Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
documentation:language_reference:functions:newtightbinding [2024/08/29 17:51] Micheangelo Tagliavinidocumentation:language_reference:functions:newtightbinding [2024/08/29 18:03] (current) Micheangelo Tagliavini
Line 2: Line 2:
  
  
-### NewTightBinding() +//NewTightBinding()// initiates a Tight Binding object with the following standard properties:
-`NewTightBinding()` initiates a Tight Binding object with the following standard properties: +
-*Name*: `""` (empty string) +
-*Cell*: `{a,b,c}` with `a`, `b`, `c` as random vectors. +
-*Atoms*: `{}` +
-*Units*: `{"2Pi", "Angstrom", "Absolute"}` +
-*NF*: `0` (number of orbitals defined in Atoms)+
  
-### Units Property +  * Name"" (empty string) 
-The `Units` property has the following options+  * Cell{a,b,c} with ab, c as random vectors
-- `Units[1]`Sets the scaling for the reciprocal latticee.g.`2Pi` for `"2Pi"` or `1` for `"NoPi"`+  * Atoms: {} 
-- `Units[2]`Defines the unit of measurement as `"Angstrom"``"Bohr"`or `"nanometer"`. +  * Units: {"2Pi", "Angstrom", "Absolute" 
-- `Units[3]`Selects `"Absolute"or `"Relative"` for the definition of atom positions.+  * NF: `0(number of orbitals defined in Atoms)
  
-Once a Tight Binding object is createdall properties can be assigned except `.NF`which is determined by the number of orbitals defined in `Atoms`.+The //Units// property is a list of three strings with the following contributions: 
 +  * Units[1]: Sets the scaling for the reciprocal latticee.g., $\vec{r}\cdot\vec{g}=2\pi$ for "2Pi" or $\vec{r}\cdot\vec{g}=1$ for "NoPi"
 +  * Units[2]: Defines the unit of measurement as "Angstrom", "Bohr", or "nanometer"
 +  * Units[3]: Selects "Absolute" or "Relative" for the definition of atom positions.
  
-## Example+Once a Tight Binding object is created, all properties can be assigned except //.NF//, which is determined by the number of orbitals defined in \\.Atoms\\.
  
 +===== Input =====
 +
 +===== Output =====
 +
 +  *  A Tight Binding Object 
 +
 +===== Example =====
 +
 +
 +==== Input ====
 +<code Quanty Example.Quanty>
 +--
 ### Input ### Input
 ```lua ```lua
Line 60: Line 69:
 } }
  
 +</code>
  
-===== Input =====+==== Result ==== 
 +<file Quanty_Output> 
 +Printing the TB Object
  
-  * bla Integer +Settings of a tight binding model
-  * bla2 : Real+
  
-===== Output =====+printout of Crystal Structure 
 +Units: 2Pi (g.r=2Pi) Angstrom Absolute atom positions 
 +Unit cell parameters: 
 +a:       0.0000000       0.0000000       0.0000000 
 +b:       0.0000000       0.0000000       0.0000000 
 +c:       0.0000000       0.0000000       0.0000000 
 +Reciprocal latice: 
 +a:       0.0000000 30524692131128596033898117733842076213019192344605263171345790071216510328003874622266126017805876259535366806940969625873947115114721700264263639077479994600233826779136.0000000 1469218886842792161082556356812066608987064236852910356089627265978131596617755845105555332403223378390597352733941003451523713467849651601093598519555579669832275433929014952247745114139290238976.0000000 
 +b:       0.0000000       0.0000000 90960625277508849958397981692689239784491225441894123063561438202878853747680593734840616283814676646691536819002770131304362257795846217274641593397548217458628790833363103687190963464137327730221337512979694186028748242944.0000000 
 +c:       0.0000000 14107223910934044308904371602649936698982067006821564283097987256794599528798179656616663629775957882874925536671725932884293417340363744679036673366848766811353566910460765161922523069153280.0000000 73429234843382957416571002197742812553809563142104530001750273049746504128625765208852406031284161247014915814559263665977548191119922018187373791315790938478048641072290406586019038135878180088386949792875281819263322554368.0000000 
 +Number of atoms 0 
 +Containing a total number of 0 orbitals 
 +Hopping definitions ( 0 )
  
-  * bla : real 
  
-===== Example =====+Callable Properties: 
 +Cell: { { 6.0134700169991e-154 , 1.0216608544487e-259 , 2.7856078039899e-91 } ,  
 +  { 4.4759381595362e-91 , 4.4759381595362e-91 , 4.4759381595362e-91 } ,  
 +  { 4.4759381595362e-91 , 4.4759381595362e-91 , 4.4759381595362e-91 } } 
 +Units: { 2Pi , Angstrom , Absolute } 
 +Atoms:
 +Hopping: Hopping 
 +NF: 0
  
-### +Settings of a tight binding model: My wishes for dinner
-description text +
-###+
  
-==== Input ==== +printout of Crystal Structure 
-<code Quanty Example.Quanty> +Units: 2Pi (g.r=2Pi) Bohr     Relative atom positions 
--- some example code +Unit cell parameters: 
-</code>+a:       1.0000000       0.0000000       0.0000000 
 +b:       0.0000000       1.0000000       0.0000000 
 +c:       0.0000000       0.0000000       1.0000000 
 +Reciprocal latice: 
 +a:       6.2831853       0.0000000       0.0000000 
 +b:       0.0000000       6.2831853       0.0000000 
 +c:       0.0000000       0.0000000       6.2831853 
 +Number of atoms 2 
 +#   0 | pizza ( 0 ) at position {       0.0000000 ,       0.0000000 ,       0.0000000 } 
 +      | Margherita shell with 1 orbitals { 0 } 
 +#   1 | pasta ( 0 ) at position {       0.0000000 ,       1.0000000 ,       0.0000000 } 
 +      | Pesto shell with 1 orbitals { 0 } 
 +      | Carbonara shell with 1 orbitals { 0 } 
 +Containing a total number of 3 orbitals 
 +Hopping definitions ( 4 ) 
 +Hopping from 0 : pizza Margherita to 1 : pasta Pesto with translation vector in unit cells: { 0 , 1 , 0 } ({ 0.00000000E+00  1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.00000000E+00 
  
-==== Result ==== +Hopping from 1 : pasta - Pesto to 0 : pizza - Margherita with translation vector in unit cells: { 0 , -1 , 0 } ({ 0.00000000E+00 -1.00000000E+00  0.00000000E+00 }) 
-<file Quanty_Output> +Matrix = 
-text produced as output+Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.00000000E+00  
 + 
 +Hopping from 0 : pizza - Margherita to 1 : pasta - Carbonara with translation vector in unit cells: { 0 , 1 , 0 } ({ 0.00000000E+00  1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  2.00000000E+00  
 + 
 +Hopping from 1 : pasta - Carbonara to 0 : pizza - Margherita with translation vector in unit cells: { 0 , -1 , 0 } ({ 0.00000000E+00 -1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +                    0] 
 +[     0]  2.00000000E+00 
 </file> </file>
  
Print/export