Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| documentation:standard_operators:coulomb_repulsion [2016/10/10 09:40] – external edit 127.0.0.1 | documentation:standard_operators:coulomb_repulsion [2017/05/23 16:43] (current) – Maurits W. Haverkort | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| + | {{indexmenu_n> | ||
| ====== Coulomb repulsion operator (U) ====== | ====== Coulomb repulsion operator (U) ====== | ||
| Line 43: | Line 44: | ||
| The radial part of the operator ($\frac{\mathrm{Min}[r_i, | The radial part of the operator ($\frac{\mathrm{Min}[r_i, | ||
| \begin{equation} | \begin{equation} | ||
| - | R^{(k)}[\tau_1\tau_2\tau_3\tau_4]=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | + | R^{(k)}[\tau_1\tau_2\tau_3\tau_4]=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, |
| \end{equation} | \end{equation} | ||
| Line 62: | Line 63: | ||
| ### | ### | ||
| - | For the case where $n_1=n_2=n_3=n_4$ and $l_1=l_2=l_3=l_4$, | + | {{: |
| \begin{equation} | \begin{equation} | ||
| F^{(k)} = R^{(k)}[\tau_1\tau_2\tau_3\tau_4]. | F^{(k)} = R^{(k)}[\tau_1\tau_2\tau_3\tau_4]. | ||
| Line 70: | Line 71: | ||
| NewOperator(" | NewOperator(" | ||
| </ | </ | ||
| - | whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$. | + | whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$, i.e. $k$ is even. |
| ### | ### | ||
| Line 84: | Line 85: | ||
| ===== Two shells, shell occupation conserving ===== | ===== Two shells, shell occupation conserving ===== | ||
| + | |||
| ### | ### | ||
| - | The Coulomb repulsion between two shells which does not change the number of electrons is given by a direct term ($l_1=l_3$ and $l_2=l_4$) and an indirect or exchange term ($l_1=l_4$ and $l_2=l_3$). The direct term is given by the Slater integrals: | + | {{: |
| \begin{equation} | \begin{equation} | ||
| F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | ||
| \end{equation} | \end{equation} | ||
| - | with $0 \leq k \leq \mathrm{Min}[2l_1, | + | with $0 \leq k \leq \mathrm{Min}[2l_1, |
| + | |||
| + | The indirect term is given by the exchange integrals: | ||
| \begin{equation} | \begin{equation} | ||
| G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | ||
| \end{equation} | \end{equation} | ||
| - | with $|l_1-l_2| \leq k \leq |l_1+l_2|$. | + | with $|l_1-l_2| \leq k \leq |l_1+l_2|$ |
| ### | ### | ||
| Line 101: | Line 105: | ||
| <code Quanty Example.Quanty> | <code Quanty Example.Quanty> | ||
| NewOperator(" | NewOperator(" | ||
| - | \end{lstlisting} | + | </ |
| For $l_1=1$ and $l_2=2$ one could define: | For $l_1=1$ and $l_2=2$ one could define: | ||
| - | \begin{lstlisting} | + | <code Quanty Example.Quanty> |
| OppF0pd = NewOperator(" | OppF0pd = NewOperator(" | ||
| OppF2pd = NewOperator(" | OppF2pd = NewOperator(" | ||
| Line 112: | Line 116: | ||
| ### | ### | ||
| + | ===== General case of 4 different shells ===== | ||
| + | |||
| + | ### | ||
| + | {{: | ||
| + | \begin{equation} | ||
| + | R^{(k)}[n_1l_1\: | ||
| + | \end{equation} | ||
| + | with $\mathrm{Max}[|l_1-l_3|, | ||
| + | ### | ||
| + | |||
| + | ### | ||
| + | In Quanty one can implement these operators as: | ||
| + | <code Quanty Example.Quanty> | ||
| + | NewOperator(" | ||
| + | </ | ||
| + | For $l_1=3$, $l_2=0$, $l_3=2$ and $l_4=1$ one has $k=1$ and one could define: | ||
| + | <code Quanty Example.Quanty> | ||
| + | OppR1pd = NewOperator(" | ||
| + | </ | ||
| + | ### | ||
| + | |||
| + | ### | ||
| + | Note that in the general case you need to sum over all possible permutations of $n_1l_1$, $n_2l_2$, $n_3l_3$ and $n_4l_4$. Permuting $n_1l_1$ with $n_2l_2$ and at the same time $n_3l_3$ with $n_4l_4$ will not change the value and form of the operator. If $n_1l_1$ is different from $n_2l_2$ and $n_3l_3$ is different from $n_4l_4$ one can add a factor of two in front of the operator and only add one of the permutations. If one of the $n_1l_1$ is the same as $n_2l_2$ or $n_3l_3$ is the same as $n_4l_4$ a permutation will not lead to a new configuration and the factor of two disappears. If you just sum over all possible $n_il_i$ combinations things go right automatically. | ||
| + | ### | ||
| ===== Table of contents ===== | ===== Table of contents ===== | ||
| - | {{indexmenu> | + | {{indexmenu> |