Differences
This shows you the differences between two versions of the page.
| documentation:language_reference:functions:findallatomsinsidesphere [2018/09/25 13:38] – created Simon Heinze | documentation:language_reference:functions:findallatomsinsidesphere [2024/07/23 18:00] (current) – Henrik hahn | ||
|---|---|---|---|
| Line 2: | Line 2: | ||
| ### | ### | ||
| - | alligned paragraph text | + | This function creates a cluster out of all the atoms that are in a sphere of radius R around the central atom in a crystal lattice. |
| + | |||
| + | Syntax: | ||
| ### | ### | ||
| ===== Input ===== | ===== Input ===== | ||
| - | * bla : Integer | + | * Crystal basis: List of all Atoms creating the basis of the crystal lattice including the name, position and type and name of the valence orbitals |
| - | * bla2 : Real | + | * Lattice parameters: List of the three real-space lattice vectors |
| + | * position of central atom: vector | ||
| + | * R: Float | ||
| ===== Output ===== | ===== Output ===== | ||
| - | * bla : real | + | * Cluster: List of all Atoms of the cluster including the name, position and type and name of the valence orbitals |
| ===== Example ===== | ===== Example ===== | ||
| ### | ### | ||
| - | description text | + | In this example, a cluster of a UO_2 crystal is created using the results of a DFT calculation. The central atom is chosen to be the Uranium ion at position (0,0,0). The radius of 5 Bohr radii is chosen to include the nearest neighbor oxygen atoms, hence forming a UO_8 cluster. |
| ### | ### | ||
| ==== Input ==== | ==== Input ==== | ||
| <code Quanty Example.Quanty> | <code Quanty Example.Quanty> | ||
| - | -- some example code | + | |
| + | -- read the output of FPLO | ||
| + | print(" | ||
| + | FPLOOut = FileReadDresdenFPLO(" | ||
| + | |||
| + | |||
| + | -- from the DFT output we can create a tight binding Hamiltonian | ||
| + | print(" | ||
| + | print(" | ||
| + | TB = TightBindingDefFromDresdenFPLO(FPLOOut) | ||
| + | print(" | ||
| + | print(TB.Atoms) | ||
| + | print(" | ||
| + | print(TB.Cell) | ||
| + | |||
| + | print(" | ||
| + | |||
| + | NewCluster = FindAllAtomsInsideSphere(TB.Atoms, | ||
| + | print(" | ||
| + | print(" | ||
| + | print(NewCluster) | ||
| </ | </ | ||
| ==== Result ==== | ==== Result ==== | ||
| <file Quanty_Output> | <file Quanty_Output> | ||
| - | text produced as output | + | --Read FPLO output-- |
| + | |||
| + | --Create the Tight Binding Hamiltonian-- | ||
| + | |||
| + | Create the tight binding Hamiltonian for the crystal | ||
| + | |||
| + | Basis | ||
| + | { { U , | ||
| + | { 0 , 0 , 0 } , | ||
| + | { { 5f , | ||
| + | { f_{y^3-3x^2y} , f_{xyz} , f_{5z^2y-yr^2} , f_{5z^3-3zr^2} , f_{5z^2x-xr^2} , f_{x^2z-y^2z} , f_{x^3-3xy^2} } } } } , | ||
| + | { O , | ||
| + | { 2.5842004759287 , 2.5842004759287 , 2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { O , | ||
| + | { -2.5842004759287 , -2.5842004759287 , -2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } } | ||
| + | Cell | ||
| + | { { 0 , 5.1684009518575 , 5.1684009518575 } , | ||
| + | { 5.1684009518575 , 0 , 5.1684009518575 } , | ||
| + | { 5.1684009518575 , 5.1684009518575 , 0 } } | ||
| + | Define a cluster | ||
| + | Quanty detected the following cluster: | ||
| + | Cluster | ||
| + | { { O , | ||
| + | { 2.5842004759287 , -2.5842004759287 , -2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { O , | ||
| + | { -2.5842004759287 , 2.5842004759287 , -2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { O , | ||
| + | { -2.5842004759287 , -2.5842004759287 , 2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { U , | ||
| + | { 0 , 0 , 0 } , | ||
| + | { { 5f , | ||
| + | { f_{y^3-3x^2y} , f_{xyz} , f_{5z^2y-yr^2} , f_{5z^3-3zr^2} , f_{5z^2x-xr^2} , f_{x^2z-y^2z} , f_{x^3-3xy^2} } } } } , | ||
| + | { O , | ||
| + | { 2.5842004759287 , 2.5842004759287 , 2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { O , | ||
| + | { -2.5842004759287 , -2.5842004759287 , -2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { O , | ||
| + | { 2.5842004759287 , 2.5842004759287 , -2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { O , | ||
| + | { 2.5842004759287 , -2.5842004759287 , 2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } , | ||
| + | { O , | ||
| + | { -2.5842004759287 , 2.5842004759287 , 2.5842004759287 } , | ||
| + | { { 2p , | ||
| + | { p_y , p_z , p_x } } } } } | ||
| </ | </ | ||