
Evaluation of model parameters

This task is intended to show the simplest examples of tight-binding models based on LDA

band structures. Tight-binding fits provide hopping parameters that can be further introduced

into model hamiltonians and applied to the derivation of various quantities. The task includes

several problems. The first problem deals with a very basic model, while further tasks suggest

extensions of this model and show possible extensions/complications of the fitting procedure.

In all the problems, we consider the (e↵ective) one-band Hubbard model for the t ⌧ Ue↵

regime. Then, the low-lying excitations can be mapped onto the Heisenberg model, and the

transfer integrals t

i

allow to find the exchange integrals J

AFM
i

= 4t

2
i

/Ue↵. The exchange integrals

define magnetic interactions in the system under investigation. For all the calculations, take

Ue↵ = 4 eV that should be a reasonable estimate for Cu-containing materials.

I. Chain of edge-sharing copper plaquettes

1. Create a new directory and run fedit. Enter the following structural data for CuCl2 (for

simplicity, we made a fictitious crystal structure; the real structure of CuCl2 can be found

in task III):

• Space group: Pmmm

• Lattice parameters: a = 8.0

˚

A, b = 3.3

˚

A, c = 8.0

˚

A

• Atoms: Cu(0, 0, 0) and Cl(0, 0.5, 0.193)

2. Start the self-consistent calculation (convergence time – 2 min)

3. While the calculation is running, get familiar with the crystal structure. You should find

that Cu atoms are surrounded by four chlorines. The resulting CuCl4 plaquettes share

edges and form chains along the b direction. Find the local coordinate system for Cu

atoms: the z axis should be perpendicular to the [CuCl4] plane, the x axis should run

along one of the Cu–Cl bonds.

4. After the calculation is converged, run fedit once again. Go to the (B)andplot menu

and put a cross against the ”(B)andstructure plot” option. Add the number of the Cu

position to ”Local (D)OS sites” and setup the proper local coordinate system [”X-(A)xis”

and ”(Z)-axis” options]. To change the local coordinate system, put a cross against the

”(T)ransform local axes” option. Note that the x and z vectors should be given in

cartesian coordinates. To find the number of the Cu position, have a look at the out file.

5. Run fplo once again to calculate the density of states and the bands.

6. Plot the total and atomic-resolved DOS. You should find one isolated band near the Fermi

level. Plot the orbital-resolved DOS for Cu d orbitals (+ldos.site001.nl005) and find the

origin of this band. Compare the result with the intuitive crystal field considerations.

You should find that the states near the Fermi level originate from the Cu d

x

2�y

2
orbital

(once the proper local coordinate system is found). If this is not the case, check your
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local coordinate system. Note that the d

x

2�y

2
and d

xy

orbitals can be interchanged by

changing the x axis.

Hint – FPLO uses the following notation for individual d orbitals: m = �2 (d

xy

), m = �1

(d

yz

), m = 0 (d3z

2�r

2
), m = 1 (d

xz

), m = 2 (d

x

2�y

2
).

7. Run fedit with the ”-bandplot” option. Use DOS plots to find the reasonable energy

window for plotting the bands. Plot the band near the Fermi level.

8. Dispersion of the band shows hoppings along di↵erent directions. To analyze these hop-

pings quantitatively, construct a simple tight-binding model and consider the nearest-

neighbor and next-nearest-neighbor hoppings along the structural chains (b direction).

Write the general tight-binding hamiltonian (i.e, the "(k) dependence) and derive the

energies at � and Y points. You will also have to take one point between � and Y – for

example, �(0, ⇡/2b, 0).

Hint: FPLO provides reasonable sets of k points for most of the space groups. You can

find this list in the ”(B)andstructure plot” menu (the coordinates of individual points are

given in Cartesian coordinates in units of 2⇡/a). In general, one has to plot the bands

along the coordinate axes in the reciprocal space (�X, �Y , and �Z directions) and along

the edges of the first Brillouin zone.

9. Find the band energies at the �, Y , and � points. You can roughly estimate the energies

from the plot. Alternatively, have a look at the +band file. It contains the coordinates

of each k point (Cartesian system, 2⇡/a units) followed by the list of energies for all the

bands. The energies are given in eV.

10. Now, you have three equations for band energies at the �, Y , and � points. These

equations include three variables: the orbital energy "0 and the two hoppings, t1 and t2.

By solving these linear equations, you find t1 and t2. Then, you can also calculate J1 and

J2 as 4t

2
i

/Ue↵. These numbers show the energies of the respective magnetic interactions in

the system. Note that the next-nearest-neighbor interaction exceeds the nearest-neighbor

one. J1 is a 90

�
Cu–Cl–Cu superexchange that has weak AFM contribution. In contrast,

J2 is the Cu–Cl–Cl–Cu interaction mediated by the strong hybridization between the Cu

and Cl orbitals.

II. Layer of copper plaquettes – the case of hybridization

1. Setup the calculation for CaCuO2:

• Space group: P4/mmm

• Lattice parameters: a = 3.86

˚

A, c = 3.2

˚

A

• Atoms: Ca(0.5, 0.5, 0.5), Cu(0, 0, 0), and O(0.5, 0, 0)

2. Run the calculation similar to the previous case (convergence time – 3 min). Plot atomic-

resolved and orbital-resolved density of states. Plot also the bands near the Fermi level.
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3. In CaCuO2, you will find wide valence bands with sizable hybridizations. There is no

unique, isolated band near the Fermi level. To select the bands for the tight-binding

model, calculate bandweights [”(W)eights” option in the ”(B)andplot” menu] and plot

the d

x

2�y

2
orbital character for the valence bands. Now, you can identify proper band

energies at each k point. However, the resulting band is discontinuous, and the fit with

the continuous "(k) function should be ambiguous.

4. Construct a model for nearest-neighbor interactions t1 along [100] and [010]. Try to fit the

parameters of this model ("0 and t1) using band energies at several couples of points (�

and X, � and M , X and M). Any choice of the points gives sizable t1, but the absolute

numbers are rather di↵erent. You can also calculate J1 = 4t

2
1/Ue↵ and compare it to the

result of the LSDA+U calculation (see the previous task).

5. To improve the model, try to add further interactions (e.g., along [110]). Note how-

ever that there is no unique way of the fitting, because only the isolated bands can be

unambiguously mapped onto the tight-binding model.

III. Real crystal structure of CuCl2 – the complex shape of the Brillouin zone

(advanced problem)

In the first task, we considered a simplified structure of copper chloride. In fact, this

compound has a C-centered monoclinic unit cell that complicates the fitting.

1. Setup the calculation for the real crystal structure of CuCl2:

• Space group: C2/m

• Lattice parameters: a = 6.9038

˚

A, b = 3.2995

˚

A, c = 6.824

˚

A, � = 122.20

�

• Atoms: Cu(0, 0, 0) and Cl(0.5048, 0, 0.2294)

2. Run the calculation (convergence time – 4 min), plot and analyze density of states. You

will find that the real and simplified crystal structures yield similar results. The only

di↵erence between the two structures is the di↵erent packing of Cu–Cl chains, while the

electronic structure near the Fermi level is mainly determined by the local environment

of copper.

3. For the C2/m space group, FPLO gives a set of k points that do not necessarily lie on

the faces of the first Brillouin zone. Moreover, the C-centering of the lattice changes

the shape of the Brillouin zone – it is not a simple parallelepiped anymore. To get the

exchange couplings along the b direction, consider the dispersion of the band along the k

y

axis. Basically, any segment along the k

y

axis should be su�cient to calculate t1 and t2.

However, be careful while considering the coordinates of the k points. Remember that

FPLO uses the Cartesian coordinate system and the 2⇡/a units. The t1 and t2 values for

the real and simplified structures should be similar (i.e., t2 > t1 and t2 ' 0.1 eV).
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Solutions for the Evaluation of model parameters

I. Chain of edge-sharing copper plaquettes

• Local coordinate system: x = (0, 0.5, 0.5) and z = (1, 0, 0). One can also take x = (0, 0, 1).

Then, the band at the Fermi level will have the d
xy

origin.

• The tight-binding hamiltonian: " = "0 � 2t1 cos(k
y

b)� 2t2 cos(2k
y

b)

"� = "0 � 2t1 + 2t2 = 0.396 eV

"
Y

= "0 + 2t1 � 2t2 = 0.179 eV

"� = "0 + 2t2 = �0.225 eV

This yields "0 = 0.032 eV, t1 = �0.054 eV, and t2 = �0.128 eV. The resulting exchanges

are JAFM
1 = 34 K and JAFM

2 = 191 K. (1 eV = 11.7 K; 1 K = 0.085 eV).

II. Layer of copper plaquettes – the case of hybridization

• The tight-binding hamiltonian: " = "0 � 2t1(cos(k
x

a) + cos(k
y

b))

"� = "0 � 4t1 = �1.98 eV

"
X

= "0 = �0.85 eV

"
M

= "0 + 4t1 = 2.18 eV

� and X yield "0 = �0.85 eV and t1 = 0.28 eV; � and M yield "0 = 0.1 eV and

t1 = 1.04 eV; X and M yield "0 = �0.85 eV and t1 = 0.76 eV.

• Let’s include the next-nearest-neighbor coupling along [110]: " = "0 � 2t1(cos(k
x

a) +

cos(k
y

b))� 2t2(cos[(k
x

+ k
y

)a] + cos[(k
x

� k
y

)a])

"� = "0 � 4t1 � 4t2 = �1.98 eV

"
X

= "0 + 4t2 = �0.85 eV

"
M

= "0 + 4t1 � 4t2 = 2.18 eV

This yields "0 = �0.375 eV, t1 = 0.52 eV (JAFM
1 = 3150 K), and t2 = �0.12 eV (JAFM

2 =

168 K)

III. Real crystal structure of CuCl2 – the complex shape of the Brillouin zone

• Local coordinate system: to keep things simple, one should select x = (0, 1, 0) and z =

(1, 0, 0). Then, the band at the Fermi level has d
xy

origin.

• The k
y

axis matches the y axis of the Cartesian coordinate system. Therefore, one can use

the Y point, as suggested by FPLO: (0, 1.04619, 0). The issue is to setup the calculation

along �Y , because this segment is absent in the default setting. Further considerations

are similar to task I:

"� = "0 � 2t1 + 2t2 = 0.394 eV

"
Y

= "0 + 2t1 � 2t2 = 0.327 eV
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"� = "0 + 2t2 = �0.005 eV

This yields "0 = 0.178 eV, t1 = �0.017 eV, and t2 = �0.091 eV. The resulting exchanges

are JAFM
1 = 3 K and JAFM

2 = 97 K.
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