembered until the next such explicit reference makes another graph. . . the current
object. This allows to skip these specifiers in many contexts.

Content

file_loading Group commands Kill commands
Print commands Set commands Copy/Move commands
Paper commands Set attribute commands Hook commands
Graph/Group/Set/Weight descriptors Weight commands Cursor reference
With command Weight settings Assignments/Definitions
World commands Weightlabel definitions Expressions
View commands Line style commands
Legend box commands Fill style commands
Graph commands Font style commands
Shape commands Symbol style commands
Text box commands
Tic mark commands
Irregular tic commands

7.2.1 Comments

• # blah blah

Full line comment. There are no inline comments!

top

7.2.2 File loading

• read filetype (string | parameter) [(into (graphdesc | groupdesc) | into new graph)]

Read file with name string or with its name provided in a parameter into current graph (or a specific
graph/group) enforcing data type filetype. (string | parameter) is something like “myfile.dat”. Band struc-
ture data cannot be read into specified groups, since they are organized into groups by the programm.

Examples:

7.2. Native Scripting 81

xfbp Documentation, Release 22.00-62

killall and initialize graph 1
killall
read band strcture into current graph (graph 1)
read band "+band"
read two files into graph 2
read xny "+dos.total" into g2
read xny "+dos.sort001" into g2.gr5

top

7.2.3 Print commands

Currently there is only two options to print: png and eps files. The printed eps format is not yet fully eps
standard, but works, especially embedded in LaTeX.

• print to (string | parameter) [dpi int (quality real) | quality real (dpi int)]

export plot to file named string in eps or png format (the file extension determines which). Example:

print to "bands.png" dpi 300 quality 0.95

• print filename (string | parameter)

set the the file name for print commands to string or parameter.

• print to file

export plot in eps or png format to file. (The filename must have been defined before.)

top

7.2.4 Paper commands

• paper size int , int

set paper size from width and height (integer). Example:

paper size 400,200

• paper size papersizes

set paper size from paper size names, e.g. a1. . . a10, letter, lettersmall, legal, statement, tabloid, ledger,
folio, quarto. Example:

paper size a4
paper orientation portrait

• paper orientation (portrait | landscape)

set orientation. Only for predefined paper sizes.

• arrange (paperwidth , Nx , xgap0 , xgap1 , deltawidth , Ny , ygap0 , ygap1 , deltaheight , aspectratio,
commonxaxis, commonyaxis, commontitle)

arrange Nx* Ny graphs on a grid. The graphs can already exist. Otherwise they are created. The index runs
row by row. xgap0/xgap1 are the spaces left/right of the first/last viewbox in percent/100 of the paper width.
Similarily ygap0/ygap1. deltawidth/deltaheight are the in-between gaps in percent/100 of the individual
viewbox width/height. aspectratio determines the individual viewbox aspect ratio. Note, that the point
scale of the graphs depends on the paperwidth. You need to experiment with the gap values a bit to get the
labels/ticmarks/titles properly displayed in the page. If commonxaxis is nonzero the in-between-viewboxes
tic labels and xaxis labels are switched off and in each column the world x axis is made equivalent. Simi-
larily, for commonyaxis. For this to work the arrange command must be issued after setting up the graphs.
If commontitle is nonzero the titles in between rows are switched off:

82 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

arrange(800, 3,0.12,0.03,0.1, 2,0.12,0.15,0.1, 1.0, 1,1,1)

top

7.2.5 Graph/Group/Set/Weight descriptors

Data belong to graphs and are organized in groups and sets. graph/group/set/weight s have descriptors, which
are explained here. Note, that there is the concept of a current graph/group/set/weight. The current object is
memorized after a descriptor appeared in the script until another object becomes current by the appearance of
another descriptor . Hence we can write:

g1.gr2.s1 line color 0xff
line width 2.5
line symbol ...

to change the settings of set 1 in group2 in graph 1.

• gint

graph int: g4 is graph 4.

• grint

group int in the current graph (if valid)

• sint

set int in the current graph and current group

• gint1 . grint2

group int2 in graph int1

• [[gint1 .]grint2 .]sint3

set int3 in current group or group int2 in current graph or graph int1

• [(groupdesc | setdesc) .](x | y)

vector of x/y values in groupdesc/setdesc or current group/set. Example: g1.gr1.x=x+1, will increase
all x values of all sets in g1.gr1 by one. The full command would be g1.gr1.x=g1.gr1.x+1, but
this is not necessary. And g1.gr1.s2.y=y*2, will multiply all y values of set g1.gr1.s2 by two.

Note, that each descriptor resets the higher level to invalid, such that following works:

g1.gr1.s3 line color 0x00
now current set is s3, current group is gr1
line width 2.4
it is still set 3
g1.gr1.x=mesh(...)
after g1.gr1 the current set is invalid and
hence all x of group1 get assigned a mesh
line width 2.4
now we just set the line width for all sets in group 1

Each set can have a number of weights associated with them. If all sets of a group refer to the same set of weights
(same set of weight labels.) the group can be used to manipulate the weight appearance. (bandweight plots)

• [(groupdesc | setdesc) .]wint

weight number int in groupdesc/setdesc or current group or set (whichever was defined/refered-to previ-
ously). Example:

g1.gr1.w8 off
turns off weight 8 in group 1.

7.2. Native Scripting 83

xfbp Documentation, Release 22.00-62

• [(groupdesc | setdesc) .]wstring

weight with name string in specified or current group/set. The names must match the existing weight labels
exactly. Example:

w"Cu(001)3s+0" off.

top

7.2.6 With command

The current graph/group/set/weight descriptors can be set without reference to a particular commmand.

• with (graphdesc | groupdesc | setdesc | weightdesc)

set the current . Example:

with g1.gr1.s3
line color 0xff0000
symbol style circle
now weigths with implicit with (remembered from the last weightdescriptor)
w1 off
w"Cu(001)3d+0" on
set this weights color
color 0xff0000
and the skippage
skip 5

top

7.2.7 World commands

World commands refer to a certain graph, which either is specified explicitly or was set as current graph before.

• [graphdesc] world (xmin | xmax | ymin | ymax) exp

set world 𝑥min, 𝑥max, 𝑦min or 𝑦max for graph. Example:

world xmin -1

• [graphdesc] world (x | y) exp , exp

set the x or y interval of the world coordinates. Example:

world x -1,10

• autoscale [(x | y)]

autoscale all, x-only or y-only. Example:

autoscale x

• autoscale offset exp , exp

define the autoscale offset for both directions. This is the space in percent*100 of the total world inter-
val, which will be added on both sides of the intervall. If non-zero, an autoscale will leave the specified
percentage of space at either side of the plotted curves.

The current settings can be loaded from the insert menu in the script editor.

top

84 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

7.2.8 View commands

The view is the area spanned by the frame of the graph. It is defined in relative coordinates with respect to the
paper. A view of width 1 and x-origin 0 would produce a graph frame spanning the whole breadth of the paper. In
the following graphdesc can be left out if previously a graph was referenced (with gint, or other references).

• [graphdesc] view exp , exp , exp , exp

set x-origin, width, y-origin and height of the view. x,y=(0,0) is the upper left corner and x,y=(1,1) the lower
right corner. exp must evaluate to a scalar.

• [graphdesc] view frame (on | off)

switch frame of view on or off

• [graphdesc] view frame rim linestylecommands

use linestylecommands for the rim of the view frame

[graphdesc] view frame fill fillstylecommands

use fillstylecommands for the view frame filling

The current settings can be loaded from the insert menu in the script editor.

top

7.2.9 Legend box commands

The legend box belongs to a particular graph. The following commands refer to the current graph. They can also
be prefixed with a graphdesc or follow after with gint to set the current graph (as indicated in graphcommands).

• legend (on | off)

switch legend box on or off

• legend font fontstylecommands

use fontstylecommands for text in legendbox

• legend line spacing exp

set spacing between legend box entries (lines). exp must evaluate to a scalar.

• legend symbol marker spacing exp

set spacing between symbol and text

• legend symbol marker width exp

set width of symbol before the text

• legend frame (on | off)

switch frame on or off

• legend frame rim linestylecommands

use linestylecommands for the rim

• legend frame border spacing exp

set spacing between rim (border) and content (symbols, text)

• legend frame fill fillstylecommands

use fillstylecommands for the frame

• legend position exp , exp

set legend position relative to the view frame (y=0 is on the top). The position refers to the point of the
legend box given as origin (see below)

7.2. Native Scripting 85

xfbp Documentation, Release 22.00-62

• legend origin exp , exp

define the point of the legend box, which is considered its origin. (the position command places this point.)

The current settings can be loaded from the insert menu in the script editor.

top

7.2.10 Graph commands

Graph commands will manipulate graphs. A graph is a single view-frame/plot with axes, which can contain
several groups/sets. Graphs have (irregular) tic mark settings and can contain shapes (lines/ellipses). Graphs can
be scaled.

• graphdesc (on | off | toggle)

switch graph on or off or toggle on/off (for hookcommands). Example:

g2 on

• new graph

create a new graph. More control is achieved via switching a particular graph on or off.

• [graphdesc] textboxcommands

use textboxcommands for the current/specified graph. Example:

g1 subtitle on
subtitle "some subtitle"
subtitle font color 0xff

• [graphdesc] legendboxcommands

use legendboxcommands for the current/specified graph.

• [graphdesc] ticmarkcommands

use ticmarkcommands for the current/specified graph.

• [graphdesc] irregularticmarkcommands

use irregularticmarkcommands for the current/specified graph.

• [graphdesc] graph line width scale exp

set an overall line width scale for the current/specified graph. This affects all line widths.

• [graphdesc] graph point size scale exp

set an overall point size scale for the current/specified graph. This affects font and symbol sizes and line
widths.

• [graphdesc] shapecommands

manipulate shapes (arrows/lines/ellipses), see shapecommands. Example:

g1 line1 on
line1 line width 2

top

7.2.11 Shape commands

In the moment line shapes (lines/arrows) and ellipses (circles) can be added to a graph. First let us define shape
descriptors:

86 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

• ellipse[]int

reference to ellipse number int. The space between the keyword and the number is optional. Example:

ellipse3

• line[]int

reference to line shape number int. This can be an arrow not just a line. The space between the keyword
and the number is optional. Example:

line 2

Now, we give the details for each shape type. Some commands are specific for the particular shape kind others are
common.

• shapedesc (on | off)

switch on (create it of not yet existing) or off a shape. Example:

line1 on

• shapedesc name (string | parameter)

give the shape a name. This is usefull in the GUI, where all shapes appear in a list. Example:

line1 name "my-fancy-line-name"

• shapedesc line linestylecommands

use linestylecommands for the shape’s rim/line.Example:

line1 line color 0xff
line1 line style dot

• shapedesc coordinatesystem (view | world)

use this coordinate system’s units for the shape’s size/positional settings. World coordinates refer to the
physical coordinates of the underlying plot. Hence, changing the zoom of the plot will move the shape with
it. View coordinates refer to the graph’s view/frame. These are rleative coordinates, where x,y=(0,0) is
the upper left corner and x,y=(1,1) is the lower right corner of the view.

• ellipsedesc fill fillstylecommands

use fillstylecommands for the ellipse’s interior. Example:

ellipse1 fill color 0xff
ellipse1 fill on

• ellipsedesc angle exp

set the angle about which the ellipse is rotated.

• ellipsedesc center exp , exp

set the center of the ellipse. This refers either to world or view coordinates.

• ellipsedesc radii exp , exp

set the two radii of the ellipse. This refers either to world or view coordinates.

• ellipsedesc radius exp

set both radii of the ellipse to the same value (making it a circle). This refers either to world or view
coordinates.

7.2. Native Scripting 87

xfbp Documentation, Release 22.00-62

• linedesc arrow fill fillstylecommands

use fillstylecommands for the line. Note, that only the fill color command does work here, i.e. closed arrow
heads allways have fill on. If an empty head is required, use fill color 0xffffff (white).

• linedesc (arrow | cap) position (none | start | end | both)

set the position of the arrow head or cap on the line shape. A cap is a little runding off at the end of the line.
better visible if the line width is larger.

• linedesc arrow style (open**| **closed)

open arrows are made of lines, closed ones are haveing a filling.

• linedesc arrow (size | sharpness) exp

set the size or sharpness of the arrow head.

• linedesc (start | end) exp , exp

set the start and the end of the line shape. (refers to the specified coordinatesystem.)

The current settings of existing shapes can be loaded from the insert menu in the script editor.

top

7.2.12 Text box commands

Text boxes are used for axis labels but can also be placed freely in the graphs. They belong to a particular graph.
The special text boxes like axes- and tic labels can impose restrictions on each others placement, which are used
to keep them at reasonable distance from each other. Text boxes have an origin, with respect to which the position
is defined.

Textboxes are identified by a descriptor:

• textbox[]int

the general text box number int. The space is optional. Example:

textbox1
#or
textbox 1

• (title | subtitle | xaxislabel | yaxislabel | oppositexaxislabel | oppositeyaxislabel)

one of the special textboxes

Now, the commands:

• textboxdesc (on | off)

switch textbox on or off

• textboxdesc (string | parameter)

set the content of textbox to string or parameter. The string can contain formating. Example:

title "N$_0$.$x{-0.7}$^iFen$."

will produce N𝐹𝑒
0

• textboxdesc font fontstylecommands

use fontstylecommands for textbox. Example:

title font color 0xff00ff

88 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

• textboxdesc frame (on | off)

switch this textbox’s frame on or off.

• textboxdesc frame rim linestylecommands

use linestylecommands for the frame rim of textbox

• textboxdesc frame fill fillstylecommands

use fillstylecommands for the filling of textbox’s frame

• textboxdesc frame border spacing exp

define the space between the frame rim and the text.

• textboxdesc coordinatesystem (view | world)

Set the coordinatesystem for the text position.

• textboxdesc position exp , exp

set the position of the textbox. This referes to the specified coordinate system. See origin below.

• textboxdesc origin exp , exp

The textbox has an origin, which is positioned accoding to the position command.

• textboxdesc angle exp

set the rotation angle of the textbox

• textboxdesc restriction (+x | -x | +y | -y) exp

restrict the movement of this textbox to the positive/negative x/y-axis and shift it in this direction by the
amount exp. Example:

title restriction -Y 0.03

• textboxdesc restriction none

define that there are no additional placement restrictions for this textbox

• textboxdesc restriction additional [int [int [int. . .]]]

define a list of int values, encoding various additional restrictions refering to the special text
boxes. The list can be empty.

x-tic labels int y-tic labels int sub-title/axis-labels int
opposite x tic label
height

1 opposite y tic label
width

5 subtitle offset 9

opposite x tic label off-
set

2 opposite y tic label
offset

6 subtitle height 10

normal x tic label
height

3 normal y tic label
width

7 opposite x-axis label
offset

11

normal x tic label off-
set

4 normal y tic label off-
set

8 opposite x-axis label
height

12

The current settings of existing textboxes can be loaded from the insert menu in the script editor.

top

7.2.13 Tic mark commands

Tics come in two varieties: regular tics, which are graph specific and irregular tics which can belong to a graph or
a group.

7.2. Native Scripting 89

xfbp Documentation, Release 22.00-62

7.2.13.1 Regular tic commands:

• (x | y) auto tic[s] (on | off)

auto tics on means that the tic spacing is determined automatically, off means that the user has to set the
major tic spacing and the minor tic subdivisions. Example:

x auto tics off

• (x | y) axis scaling (log[arithmic] | lin[ear])

set the axis scaling to linear or logarithmic. Also read Logarithmic plots. Example:

x axis scaling log

• (x | y) tic[s] side (none | normal | opposite | both)

on which side to place the tics. Example:

x tic side opposite

• (x | y) (major | minor) tic[s] (on | off)

switch the drawing of x/y major/minor tics on or off. Example:

x minor tics off

• (x | y) major tic[s] spacing exp

the distance of major tics in world units. For logarithmic axes the spacing between two major tics is deter-
mined by multiplication with this number instead. Example:

x major tic spacing 0.1

• y (major | minor) separate tic[s] length (on | off)

if switched on, the length of the y axis tics is set separatly. Otherwise it is the same physcial length as for
the x-axis tics. Example:

y major separate tic length on
x major tic length 0.03
y major tic length 0.05

• (x | y) (major | minor) tic[s] length exp

set the length of the tics in view units.

• (x | y) minor tic[s] subdiv int

set the number of subdivisions of a major tic interval to define the position of the minor tics.Example:

x minor tic subdiv 2

• (x | y) (major | minor) tic[s] line linestylecommands

use linestylecommands for the tics. Example:

x major tic line color 0xff00

• (x | y) tic[s] label[s] decimals int

set the number of decimals to be printed in the tic labels. A negative number signals to use the automatic
default. Example:

x tic label decimals 2

90 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

• (x | y) tic[s] label[s] offset exp

the label offset from the axis in view units. Example:

x tic label offset 0.1

• (x | y) tic[s] label[s] side (none | normal | opposite | both)

where to draw the tic labels. Example:

x tic label side both

• (x | y) tic[s] label[s] font fontstylecommands

use fontstylecommands for label’s text. Example:

x tic label font color 0xffff

top

7.2.13.2 Irregular tic commands

Irregular tics can be owned by graphs and groups. Group owned irregular tics will be visible if the group is vis-
ible. These commands must follow after a particular graph/group was specified by a previous command (graph-
commands, groupcommands) or via a with-command. The group irregular tic mark commands always need a
groupdesc prefix.

• irregular tic[s] (on | off)

switch on irregular tics. Example:

gr1 on
g1.gr1 irregular tics on

The irregular tics get descriptors formed in the following way:

• itic[]int

an irregular tic descriptor. The space is optional. Example:

itic1

Now the commands

• iticdesc type (x | y) (major | minor)

define if itic is an x or a y tic and if it is major or minor. Major tics can have labels. Example:

itic1 type y major

• iticdesc length exp

define the tic length of itic. This is in view units. a length of 1 creates a line spanning the whole view area.
Example:

span the full
itic1 length 1

• iticdesc position exp

the tic position in world units. Example:

itic1 position 0

7.2. Native Scripting 91

xfbp Documentation, Release 22.00-62

• iticdesc label[s] (string | parameter)

the itic’s label. Only for major labels. Example:

itic1 label "E$_F$."

• iticdesc tic[s] side (none | normal | opposite | both)

at which side to draw the itic

• iticdesc label[s] side (none | normal | opposite | both)

at which side to draw the itic label:

itic1 tic side normal
itic1 label side opposite

• iticdesc label[s] offset exp

the label offset from the axis in view units. Example:

itic1 label offset 0.07

• iticdesc line linestylecommands

use linestylecommands for the itic. Example:

itic1 line style dot

Example: the Fermi level can be done like this:

gr1 on
g1.gr1 irregular tics on
itic1 type y major
itic1 length 1
itic1 position 0
itic1 label "$~e$_F$."
itic1 label side opposite
itic1 line style dot

top

7.2.14 Group commands

Group commands manipulate groups. They act on the current group, which can be set either explicitly or implicitly
as explained in so many other places.

• [groupdesc] use attributes (on | off)

if on, the group attributes will be used for each set of the current or specified group. When switched off,
each set’s individual properties will be used.

• [groupdesc] setattribcommands

use setattribcommands for the current or specified group

• [groupdesc] weightsettings

use weightsettings for the current or specified group

• groupdesc irregularticmarkcommands

define irregularticmarkcommands for this group.

top

92 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

7.2.15 Set commands

Set commands are commands, which modify a single set (sometimes all sets of a group). The set can be made
current via the with command or via at least one explicit set descriptor.

Example:

we assume that the current graph and group are already set

s1 on
alternatively
with s1
now the properties
line color 0xff0000
symbol style circle
convolute(s1,0.5)

• [setdesc] setattribcommands

use setattribcommands for this set

• [setdesc] weightsettings

use weightsettings for this set

• [(setdesc | groupdesc) .](x | y) = exp

assign exp to the x/y-vector of this group/set. exp can be a vector or scalar expression. Example:

this will create a parabola by setting y[i]=x[i]^2
for each point i in the set
g1.gr1.s1.y=x^2

or

with g1.gr1.s1

y=x^2

• convolute (setdesc , exp)

convolute the set with a Gaussian of half width exp.

• setdesc length exp

set the length of the x and y vectors. (The set must by of xy-type.)

• bspline (setdesc , int1 , int2)

construct the int2-th derivative of the B-spline interpolation of order int1 of the set and apply it to the
set. B-splines are spline interpolations of arbitrary order. Note, that there must be a minimum number of
data points to construct it. Zeroth order means histogram. First order means linear interpolation second
order quadratic spline-interpolation and so on. Note, that int2=0 means zeroth derivative and that nothing
changes, since the bspline is an exact interpolation at the data points and a zeroth derivative is an identity. To
calculate derivatives you chose a spline order, which does not lead to too many wiggles but is high enough
to smoothly represent the data. Example:

killall
with g1.gr1
s1 on
N=100
m=mesh(0,10,N)
s1 length N
x=m
y=sin(x)
line color 0xff

(continues on next page)

7.2. Native Scripting 93

xfbp Documentation, Release 22.00-62

(continued from previous page)

copy s1 to s2
s2.y=cos(x)
line color 0xff0000
#first derivative
bspline(s1,2,1)
copy s1 to s3
#difference
s3.y=y-s2.y
line color 0xff00
legend "error"
autoscale

• bspline (setdesc , int1 , int2 , identifier)

construct the int2-th derivative of the B-spline of order int1 and interpolate it onto the x-vector pointed to
by identifier, which must be a vector. The result is saved in set.y. Example

kill all
g1.gr1.s1 on
data xy
0 0
1 1
2 4
end data
legend "raw data\char"
line color 0xf00
symbol style circle
symbol fill on
line style none
N=100
m=mesh(-1,3,N)
copy s1 to s2
bspline(s2,1,0,m)
s2 legend "spline order 1"
line color 0xff0000
copy s1 to s3
bspline(s3,2,0,m)
s3 legend "spline order 2"
line color 0xff00
autoscale

• integrate (setdesc)

running sum integral of set. This produces the curve 𝐼 (𝑥) =
∫︀ 𝑥

𝑥0
𝑦 (𝑢) 𝑑𝑢 for each point 𝑥𝑖 in the set (upper

boundary indefinite integral). For derivatives see bspline. If you need the value of the integral in a script do
something like:

integrate(s1)
sum=y[length-1]

• data datatype
datalines
end data

define a block of data of datatype

datatype explanantion
xy standard y(x)
grid/xynz z(x,y)
xynw y(x) and w(x,y)

94 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

The datalines depend on the datatype. They may contain identifier and things like world.xmin. Example.
Also look at saved .xfp files.

• [setdesc] weightlabel[s] reference[]int

set the weight label reference of the current set to int. This refers to a particular weightlabeldefinitions,
defined elswhere. Sets with the same reference are treated as having the same set of weights. This allows to
manipulate the weights settings of all these sets together (especially when grouped). The number of weights
and dimensions of x/y of all these sets must be the same!

top

7.2.16 Set attribute commands

Set attributes can be applied to groups or sets. The last group/set descriptor or with command will decide which
object’s attributes are defined. You can also prefix each command or at least the first of a series of such commands
with an explicit group/set descriptor.

• (on | off)

switch the current group/set on or off.

• toggle

toggle the current group/set. (For hookcommands)

• line linestylecommands

use linestylecommands for the current group/set.

• symbol symbolstylecommands

use symbolstylecommands for the current group/set.

• legend (string | parameter)

set the legend string for the current group/set.

• showin legend (on | off)

decide if group/set this is shown in the legend box.

• interpolationdepth int

set the interpolation depth for grid/density plots.

• max cutoff exp

set the upper cutoff for density grid/density plots. see “scalemax” in Section SetDialog.

• min cutoff exp

set the lower cutoff for density grid/density plots. see “scalemin” in Section SetDialog.

• min color hexconstant

set the data-background color for density grid/density plots. see “z0” in Section SetDialog.

• null cutoff exp

set the z-value under which data background color is gradually inserted for density grid/density plots. see
“z0” in Section SetDialog.

• zpower exp

set the power law for mapping of z-values onto colormaps for density grid/density plots. see “zpower” in
Section SetDialog.

• zcomponent exp

set which z-component is ploted for density grid/density plots. This is usually 0. see Section SetDialog.

7.2. Native Scripting 95

xfbp Documentation, Release 22.00-62

• colormap from exp , exp

exp must be hex constants and represent colors. The resulting colormap is interpolated between the two.

• colormap name string

select a predefined colormap

Terrain Hot Autumn
RainBow Heat Winter
Magma Spring Gnuplot
Inferno Summer Seismic
RainBow2 RainBow3

• colormap exp
real : hexconstant real : hexconstant . . .
real : hexconstant real : hexconstant . . .
. . .
colormap end

This is a list of pairs of z-values in [0,1] and hex-colors. Each line can contain arbitrary number of pairs.
There can be arbitrary number of lines. There are no commas. This defines a set of mappings of z-values
from the standard interval onto colors. If exp is nonzero the interpolation is done in RGB space, otherwise
in the circular hue-saturation space.

• use secondderivative (on | off)

(deprecated does not work) decide the use of second derivatives for grid/density plots.

• setcomment string

set the “set-comment” of the current group/set. Set-comments denote, where the data came from. This is
mostly used in the *.xfp files, which get saved and loaded by xfbp.

top

7.2.17 Weight commands

Weight commands determine the appearance of individual weights of groups or sets. The internal organization of
weights into groups is a bit confusing. As long as your weights came from an fplo bandweights file it should work
alright. Weight descriptors can be made current via a with command or by using a weightdesc (at least for the first
command which belongs to a particular weight) Examples:

w11 on
plotorder 1
name "yx"
or
with w11
on
plotorder 1
name "yx"

• [weightdesc] (on | off)

switch the weight on or off. Note, that if the current weightdesc is invalid but some other descriptor is valid,
this command switches the currently valid graph/group/set. Example:

with g1
on
we switched graph 1
with gr1.w2
implicit g1 explicit gr1 and w2

(continues on next page)

96 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

(continued from previous page)

on
now, we switched weight 2

• [weightdesc] plotorder int

the weight with the higher plotorder gets plotted later.

• [weightdesc] name (string | parameter)

rename the weight. This affects the legend entry. Note, that a name change also means that the weightdesc
w"weigthname" changes as well. Furthermore the weight label/name is unique in that it is a property
of the weight itself such that if one changes the name of a weight in a group it also changes the name of
this weight in all sets, which are assoziated to this weight. i.e. all sets of all groups, which are belonging
together, like spin up and down groups of a +bweights plot.

• [weightdesc] color hexconstant

set the weights color to hexconstant

• [weightdesc] skip exp

skip as many symbols between plotted symbols (unless weight style is connected). skip 0 means: plot all
symbols.

• [weightdesc] symbol fill (on | off)

fill symbols or not. (only if is weight style individual).

• [weightdesc] symbol line width exp

for open symbols the symbol line width matters. (only if weight style is individual).

• [weightdesc] symbol style symboltype

set the symboltype. (only if weight style is individual).

top

7.2.18 Weight settings

Weight settings can be applied to groups or sets. The last group/set descriptor or with command will decide which
object’s settings are defined. Weight settings affect the appearance of all visible weights of a group or set.

• weight max exp

set the symbol size, which represents a weight value of 1. exp is in a scale like font sizes.

• weight min exp

set the weight symbol size, under which no symbols will be plotted. This depends on max since it scales
everything up.

• weight factor exp

scale all weights by this factor, before applying max and min. (This is somehow superfluous).

• weight style (dots | connected | individual)

set the style of the weights.

dots individual filled circles for each data point
connected connect the circles by linear intepolation
individual each weight can have its own symbol

top

7.2. Native Scripting 97

xfbp Documentation, Release 22.00-62

7.2.19 Weightlabel definitions

This is special stuff to define tables of weightlabels especially in saved files.

• weightlabel definition[s]
weightlabels[]int1
stringlist
end weightlabel[s]
. . .
weightlabels[]intn
stringlist
end weightlabel[s]

define tables of weightlabels with references int1 through intn. See weightlabel references. stringlist is a
list of weight labels (strings), each on a separate line.

top

7.2.20 Line style commands

Line style commands are used in several other commands.

• color hexconstant

define the color using a hex number, which encodes the RGB (red-green-blue) color components. The
constant contains three bytes (leading zeros need not be specified) the left-most is red, then green and
right-most is blue:

hex color red green blue
0x000000=0x0 black 0 0 0
0xff0000 red 255 (ff) 0 0
0x00ff00=0xff00 green 0 255 (ff) 0
0x0000ff=0xff blue 0 0 255 (ff)
0x800000 darkred 128 (80) 0 0
0xffffff white 255 (ff) 255 (ff) 255 (ff)

• width exp

set line with

• style (linestyle | int)

set line style via name or number

linestyle int linestyle int linestyle int
none 0 long dash 7
solid 1 dash dot 4 long dash dot 8
dash 2 dash dot dot 5 long dash dot dot 9
dot 3 dot dash dash 6 dot long dash long dash 10

Example:

s1 line style dash
or
s1 line style 2

top

98 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

7.2.21 Fill style commands

These commands appear in various other commans and usually cannot stand by themselfs (they are preceded by
. . . fill).

• color hexconstant

define fill color using a hexconstant

• (on | off)

switch filling on or off

top

7.2.22 Font style commands

These commands are used in several commands after font.

• size exp

set the font size to exp, which must evaluate to a number.

• subscriptscale exp

set the scaling down ratio of subscript

• color hexconstant

define font color using a hexconstant

top

7.2.23 Symbol style commands

These commands are used in other commands and preceded by symbol.

• style (symboltype**int)

set symbol style by name or number

symboltype int symboltype int symboltype int
none 0 triangleup 4 plus/+ 8
circle 1 triangleleft 5 cross/x 9
square 2 triangledown 6 star/* 10
diamond 3 triangleright 7

Example:

s1 symbol style square
or
s1 symbol style 2

• size exp

set the symbol size to exp, which must evaluate to a number. The symbol sizes have the same scale as font
sizes.

• fill fillstylecommands

use fillstylecommands for the symbol.

7.2. Native Scripting 99

xfbp Documentation, Release 22.00-62

• line linestylecommands

use linestylecommands for the rim

Example:

g1.gr1.s1 symbol style diamond
symbol size 18
symbol fill on
symbol fill color 0xff0000
symbol line color 0x0000ff
symbol line width 2

top

7.2.24 Kill commands

• kill[]all

kill everything (clean slate) and initialize graph 1 in default state. The space between the keyword and the
number is optional.

• kill (graphdesc | groupdesc | setdesc)

remove graph/group/set. If the last graph was killed graph 1 is initialized in a default state. Example:

kill g1.gr12

top

7.2.25 Copy/Move commands

Use these to move sets around or copy them.

• (copy | move) setdesc1 to setdesc2

copy/move set1 to set2. Moving is essentially renaming. Note, that you can move a set to a different graph
and/or group:

here I shall have a g1.gr1.s1
g2 on
now we have graph 2
gr3 on
now we have a group3 in graph 2
in order to move g1.gr1.s1 there, we have to explicitly spell out g1.gr1,
since the last command defined the current descriptor as g2.gr3, hence:
move g1.gr1.s1 to g2.gr3.s11
now we have moved the set into s11 in graph 2 group 3

in order to move the s11 to s1 in g2.gr3 we do not have to change groups or
→˓graphs

hence,

move s11 to s1

will work

top

100 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

7.2.26 Hook commands

Sometimes it is usefull to have the program do something when the mouse is clicked on a certain point in a graph.
This can be done by ”hooking” a particular command to the mouseclick.

• hook mouseclick left command-as-string

set the command in command-as-string to be hooked onto the left mouse click. In the moment only left
mouse click is implemented. When hooking is active the current world point (at clicking) is written into the
file +currentpoint. command-as-string can stretch over multiple lines to allow for several commands.
Example:

hook mouseclick left "
with g1.gr10
s1 on
s1 length 2
x[0]=cursor.x
x[1]=cursor.x
y[0]=world.ymin
y[1]=world.ymax
line color 0xff0000

"

This will draw a vertical red line at the mouse position when clicked.

top

7.2.27 Cursor reference

If hook commands are active the world coordinates pointed to by the mouse cursor can be references.

• cursor . (x | y)

reference the world coorinate under the mouse cursor. Example:

hook mouseclick left "world xmin cursor.x
world ymin cursor.y"

Note, the newline within the string!

top

7.2.28 Assignments/Definitions

One can in a limited way define variables: scalars and vectors.

• identifier = exp

define a variable name identifier and assign it exp. Note, that “length” cannot be an identifier name. Exam-
ple:

N=100
m=mesh(0.1,12.3,N)

• [setdesc .](x | y) [exp1] = exp2

this assigns the exp2 to a value x[exp1] or y[exp1] in the current or specified set. Note, that the square
brackets are for real. It is a vector element reference. The vector assignment is explained here . Example:

s1.y[0]=0
s1.y[length-1]=0

top

7.2. Native Scripting 101

xfbp Documentation, Release 22.00-62

7.2.29 Expressions

exp can be anything of the following:

• world . (xmin | xmax | ymin | ymax)

reference to the current world limits. (For hookcommands and other usefull stuff.)

• mesh (exp1 , exp2 , exp3)

define a vector of length exp3 made of equidistant points between exp1 and exp2. Example:

s1 on
N=100
s1 length N
x=mesh(0.1,12.3,N)
y=x^2

• real

any real or integer number.

• identifier

any previously defined identifier

• parameter

any parameter defined on the command line. See parameter.

• cursor . (x | y)

a reference to the mouse cursor position. (For hookcommands) See Cursor reference.

• [setdesc .] length

the length of the set’s x/y-vectors. Example:

with s1

x[length-1]=100

• [setdesc .] (x | y)

the set’s x/y-vector. Example.

• [groupdesc .] (x | y)

the group’s x/y-vectors

• setdesc . (x | y) [exp]

the exp-th element of the x/y-vector of set. The square brackets are for real here. Example:

s1.x[10]

• moment (setdesc , exp1 , exp2 , exp3)

the exp1-th moment of set.y in the x-interval [exp2,*exp3*]. These are normalized moment 𝑀𝑛 =∫︀ 𝑥1
𝑥0

𝑓(𝑢)𝑢𝑛𝑑𝑢∫︀ 𝑥1
𝑥0

𝑓(𝑢)𝑑𝑢
, hence 𝑀1 ≡ 1. The second moment corrected for the center of gravity is defined as

⟨(𝑥−𝑀1)
2⟩

⟨⟩ = 𝑀2 −𝑀2
1 . Example:

killall
N=1000
a=0.5
x0=-0.6
x1=1.6
w=0.2

(continues on next page)

102 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

(continued from previous page)

g1.gr1.s1 on
s1 length N
x=mesh(x0,x1,N)
y=exp(-((x-a)/w)^2/2)*3
m1=moment(s1,1,x0,x1)
m2=moment(s1,2,x0,x1)
calculate the normalized width
wi=sqrt(m2-m1^2)
echo "wi=",wi
gr1 irregular tics on
itic1 type x major
itic1 position m1
itic1 length 1
itic1 label side opposite
itic1 label "m1"

itic2 type x major
itic2 position m1+wi
itic2 length 1
itic2 label side opposite
itic2 label "wi"
itic2 line style dash
autoscale

• (exp)

we can use parentheses around any expression. Example:

a*(b+c)

• function (exp)

These functions can be used on scalars or vectors

function meaning function meaning function meaning
sqrt(x)

√
𝑥 sin(x) sin(𝑥) asin(x) arcsin(𝑥)

abs(x) |𝑥| cos(x) cos(𝑥) acos(x) arccos(𝑥)
exp(x) 𝑒𝑥 tan(x) tan(𝑥) atan(x) arctan(𝑥) ∈ [−𝜋

2 ,
𝜋
2]

log(x) log𝑒(𝑥) cot(x) 1
tan(𝑥)

log10(x) log10(𝑥) theta(x) 𝜃(𝑥) =

{︃
1 𝑥 ≥ 0

0 𝑥 < 0

• function (exp , exp)

These functions can be used on scalars and vectors, and mixed arguments

function meaning
min(x1,x2) min(𝑥1, 𝑥2)
max(x1,x2) max(𝑥1, 𝑥2)
sign(x1,x2) |𝑥1|sign(𝑥2)
atan2(x1,x2) arctan(𝑥2

𝑥1
) ∈ [−𝜋, 𝜋]

• (min | max) (vectorexp)

return a scalar containing the maximum or minimum of all values in the vectorexp, which must be a vector.
Example:

m=min(g1.gr1.s1.y)
or

(continues on next page)

7.2. Native Scripting 103

xfbp Documentation, Release 22.00-62

(continued from previous page)

with g1.gr1

m=max(min(s1.y),1.0e-5)
mixed scalar and vector expression: each element of s1.y will be the larger
→˓of
either the element or m.
y=max(y,m)

• exp1 ^ exp2

exp1 raised to the power of exp2.

• exp1 (* | /) exp2

• (+ exp | - exp)

• exp (+ | -) exp

• format(string, exp)
format(string, exp, exp)
format(string, exp, exp, exp)
format(string, exp, exp, exp, exp)

string must be a format string, as in C, where each “%” marker refers to one of the other arguments. There
must be as many markers as exp arguments and the type must match.

Typical markers are %s for strings, %ld for integer, %g for real, %10.5f for fixed format real with width 10
and 5 digits after the decimal point. Example:

i=42
suffix="x1"
print to format("file\%ld_\%s.png",i,suffix)

top

7.3 GUI

7.3.1 Plotting window

Use the right mouse key on an objects and double click (depends on where you do this). Have a look at the mouse
button tips.

If the zoom buttons on the left are used, some of them change the cursor into a cross hair shape. This means that
the corresponding function is switched on. To cancel the function use a right mouse click.

Hotkeys:

• zoom in Ctrl-+

• zoom out Ctrl- -

• autoscale all Ctrl-a

• autoscale x Ctrl-x

• autoscale y Ctrl-y

• scroll Ctrl-left, Ctrl-right, Ctrl-up, Ctrl-down

Hover with the mouse pointer over GUI elements to get tooltips.

104 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

To make a graph the current graph double click on empty space in the graph far enough away from sets and other
objects. If several graphs overlap where you double click the current graph is changeing everytime you double
click (loop through all graphs under the mouse cursor). You can also double click on empty space outside of any
graph to loop through all the graphs. The current graph is displayed at the buttom of the window.

7.3.2 Scripting window

Have a look at the edit and insert menus for usefull functions.

Searching: Start search via Ctrl-F, type the search term, use backspace for corrections. Hit Ctrl-F to find next
hit. If end of script is reached (colored search bar) hit Ctrl-F again to go back to start searching at the
beginning of script. Use any cursor movement to cancel search mode. If Ctrl-F is hit to initiate search, hit
it again to bring back the previous search string (if it exists).

7.4 Logarithmic plots

In log scale invalid data points are converted into very small numbers before plotting. This way the data sets are
never invalid but the world scale will look weird.

For ellipses in world coordinate units the radii for the y/x direction denote the upper/right radius in world scale
when the ellipse were placed at 1,1. Example:

killall
g1 on
x axis scaling log
y axis scaling log
world x 0.1 , 100
world y 0.1 , 100
Ellipse1 on
Ellipse1 name ""
Ellipse1 line style solid
Ellipse1 line width 1
Ellipse1 line color 0x0
Ellipse1 fill on
Ellipse1 fill color 0xeeeeee
Ellipse1 coordinate system World
Ellipse1 center 1,1
Ellipse1 radii 9,9
Ellipse1 angle 0
with g1.gr1
s1 on
data xy
10 0.1
10 100
end data
s2 on
data xy
0.1 10
100 10
end data

(continues on next page)

7.4. Logarithmic plots 105

xfbp Documentation, Release 22.00-62

(continued from previous page)

textbox1 on
textbox1 coordinate system World
textbox1 "radius 9"
textbox1 position 11 , 1
textbox2 on
textbox2 coordinate system World
textbox2 "center at 1,1"
textbox2 position 11 , 9
Line1 on
Line1 coordinate system World
Line1 start 11.2658,5.96763
Line1 end 1.01985,0.796076

7.5 Data

The data are organized in groups and sets. Groups and sets have attributes. The group attributes can be set to hold
for each set of the group irrespective of the individual set’s settings.

7.6 Files

xfbp saves files in its own format (which is a subset of the scripting language). The extension is .xfp. It can
also save and load the scripts, usually with the extension .cmd. It can load a set of data files.

If compiled with python support, it loads .xpy (and .py) files from the command line and executes them. The
.xpy extension denotes a python script, which is using pyxfbp bindings. These files cannot be executed in a
normal python shell, since they need xfbp to run properly.

7.7 Command line options

The program can be called with filenames as argument. If the file type has to be specified explicitely a file type
flag has to preceed the filename. Most common files are automatically recognized via some heuristics. These are
fplo band and bandweight files and xfbp’s own files: .cmd, .xfp and .xpy (or .py if you insist). If no file
type is specified, data files are loaded with an implicit -xny flag (blocks of columnar data). In general each file is
read into its own group. Spin polarized band structures create two groups if there are two spin directions (not full
relativistic):

-cwd make the directory of following file current directory in the ap-
plication. (I do not know, what this was for.)

-oi open in observe mode, to monitor calculation progress
(especially usefull for an on-machine fplo run).

-a namevalue specify a parameter name – value pair, separated by a colon, e.g:

-a p1:"filename1"

in generic command/script files, where the parameter $p1
(or p1 in python) will be available in the script and contain
"filename1". Also see python specifiaction Commmand line
parameters.

-die in connection with a script use this option to quit xfbp after script
execution:

106 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

xfbp -die script.xpy

7.7.1 File type flags

A file on the command line can be preceeded by a file type flag to force a certain file type. For more details on the
data strutures see data files.

-xny xny data

-xynw xnyw data

-xynz xynz gridded data

-band band structure data

-bandweight band weights data

-akbl Bloch-Spectral-Density data

-p a parameter file, containing scripting commands (only native).

7.8 Data file types

• xny Data sets are read, assuming that an empty line starts a new data block. In each multi column block
with N columns the first column is 𝑥 and the other 𝑁 − 1 columns are 𝑦𝑖, resulting in 𝑁 − 1 sets for
each data block in the file. All sets end up in a new group.

• xynw The first column of each block is 𝑥. The second is 𝑦 and the following columns are weights.

• xynz First comes a block of 𝑁𝑥 𝑥-values, each line one value, followed by a blank line. Then comes a
similar block of 𝑁𝑦 𝑦-values followed by a blank line. Finally a block of 𝑁𝑥 ·𝑁𝑦 𝑧-values, one value
per line. The resulting plot will be a density plot where the 𝑧-values define the color.

• band An FPLO band structure file.

• bandweight or bandweights An FPLO band weights file.

• akbl An FPLO Bloch-Spectral-Density file. (CPA FPLO5, pyfplo.Slabify)

7.9 Set Dialog

For xynz functions a density plot is performed, which plots a color code for each 𝑧(𝑥, 𝑦). If you double click on
a density plot in the viewport area this dialog opens. The tab “DensityPlot” controls the appearance of the plot.

7.8. Data file types 107

xfbp Documentation, Release 22.00-62

Fig. 1: The densityplot tab of the set dialog.

• An xynz file can contain several components, e.g. the Bloch spectral function of the CPA modul (old)
produced a gross (component 0) and net (component 1) spectral density in the same file.

• By default component 0 is plotted unless it is chosen differently (component-spinbox in the dialog, zcom-
ponent or pyxfbp.Set.zcomponent). If the underlying data are coarse, use interploation depth in
the dialog (interpolationdepth or pyxfbp.Set.interpolationdepth) to smoothly add more data
points (dont use overly large values!).

• Chose a colormodel (colormap . . . or pyxfbp.Set.colormap).

• Look at the histogram, which shows the number of data points for each z-value and the z-interval which is
mapped to the color map. By default the whole interval is mapped with a small modification. On loading
the file (and through pyxfbp.Set.adjustDensPlot) an automatic detection of background data and
upper data cut-off is attempted This can be changed and often needs to be changed.

– if scalemax is decreased (from default 1 – no upper cut-off) more values at the higher end of z-values
get painted with the maximum-value color. Basically all z values right of the right rim of the color bar
have maximum-value color.

– if z0 (null cutoff or pyxfbp.Set.z0) is larger than the minimum z-value the lowest color value of
the color model is interpolated into the data background color for z-values lower than z0. This can
be used to plot values below a certain z-value with another color (to clean a data background). The
default data-background color (min color or pyxfbp.Set.databackgroundcolor) is magenta
to alert the user that something might need adjustment.

– if scalemin (min cutoff or pyxfbp.Set.scalemin) is smaller than 1 the interpolation reaches full
data-background-color already for z-values larger than min(z) but smaller than z0. This way the
background cleaning color spreads more aggresively.

– zpower (zpower or pyxfbp.Set.zpower) is used to map the z-values in a non-linear fashion onto
the colormap.

108 Chapter 7. XFBP

xfbp Documentation, Release 22.00-62

Just try it. For completeness the scalar 𝑥 which maps linearly to the colormap is defined as

𝑥 = max

(︂
min

(︂
𝑧 − 𝑧0

(𝑧𝑚𝑎𝑥 − 𝑧0) scalemax
, 1

)︂
, 0

)︂zpower
, 𝑧 > 𝑧0

and the 𝑥 which interpolates between the lower end of the colormap and the data-background color is defined
as

𝑥 = max

(︂
min

(︂
(𝑧0 − 𝑧)

(𝑧0 − 𝑧𝑚𝑖𝑛) scalemin
, 1

)︂
, 0

)︂zpower
, 𝑧 < 𝑧0

7.10 Color Model dialog

The color map editor has a “more” button from which one can choose pre-made color maps.

Fig. 2: The colormap editor.

A map consists of a chain of nodes, each with a certain hue-saturation combination and a certain value (darkness).
These nodes are interpolated to obtain all colors. The interpolation happens either on straight lines in the Hue-Sat
space or in rgb space. The latter will happen if the interpol. rgb checkbox is on. The difference is most visible if
two colors are chosen such that their connection line crosses the white center of the circle.

Right click somewhere and a node gets added.

• If there is no node yet, a single node appears.

• If there is one node a second appears and will be connected to the first node by a line.

• If there are more than two nodes ,the new node will be connected to the closest end node, or it will be
inserted if the mouse click was close to a connection line. (Currently, a straight line between neighboring
nodes is considered and not the curved lines which appear in rgb interpolation scheme. If you click on the
visible line close to a node it should work in almost all cases)

Imediately after the right click the new node can be dragged around.

Right click on a node and it gets deleted.

Left click on a node the move it around.

Shift-left click a node to set a precise color.

7.10. Color Model dialog 109

xfbp Documentation, Release 22.00-62

Any of the 4 color widgets can be clicked on.

If you prefer to wrap your own color model start with a two color map. Choose more->clear to remove all prior
nodes. Right click into the round Hue-Sat widget and drag the new node to your color of choice. Right click
somewhere else in the same widget and drag to the desired color. This is a colormap.

Now, optionally, switch on/off the interpol. rgb checkbox. This will interpolate between the two end nodes either
in RGB or Hue-Saturation colorspace. These two-end-color maps are usually rather usefull, especially with RGB
interpolation.

You can invert the node sequence (more->invert)

The more->set-equal-distance function will make the gradient nodes equidistant.

110 Chapter 7. XFBP

PYTHON MODULE INDEX

p
pyxfbp, 14

111

xfbp Documentation, Release 22.00-62

112 Python Module Index

INDEX

Symbols
__abs__() (SetVector method), 37
__abs__() (Vector method), 38
__add__() (SetVector method), 36
__add__() (Vector method), 38
__delitem__() (Ellipses method), 74
__delitem__() (Graphs method), 17
__delitem__() (Groups method), 21
__delitem__() (Lines method), 69
__delitem__() (Sets method), 25
__delitem__() (TextBoxes method), 56
__delitem__() (UserTics method), 67
__delitem__() (Weights method), 40
__div__() (SetVector method), 36
__div__() (Vector method), 38
__getitem__() (Ellipses method), 74
__getitem__() (Graphs method), 17
__getitem__() (Groups method), 22
__getitem__() (Lines method), 70
__getitem__() (SetVector method), 36
__getitem__() (Sets method), 26
__getitem__() (TextBoxes method), 57
__getitem__() (UserTics method), 67
__getitem__() (Vector method), 38
__getitem__() (Weights method), 40
__getitem__() (ZComponents method), 39
__iter__() (Ellipses method), 75
__iter__() (Graphs method), 17
__iter__() (Groups method), 22
__iter__() (Lines method), 70
__iter__() (SetVector method), 36
__iter__() (Sets method), 26
__iter__() (TextBoxes method), 57
__iter__() (UserTics method), 67
__iter__() (Vector method), 39
__iter__() (Weights method), 40
__len__() (Ellipses method), 74
__len__() (Graphs method), 17
__len__() (Groups method), 21
__len__() (Lines method), 69
__len__() (SetVector method), 36
__len__() (Sets method), 25
__len__() (TextBoxes method), 56
__len__() (UserTics method), 67
__len__() (Vector method), 38
__len__() (Weights method), 40

__len__() (ZComponents method), 39
__mul__() (SetVector method), 36
__mul__() (Vector method), 38
__neg__() (SetVector method), 36
__neg__() (Vector method), 38
__pos__() (SetVector method), 37
__pos__() (Vector method), 38
__pow__() (SetVector method), 36
__pow__() (Vector method), 38
__setitem__() (Ellipses method), 74
__setitem__() (Lines method), 70
__setitem__() (SetVector method), 36
__setitem__() (TextBoxes method), 57
__setitem__() (UserTics method), 67
__setitem__() (Vector method), 38
__setitem__() (ZComponents method), 40
__sub__() (SetVector method), 36
__sub__() (Vector method), 38

A
active (Ellipse attribute), 77
active (FillStyle attribute), 45
active (Frame attribute), 47
active (Graph attribute), 19
active (Group attribute), 23
active (Legend attribute), 53
active (Line attribute), 72
active (Set attribute), 30
active (TextBox attribute), 59
active (TicMajor attribute), 63
active (TicMinor attribute), 65
active (UserTics attribute), 68
active (Weight attribute), 42
adjustDensPlot() (Set method), 29
angle (Ellipse attribute), 77
angle (TextBox attribute), 59
append() (Sets method), 26
append() (UserTics method), 68
append() (Vector method), 39
arrange() (Xfbp method), 14
arrowat (Line attribute), 73
arrowfill (Line attribute), 73
arrowsharpness (Line attribute), 73
arrowsize (Line attribute), 73
arrowstyle (Line attribute), 73
at() (Ellipses method), 74

113

xfbp Documentation, Release 22.00-62

at() (Graphs method), 17
at() (Groups method), 21
at() (Lines method), 69
at() (Sets method), 25
at() (TextBoxes method), 56
auto (TicMarks attribute), 62
autoscale() (Graph method), 19
autoscale() (World method), 49
Axis (class in pyxfbp), 52

B
borderspacing (Frame attribute), 47
bspline() (Set method), 29

C
capat (Line attribute), 73
center (Ellipse attribute), 77
clear() (UserTics method), 67
color (FillStyle attribute), 45
color (FontStyle attribute), 45
color (LineStyle attribute), 44
color (Weight attribute), 42
colormap (Set attribute), 31
comment (Group attribute), 24
comment (Set attribute), 30
convolute() (Set method), 28
coordinatesystem (Ellipse attribute), 78
coordinatesystem (Line attribute), 73
coordinatesystem (TextBox attribute), 60
cursor (Xfbp attribute), 16

D
databackgroundcolor (Set attribute), 30
decimals (TicLabels attribute), 65

E
Ellipse (class in pyxfbp), 75
Ellipses (class in pyxfbp), 74
ellipses (Graph attribute), 21
endat (Line attribute), 73
extracolor (FillStyle attribute), 45
extracolor (LineStyle attribute), 44

F
fill (Ellipse attribute), 77
fill (Frame attribute), 48
fill (SymbolStyle attribute), 47
fill (Weight attribute), 43
FillStyle (class in pyxfbp), 44
font (Legend attribute), 54
font (TextBox attribute), 59
font (TicLabels attribute), 66
FontStyle (class in pyxfbp), 45
Frame (class in pyxfbp), 47
frame (Legend attribute), 54
frame (TextBox attribute), 60
frame (View attribute), 51

G
G (Xfbp attribute), 15
Gr (Graph attribute), 19
Graph (class in pyxfbp), 18
graph (Group attribute), 23
graph (Set attribute), 30
Graphs (class in pyxfbp), 16
Group (class in pyxfbp), 22
group (NewGroup attribute), 43
group (Set attribute), 30
Groups (class in pyxfbp), 21

H
height (View attribute), 51

I
id (Ellipse attribute), 77
id (Graph attribute), 19
id (Group attribute), 23
id (Line attribute), 72
id (Set attribute), 29
id (TextBox attribute), 59
id (Weight attribute), 42
integrate() (Set method), 28
interpolationdepth (Set attribute), 30

K
killall() (Xfbp method), 14

L
label (Tic attribute), 69
labeloffset (Tic attribute), 69
labels (TicMarks attribute), 62
labelside (Tic attribute), 69
lastid (Ellipses attribute), 75
lastid (Graphs attribute), 17
lastid (Groups attribute), 22
lastid (Lines attribute), 70
lastid (Sets attribute), 26
lastid (TextBoxes attribute), 57
Legend (class in pyxfbp), 52
legend (Graph attribute), 20
legend (Group attribute), 24
legend (Set attribute), 30
len (Ellipses attribute), 75
len (Groups attribute), 22
len (Lines attribute), 70
len (Sets attribute), 26
len (SetVector attribute), 37
len (TextBoxes attribute), 57
len (Vector attribute), 39
len (ZComponents attribute), 40
length (Tic attribute), 69
length (TicMajor attribute), 63
length (TicMinor attribute), 65
Line (class in pyxfbp), 70
line (Ellipse attribute), 77

114 Index

xfbp Documentation, Release 22.00-62

line (Group attribute), 24
line (Line attribute), 73
line (Set attribute), 30
line (SymbolStyle attribute), 46
line (Tic attribute), 69
line (TicMajor attribute), 64
line (TicMinor attribute), 65
Lines (class in pyxfbp), 69
lines (Graph attribute), 21
linespacing (Legend attribute), 54
LineStyle (class in pyxfbp), 43
linewidth (Weight attribute), 43
linewidthscale (Graph attribute), 19

M
major (TicMarks attribute), 62
minor (TicMarks attribute), 62
moment() (Set method), 28

N
name (Ellipse attribute), 77
name (Line attribute), 72
name (Weight attribute), 42
new() (Ellipses method), 75
new() (Groups method), 22
new() (Lines method), 70
new() (Sets method), 26
new() (TextBoxes method), 57
new() (UserTics method), 68
NewGroup (class in pyxfbp), 43
next() (Ellipses method), 75
next() (Graphs method), 17
next() (Groups method), 22
next() (Lines method), 70
next() (Sets method), 26
next() (SetVector method), 36
next() (TextBoxes method), 57
next() (UserTics method), 67
next() (Vector method), 39
next() (Weights method), 41

O
off() (Ellipse method), 76
off() (FillStyle method), 45
off() (Frame method), 47
off() (Graph method), 19
off() (Group method), 23
off() (Legend method), 52
off() (Line method), 71
off() (Set method), 27
off() (TextBox method), 58
off() (TicMajor method), 63
off() (TicMinor method), 64
off() (UserTics method), 67
off() (Weight method), 41
offset (TicLabels attribute), 65
offset (World attribute), 50
offsets (TextBox attribute), 60

on() (Ellipse method), 75
on() (FillStyle method), 45
on() (Frame method), 47
on() (Graph method), 19
on() (Group method), 22
on() (Legend method), 52
on() (Line method), 71
on() (Set method), 27
on() (TextBox method), 58
on() (TicMajor method), 63
on() (TicMinor method), 64
on() (UserTics method), 67
on() (Weight method), 41
OppositeXAxisLabel (class in pyxfbp), 55
oppositexaxislabel (Graph attribute), 20
OppositeYAxisLabel (class in pyxfbp), 56
oppositeyaxislabel (Graph attribute), 20
orientation (Paper attribute), 48
origin (Legend attribute), 54
origin (TextBox attribute), 59

P
Paper (class in pyxfbp), 48
paper (Xfbp attribute), 16
plotorder (Weight attribute), 42
pointsizescale (Graph attribute), 19
position (Legend attribute), 54
position (TextBox attribute), 59
position (Tic attribute), 69
printto() (Xfbp method), 14
pyxfbp (module), 14

R
radii (Ellipse attribute), 77
read() (Graph method), 18
restriction (TextBox attribute), 60
rim (Frame attribute), 48

S
S (Group attribute), 24
scalemax (Set attribute), 30
scalemin (Set attribute), 30
scaling (Axis attribute), 52
separatelength (TicMajor attribute), 64
separatelength (TicMinor attribute), 65
Set (class in pyxfbp), 27
setArrow() (Line method), 71
setFill() (Ellipse method), 77
setFrame() (Legend method), 53
setFrame() (TextBox method), 58
setFrame() (View method), 51
setGeometry() (Ellipse method), 76
setGeometry() (Legend method), 53
setGeometry() (Line method), 72
setGeometry() (TextBox method), 59
setGeometry() (View method), 51
setLabels() (TicMarks method), 61
setLine() (Ellipse method), 76

Index 115

xfbp Documentation, Release 22.00-62

setLine() (Line method), 72
setMajor() (TicMarks method), 61
setMinor() (TicMarks method), 62
setMouseHook() (Xfbp method), 15
setName() (Ellipse method), 76
setName() (Line method), 72
setOffset() (World method), 50
Sets (class in pyxfbp), 25
sets (NewGroup attribute), 43
setStyle() (Weight method), 42
setSymbol() (Legend method), 53
setText() (Legend method), 53
setText() (TextBox method), 58
SetVector (class in pyxfbp), 35
setWeightsStyle() (Group method), 23
setWeightsStyle() (Set method), 27
setX() (World method), 49
setY() (World method), 49
showinlegend (Group attribute), 24
showinlegend (Set attribute), 30
showweightsinlegend (Group attribute), 25
showweightsinlegend (Set attribute), 32
side (TicLabels attribute), 65
side (TicMarks attribute), 62
size (FontStyle attribute), 46
size (Paper attribute), 48
size (SymbolStyle attribute), 46
skip (Weight attribute), 42
spacing (TicMajor attribute), 63
startat (Line attribute), 73
style (LineStyle attribute), 44
style (SymbolStyle attribute), 46
style (Weight attribute), 42
subdiv (TicMinor attribute), 65
subscriptscale (FontStyle attribute), 46
SubTitle (class in pyxfbp), 55
subtitle (Graph attribute), 20
symbol (Group attribute), 24
symbol (Set attribute), 30
symbolspacing (Legend attribute), 54
SymbolStyle (class in pyxfbp), 46
symbolwidth (Legend attribute), 54

T
text (TextBox attribute), 59
TextBox (class in pyxfbp), 57
TextBoxes (class in pyxfbp), 56
textboxes (Graph attribute), 20
Tic (class in pyxfbp), 68
TicLabels (class in pyxfbp), 65
TicMajor (class in pyxfbp), 63
TicMarks (class in pyxfbp), 60
TicMinor (class in pyxfbp), 64
ticside (Tic attribute), 69
Title (class in pyxfbp), 54
title (Graph attribute), 19
toggle() (Ellipse method), 76
toggle() (Frame method), 47

toggle() (Graph method), 19
toggle() (Group method), 23
toggle() (Legend method), 52
toggle() (Line method), 71
toggle() (Set method), 27
toggle() (TextBox method), 58
toggle() (TicMajor method), 63
toggle() (TicMinor method), 64
toggle() (UserTics method), 67
toggle() (Weight method), 41
type (Set attribute), 32
type (Tic attribute), 68

U
unifyWeightLabels() (Group method), 23
useattributes (Group attribute), 24
UserTics (class in pyxfbp), 66
usertics (Graph attribute), 20
usertics (Group attribute), 25

V
Vector (class in pyxfbp), 37
View (class in pyxfbp), 50
view (Graph attribute), 20

W
W (Group attribute), 24
W (Set attribute), 32
Weight (class in pyxfbp), 41
weightfactor (Group attribute), 25
weightfactor (Set attribute), 31
weightmax (Group attribute), 25
weightmax (Set attribute), 31
weightmin (Group attribute), 25
weightmin (Set attribute), 31
Weights (class in pyxfbp), 40
weightstyle (Group attribute), 24
weightstyle (Set attribute), 31
width (LineStyle attribute), 44
width (View attribute), 51
World (class in pyxfbp), 49
world (Graph attribute), 20

X
x (Set attribute), 32
x (World attribute), 50
x0 (View attribute), 51
xaxis (Graph attribute), 20
XAxisLabel (class in pyxfbp), 55
xaxislabel (Graph attribute), 20
Xfbp (class in pyxfbp), 14
xmax (World attribute), 50
xmin (World attribute), 50
xtics (Graph attribute), 20

Y
y (Set attribute), 33

116 Index

xfbp Documentation, Release 22.00-62

y (World attribute), 50
y0 (View attribute), 51
yaxis (Graph attribute), 20
YAxisLabel (class in pyxfbp), 55
yaxislabel (Graph attribute), 20
ymax (World attribute), 50
ymin (World attribute), 50
ytics (Graph attribute), 20

Z
z (Set attribute), 33
z0 (Set attribute), 30
zcomponent (Set attribute), 32
ZComponents (class in pyxfbp), 39
zpower (Set attribute), 31

Index 117

	Start here
	Xfbp python bindings
	General
	Examples
	Editor
	Help

	Commmand line parameters
	Text Formating
	Colors
	Modules
	pyxfbp
	Xfbp
	Graphs
	Graph
	Groups
	Group
	Sets
	Set
	SetVector
	Vector
	ZComponents
	Weights
	Weight
	NewGroup
	LineStyle
	FillStyle
	FontStyle
	SymbolStyle
	Frame
	Paper
	World
	View
	Axis
	Legend
	Title
	SubTitle
	XAxisLabel
	YAxisLabel
	OppositeXAxisLabel
	OppositeYAxisLabel
	TextBoxes
	TextBox
	TicMarks
	TicMajor
	TicMinor
	TicLabels
	UserTics
	Tic
	Lines
	Line
	Ellipses
	Ellipse

	XFBP
	Python scripting
	Native Scripting
	Comments
	File loading
	Print commands
	Paper commands
	Graph/Group/Set/Weight descriptors
	With command
	World commands
	View commands
	Legend box commands
	Graph commands
	Shape commands
	Text box commands
	Tic mark commands
	Regular tic commands:
	Irregular tic commands

	Group commands
	Set commands
	Set attribute commands
	Weight commands
	Weight settings
	Weightlabel definitions
	Line style commands
	Fill style commands
	Font style commands
	Symbol style commands
	Kill commands
	Copy/Move commands
	Hook commands
	Cursor reference
	Assignments/Definitions
	Expressions

	GUI
	Plotting window
	Scripting window

	Logarithmic plots
	Data
	Files
	Command line options
	File type flags

	Data file types
	Set Dialog
	Color Model dialog

	Python Module Index
	Index

