
Wannier functions � band disentangling

Klaus Koepernik

July 4, 2022

Contents

1 Introduction 1

2 Bcc Fe: 3d-only Wannier functions 1

3 Minimal basis bcc-Fe Wannier functions. 9

4 Bulk-projected bandstructure 15

5 Fermi surface cuts. 16

1 Introduction

We assume that the user already got acquainted with the FPLO Wannier function (WF) module,
so that we do not have to explain the basics. Here we focus on the aspect of band disentangling,
which plays an important role for pyfplo. The slabify module of pyfplo uses the �le +hamdata
as input, which in turn is produced by the WF module. In most applications the relevant bands
are not neatly separated by gaps.

We will walk you through an iteration of intermediate results, which demonstrates how to approach
the problem in a semi systematic way.

The solution will be found in the solution directory. You will work in the task directory.

2 Bcc Fe: 3d-only Wannier functions

In the beginning we will produce 3d-only Wannier functions for bcc-Fe. We will use a full-
relativistic calculation to demonstrate (as a side e�ect of the tutorial) how this is done. So,
please go into the task directory.

� Create a directory and copy �les:

mkdir bccFe

cd bccFe

cp ../=.in .

cp ../=.dens .

1



� Open fedit and switch on bandplot . bandstructure plot and bandplot . weights.
Go into the main menu and switch on use data directories and Quit/Save.

� Run

fplo22.00-62-x86_64 | tee out

faddwei22.00-62-x86_64

� Edit =.addwei to look like this

weightinfile +bweightslms

weightoutfile +bwsum

name Fe3dup

atom Fe sites 1 orbitals 3d spin up

name Fe3ddn

atom Fe sites 1 orbitals 3d spin dn

name Fe4s

atom Fe sites 1 orbitals 4s spin both

name Fe4p

atom Fe sites 1 orbitals 4p spin both

Pay attention to weightinfile and spin.

� Run

faddwei22.00-62-x86_64

again and open

xfbp +bwsum

� Open Edit . Sets go to the Weights tab and check all weights followed by Apply to make
them all visible:

Figure 1: The fatbands and 3d-dos of bcc Fe.

2



� Close and open

xfbp +dos/+dos.sort001.nl005

See Fig. 1. You will notice a little bump around 8�9eV in the DOS and clearly some 3d-
weight in the free-electron like band along ΓP (2�15eV). This is a 3d-4s/4p hybridization
tail.

The little exercise above should always be done before creating a WF �t. Afterall, we need to
know where our bands are. Please notice the extend of the 3d bands (roughly [−5, 3]eV).

We will not create =.wandef by hand. The reasons are simple:

� We want to write as little as possible.

� We want to avoid missing orbitals.

� For slabify we need always whole sets of orbitals, mostly a complete set
of a minimum basis. Such a basis is de�ned as spd for d-metals and sp
for main group elements.

� Note, that for topological properties it is advised to include all orbitals
of the topological band complex including bands above the topological
bands, since especially for topological insulators it it possible to hide the
topological properties by a wrong choice of WFs (topological obstruction)
� use a minimum basis!

� Finally, the choice of WFs shall not destroy the symmetry which protects
the topological properties. E.g. for TIs one can �nd a minimal set of WFs
which describe the few relevant bands but break time reversal symmetry.
These can be totally valid WFs, but the topology, derived from such a
set of WFs can be di�erent � use a minimum basis.

� An exception of the points above would be a situation where e.g. Bi-6p
bands form an isolated band complex around the Fermi level. If these
bands have non-zero p-character at each k-point in the BZ it is possible
to use a p-only WF set for topological properties.

� Copy a �le

cp ../makewandef3d.py .

� Edit it to look like this

3



Listing 1: makewandef3d.py

1 #! /usr/bin/env python

2

3 import pyfplo.wanniertools as wt

4

5

6 # ===================================================================

7

8 if __name__ == '__main__ ':

9

10

11 wdc=wt.WanDefCreator(rcutoff =25,wftol =0.001 , coeffformat='bin',

12 wfgriddirections =[[2,0,0],[0,2,0],[0,0,2]],

13 wfgridsubdiv =[1,1,1], savespininfo=True)

14

15 emin=-5

16 emax= 3

17 delower =1

18 deupper =1

19

20 wdc.add(wt.MultipleOrbitalWandef('Fe' ,[1],['3db'],

21 emin=emin ,emax=emax ,

22 delower=delower ,deupper=deupper ))

23

24 wdc.writeFile('=. wandef ')

Note lines 15-18 and 20 (3db means all 3d orbitals in real harmonics both spins). The sites list [1]
contains only one site, but it could contain more sites, if there were more Fe sites in the compound.

Also consult FPLO22.00-62/DOC/pyfplo/pyfplo.pdf.

� Now, run the script. (If a syntax error occurs, due to editing mistakes, correct them until
you can execute the script without errors.)

python makewandef3d.py

Have a look at the created =.wandef.

� Run fplo

fplo22.00-62-x86_64 | tee out

We should have +wancoeff now.

� Re-run fplo

fplo22.00-62-x86_64 | tee outwf

� and when done, interrupt it with Ctrl-C.

It created +wancoeffbin. (This �le is smaller than +wancoeff and loads faster. One could
in principle delete +wancoeff now but be aware that the binary �le might not be working
on another machine. In other words +wancoeffbin might not be transferable.).

Furthermore, we have some new subdirectories and the usual �les +wanband, +wanbandtb,
+wanbweights, WF.net and so forth.

4



� There is a generally very usefull little script. Let's copy the �le:

cp ../wband.xpy .

� and execute

xfbp wband.xpy

to obtain the left panel of Figure 2.

Figure 2: band, wanband and wanbandtb. The right panel shows the energy window for orienta-
tion.

Note that the highest WF band must connect downwards on the way from Γ to H. This is
so since we cannot describe the free-electron like band, which crosses the 3d-bands with a
3d-only basis. Also note the wiggliness. This is owed to the fact that our energy window
is narrow and that the free-electron band contains 3d-weight and most importantly that a
narrow window means that when going through the free-electron band region the highest
band leaves the window while the lowest enters the window. These are rather abrupt changes
in the Hilbert space underlying the WF projectors.

We try to cure this by doing something quite unexpected. We increase the window to contain
the free-electron bands.

But before we do this let's introduce some work �ow aspects. We will repeatedly edit
makewandef3d.py, execute fplo and look at the bands. So, let's do this more e�ciently.

� Open another terminal, change into the bccFe directory and execute

fplo22.00-62-x86_64 | tee outwf

Do NOT hit Ctrl-C as the program says. Leave it alone.

� In the original window execute (once and for all)

xfbp wband.xpy & # the & is important

In the original terminal you can now edit/save and execute makewandef3d.py.
In the fplo-terminal you can hit enter to re-run the WF calculation and in xfbp you can
hit Ctrl-R to reload the �les.

5



Ok, let's continue

� In makewandef3d.py change the energy window to emax=10.

� Execute the script.

python makewandef3d.py

� Re-run fplo. (If you followed out setup advise, you only need to hit enter in the terminal
running fplo.)

� When this is done hit Ctrl-R in xfbp to obtain the left panel of Figure 3:

Figure 3: band, wanband and wanbandtb: larger energy window.

Well, this looks better except for a few wiggles. which again come from a rather abrupt
cuto� at 10eV. What can remedy this? A smooth cuto�.

� change the upper fall-o� to deupper=7.

� execute the script.

python makewandef3d.py

� Re-run fplo.

� and when this is done hit Ctrl-R in xfbp to obtain the left panel of Figure 4:

6



Figure 4: band, wanband and wanbandtb: larger energy window and smooth upper tail.

This is even better, but still wiggly and most of all the bands get pulled to higher energies
between PH and PN (not surprising).

� change the energy window to emax=0.

� execute the script.

python makewandef3d.py

� Re-run fplo.

� and when this is done hit Ctrl-R in xfbp to obtain the left panel of Figure 5.

Why does that work. The large upper tail covers what we need form higher bands. But
it also covers the main 3d-part even if we put the upper window boundary (emax) below
the main part. Moreover, it will pull the bands back down, since the main weight from the
window function shifts down. As a side comment, we cannot choose di�erent energy windows
for spin up and spin down, since we have a full relativistic calculation.

Figure 5: band, wanband and wanbandtb.

Yet the wiggles are still there. Any idea? It is the lower boundary of the energy window,
which is still too �discontinuous�. Afterall, a free-electron band comes in from below.

7



� change the lower fall-o� to delower=7.

� execute the script.

python makewandef3d.py

� Re-run fplo.

� and when this is done hit Ctrl-R in xfbp to obtain the left panel of Figure 6

Figure 6: Magic: band, wanband and wanbandtb.

Now, one could play with the energy window parameters a bit more to optimize. But, this is
already a very good choice. The WF �t is not perfect (free-electron band problem and some
deviations) but surprisingly good.

� The energy window must have large tails.

� The core-window can be rather narrow, in fact it could be emin=emax in
many cases (also in ours).

� Shifting the window around pulls the resulting WF bands higher or lower.

We will now draw your attention to the localization aspect.

� Please execute

xfbp WFstat.xpy

Right click on the legend box and chose hide to get Fig. 7. The picture shows the magnitude
of the contributions of individual orbitals to the WFs as a function of the distance of said
orbitals to the WF center on a logarithmic plot. In other words it depicts the WF extend.
You will notice that the WF is surprisingly localized. In former versions one could the
these curves rising again at larger distances due to some replica induced by the �nite SCF
k-mesh, according to the Nyquist�Shannon sampling theorem. Since Version 19, we use a
routine, which eliminates such replica in a symmetric way. This leads to better agreement
between the in�nitely accurate transform (+wanband) and the cut-o� version, which leads
to the actual real space WF model (+wanbandtb). This new treatment also means that the
number of possible WF matrix elements is always �nite, although much larger than obtained
for our current cut-o�.

8



� Please execute

grep -4 R-vectors outwf

to get

(Number of R-vectors 869 Number of k-vectors 1728

R-mesh not yet at maximum possible size. -> Increase ham_cutoff(rcutoff)

This tells us that we use 869 real space vectors around a WF center for the model. The
maximum possible number equals the number of k-vectors. Increasing the rcutoff will of
course lead to a slower calculation and a larger +hamdata �le.

Figure 7: The extend of the WF orbital contributions.

3 Minimal basis bcc-Fe Wannier functions.

For practical applications (pyfplo.slabify) we want a model, which describes all bands around
the Fermi energy well. To achieve this we need to add the 4s and 4p orbitals. The 4p orbitals are
needed e.g. for the yellow spot at the N-point in Fig. 1.

� Copy the script

cp makewandef3d.py makewandef.py

� Edit makewandef.py and in line 20 add ,'4sb','4pb' to the orbital list. Set emin to -9

and delower to 1. The latter is obviously reasonable since we �t the whole set of occupied
bands.

� execute the script.

python makewandef.py

� Re-run fplo and continue reading this document!

9



� Oops!

What happend is that the energy window is way too small to encompass a su�cient amount
of sp weight in the unoccupied bands. There are sections in the BZ where the total amount
of sp-weight is zero or nearly zero. This leads to a deletion of Hilbert space vectors such
that the resulting projected basis is de�cient.

� Edit makewandef.py and put deupper=10. Also add printT=False, (including the �nal
coma!) after savespininfo=True,. This will switch o� the output of the lines T=... in the
output. After all, this information is contained in a much more useful manner in +hamdata.

� execute the script.

python makewandef.py

� Re-run fplo.

� No oops, but SVD (singular value decomposition) warnings. We still have a problem.

� In the still running xfbp open the Edit . Script/Transformations dialog and change the
value in the last line from 10 to 35.

� Save the script and hit Apply or close the dialog and hit Ctrl-R. You will see that the bands
needed for the �t reach up to 35 eV.

� Edit makewandef.py and put deupper=15

� execute the script.

python makewandef.py

� Re-run fplo.

� and when this is done hit Ctrl-R in xfbp to obtain the left panel of Fig. 8 (We rescaled the
�gure, yours shows a larger window.):

Figure 8: Minmum basis WFs.

You will see in Fig. 8 that the tight-binding approximation (green) follows the exact WF-
transformation (red) quite closely except for around N and at the band bottom. The latter
problem has to do with the fact that we approximate nearly free electron bands by tight
binding. This is similar to a Fourier decomposition. One needs a number of frequencies to
obtain a good approximant. In our case we can increase the Hamilton rcutoff to 30.

10



� Edit makewandef.py and put rcutoff=30

� execute the script.

python makewandef.py

� Re-run fplo and when this is done hit Ctrl-R in xfbp to obtain Fig. 9. Note, that the
calculation will take a longer time now. This is mostly due to the use of symmetries. For
larger cells, with less symmetry operations, this overhead reduces. In other words the time
for this step in the calculation does not scale up linearly with the number of sites.

Figure 9: Larger cuto�.

You will see that there is an issue at the band bottom, which has to do with the WF extend.

� Execute

xfbp WFstat.xpy

and hide the legend box. You will see:

11



Figure 10: The extend of the WF orbital contributions.

This is now less localized than for the 3d-only case in Fig. 7 because of the inclusion of the more
extended 4s- and 4p-orbitals.

� Please grep the R-vector information:

grep -4 R-vectors out

and you will see

(Number of R-vectors 1407 Number of k-vectors 1728

R-mesh not yet at maximum possible size. -> Increase ham_cutoff(rcutoff)

We still do not use all possible vectors.

Just to see what happens, let's increase the rcutoff further.

� Edit makewandef.py and put rcutoff=40

� execute the script.

python makewandef.py

� Re-run fplo and when this is done hit Ctrl-R in xfbp to obtain Fig. 9

12



Figure 11: More k-points.

� Please execute one more grep for the the R-vector information:

grep -4 R-vectors out

and you will see

(Number of R-vectors is at maximum Number of k-vectors 1728

We �nally exhausted all possible R-vectors and as can be seen in Fig. 11, the Problems at
the band bottom are gone. A check of the extend

xfbp WFstat.xpy

Figure 12: The extend of the WF orbital contributions.

reveals that the orbital contributions fall o� to 10−4 at most.

13



Please note, that one does not always need to extend the rcutoff to its maximum. In our case this
is required by the extended nature of the free electron parts and by the disentangling situation.
There are many cases when a rcutoff of 30 seems to be enough.

If you zoom into the band bottom you will realize that the green bands (from the �nite model)
oscillate around the exact bands. This is an error which comes from the �nite size of the SCF
k-mesh, which limits the number of Fourier components. To remedy this we will use a larger
k-mesh:

� So, call fedit and set number of iterations to 1 and k-mesh subdivision to 16�

� Remove the WF data

rm +wancoeff +wancoeffbin

� Completely re-run fplo: First interrupt the running fplo: Ctrl-C and re-run it to re-create
+wancoeff.

� Then re-run once more to re-calculate the WFs.

You get

Figure 13: More k-points.

We still have some tiny problems at some places, e.g. the lowest two bands at H|P are a bit
too high.

� So, let's reduce the upper boundary a bit: edit makewandef.py and put emax=-1

� execute the script.

python makewandef.py

� Re-run fplo

14



Figure 14:

When you grep the R-vector information you will notice that with the larger k-mesh the possible
set of R-vectors also increased. One could further increase the rcutoff and play with the energy
window to optimize tiny deviations here and there. But around the Fermi level our �t is good
enough for our purpose.

4 Bulk-projected bandstructure

� Now, copy some prepared �les and change into slabify.

cp -r ../slabify .

cd slabify

� Execute

python bpb.py

� Study the script. Note, that the Fermi surface spectral function is much slower. That is due
to the fact that the �rst plot has Ne energy points and Nk k-points, while the second plot
has 1 energy point and N2

k k-points. Filling the energy axis for each k-point in the �rst plot
requires basically one diagonalization, while in the second plot we need one diagonalization
for each k-point and N2

k � Nk. To make it shorter we chose a rather course grid for the
second plot.

� When the script is done execute

xfbp bpbedc.xpy

and

xfbp bpbfs.xpy

15



Figure 15: Bulk projected bands and fermi surface.

5 Fermi surface cuts.

The Wannier function model (+hamdata) can also be used to calculate Fermi surface cuts.

� Inside the slabify diretory execute

python fscuts.py

� Study the script.

� When the script is done execute

xfbp fscuts.xpy

You will get Fig. 16. Also study the xfbp script (fscuts.xpy).

16



Figure 16: Fermi surface cuts colored by band weights.

17


	1 Introduction
	2 Bcc Fe: 3d-only Wannier functions
	3 Minimal basis bcc-Fe Wannier functions.
	4 Bulk-projected bandstructure
	5 Fermi surface cuts.

