Loading [MathJax]/jax/output/CommonHTML/jax.js

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
documentation:language_reference:functions:createresonantspectra [2016/10/10 09:41] – external edit 127.0.0.1documentation:language_reference:functions:createresonantspectra [2022/05/18 17:01] (current) – Corrected NTri1/2 standard values. Yi Lu
Line 4: Line 4:
 //CreateResonantSpectra(O1,O2,O3,O4,ψ)// calculates  //CreateResonantSpectra(O1,O2,O3,O4,ψ)// calculates 
 \begin{equation} \begin{equation}
-\langle \psi | O_3^{\dagger} \frac{1}{(\omega_1 - \mathrm{i} \Gamma_1/2 + E_0 - O_1^{\dagger})} O_4^{\dagger} \frac{1}{(\omega_2 + \mathrm{i} \Gamma_2/2 + E_0 - O_2)} O_4\frac{1}{(\omega_1 + \mathrm{i} \Gamma_1/2 + E_0 - O_1)} O_3 | \psi \rangle,+\langle \psi | O_3^{\dagger} \frac{1}{(\omega_1 - \mathrm{i} \Gamma_1/2 + E_0^{(1)} - O_1^{\dagger})} O_4^{\dagger} \frac{1}{(\omega_2 + \mathrm{i} \Gamma_2/2 + E_0^{(2)} - O_2)} O_4\frac{1}{(\omega_1 + \mathrm{i} \Gamma_1/2 + E_0^{(1)} - O_1)} O_3 | \psi \rangle,
 \end{equation} \end{equation}
-with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. +with $E_0^{(i)} = \langle \psi | O_i | \psi \rangle$. The spectrum is returned as a spectrum object. 
 ### ###
  
Line 17: Line 17:
   * ψ : Wavefunction   * ψ : Wavefunction
   * Possible options are:   * Possible options are:
-    * "NTri1" Positive integer specifying the number of states in the Krylov basis of O1. (Standard value 200+    * "NTri1" Positive integer specifying the number of states in the Krylov basis of O1. (Standard value 100
-    * "NTri2" Positive integer specifying the number of states in the Krylov basis of O2. (Standard value 200)+    * "NTri2" Positive integer specifying the number of states in the Krylov basis of O2. (Standard value 100)
     * "epsilon" Positive real defining the smallest absolute value considered different than zero. (Standard value 1.49E-8)     * "epsilon" Positive real defining the smallest absolute value considered different than zero. (Standard value 1.49E-8)
     * "restrictions1" A list of restrictions defining restrictions on configurations and occupations included for O1 . Allows one to do restricted active space calculations. Note that the action of O3 and O4 are not restricted and all excitations they can make are included.     * "restrictions1" A list of restrictions defining restrictions on configurations and occupations included for O1 . Allows one to do restricted active space calculations. Note that the action of O3 and O4 are not restricted and all excitations they can make are included.
Line 33: Line 33:
 ===== Output ===== ===== Output =====
  
-  * //G// : Spectrum object+  * //G// : Spectrum object
  
 +In the case that O3 ({Oa3,Ob3}) , O4 ({Oα4,Oβ4,Oγ4}) and ψ ({ψ1,ψ2,ψ3}) are given as tables the order of spectra returned is:
 +
 +{
 +Ia,α1(E0), Ia,α1(E1), , Ia,α1(ENE),
 +Ia,β1(E0) Ia,β1(E1) , Ia,β1(ENE),
 +Ia,γ1(E0), Ia,γ1(E1), , Ia,γ1(ENE),
 +     
 +Ib,α1(E0), Ib,α1(E1), , Ib,α1(ENE),
 +Ib,β1(E0) Ib,β1(E1) , Ib,β1(ENE),
 +Ib,γ1(E0), Ib,γ1(E1), , Ib,γ1(ENE),
 +     
 +     
 +Ia,α2(E0), Ia,α2(E1), , Ia,α2(ENE),
 +Ia,β2(E0) Ia,β2(E1) , Ia,β2(ENE),
 +Ia,γ2(E0), Ia,γ2(E1), , Ia,γ2(ENE),
 +     
 +Ib,α2(E0), Ib,α2(E1), , Ib,α2(ENE),
 +Ib,β2(E0) Ib,β2(E1) , Ib,β2(ENE),
 +Ib,γ2(E0), Ib,γ2(E1), , Ib,γ2(ENE),
 +     
 +     
 +Ia,α3(E0), Ia,α3(E1), , Ia,α3(ENE),
 +Ia,β3(E0) Ia,β3(E1) , Ia,β3(ENE),
 +Ia,γ3(E0), Ia,γ3(E1), , Ia,γ3(ENE),
 +     
 +Ib,α3(E0), Ib,α3(E1), , Ib,α3(ENE),
 +Ib,β3(E0) Ib,β3(E1) , Ib,β3(ENE),
 +Ib,γ3(E0), Ib,γ3(E1), , Ib,γ3(ENE) }
 +
 +where the alphabetic, greek and numeral indices refer to O3, O4 and ψ.
 ===== Example ===== ===== Example =====
  
 ### ###
-description text+Calculates the resonant spectra for some toy Hamiltonian and transition operators.
 ### ###
  
Print/export