Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
documentation:language_reference:functions:blockbanddiagonalize [2018/06/21 15:14] – created Simon Heinze | documentation:language_reference:functions:blockbanddiagonalize [2025/08/08 16:08] (current) – Micheangelo Tagliavini | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== | + | ====== |
### | ### | ||
- | alligned paragraph text | + | The function // |
+ | $$ M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} $$ | ||
+ | Now, assuming that $M$ corresponds to a tight-binding Hamiltonian defined on some basis, we can linearly combine the second and third basis orbitals, such that we get a single orbital which mix with the first orbital via the matrix M. Consider the following unitary rotation matrix: | ||
+ | $$ U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} $$ | ||
+ | Now, transforming the matrix $ M $ using the unitary matrix $ U $ results in: | ||
+ | $$ M' = U M U^{T} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ | ||
+ | In the new representation, | ||
+ | The basis orbital and not with the third one. | ||
+ | The function // | ||
### | ### | ||
- | ===== Input ===== | + | ====== Input ====== |
+ | Case 1: | ||
+ | * //matrix//: hermitian matrix | ||
+ | * // | ||
- | | + | Case 2: |
- | * bla2 : Real | + | |
+ | * //wave function //: single wave function of list of wave functions | ||
- | ===== Output ===== | + | Case 3: |
+ | * // | ||
+ | * // | ||
- | * bla : real | ||
- | ===== Example ===== | + | // |
- | ### | + | *NTri : (// |
- | description text | + | |
- | ### | + | *NOrtho : (// |
- | ==== Input ==== | + | *ReOrthogonalize: |
- | <code Quanty Example.Quanty> | + | |
- | -- some example code | + | |
- | </code> | + | |
- | ==== Result | + | ====== Output ====== |
- | <file Quanty_Output> | + | case1: |
- | text produced as output | + | *// |
- | </file> | + | *//matrix//: Transformation Matrix to transform the input matrix into the Block band diagonalized one. |
===== Table of contents ===== | ===== Table of contents ===== | ||
{{indexmenu> | {{indexmenu> | ||