Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
documentation:language_reference:objects:tightbinding:start [2024/09/18 12:08] Sina Shokridocumentation:language_reference:objects:tightbinding:start [2024/09/18 14:35] (current) Sina Shokri
Line 5: Line 5:
 The object tight-binding defines the tight-binding structure of a crystal or a molecule, including the onsite energy of spin-orbitals and the local and non-local hopping among the spin-orbitals. The tight-binding object can be created directly in Lua using the function //[[documentation:language_reference:functions:NewTightBinding|NewTightBinding()]]// or can be generated from the output of DFT calculation (see, for example, //[[documentation:language_reference:functions:TightBindingDefFromDresdenFPLO|TightBindingDefFromDresdenFPLO()]]//).   The object tight-binding defines the tight-binding structure of a crystal or a molecule, including the onsite energy of spin-orbitals and the local and non-local hopping among the spin-orbitals. The tight-binding object can be created directly in Lua using the function //[[documentation:language_reference:functions:NewTightBinding|NewTightBinding()]]// or can be generated from the output of DFT calculation (see, for example, //[[documentation:language_reference:functions:TightBindingDefFromDresdenFPLO|TightBindingDefFromDresdenFPLO()]]//).  
 The tight-binding objects are used to more efficiently generate cluster Hamiltonians (see //[[documentation:language_reference:functions:CreateClusterHamiltonian|CreateClusterHamiltonian()]]//). The tight-binding objects are used to more efficiently generate cluster Hamiltonians (see //[[documentation:language_reference:functions:CreateClusterHamiltonian|CreateClusterHamiltonian()]]//).
 +
 +For more details see the [[documentation:language_reference:objects:tightbinding:properties:start|properties]] of tight-binding objects.
  
 <code Quanty Example.Quanty> <code Quanty Example.Quanty>
Line 27: Line 29:
                 {"B.p","A.p",{ sqrt(3/4), 1/2,0},{{ tnn  }}}                 {"B.p","A.p",{ sqrt(3/4), 1/2,0},{{ tnn  }}}
                 }                 }
 +
 +print("Tight-binding object:")
 +print(HTB)
    
 print("create a periodic cluster Hamiltonian with 4 unit-cells along the z-axis:") print("create a periodic cluster Hamiltonian with 4 unit-cells along the z-axis:")
Line 35: Line 40:
  
 <file Quanty_Output> <file Quanty_Output>
--- set parameters +Tight-binding object: 
-dAB = 0.2 + 
-tnn = 1.1 +Settings of a tight binding model: dichalcogenide tight binding 
--- create the tight binding Hamiltonian + 
-HTB = NewTightBinding() +printout of Crystal Structure 
-HTB.Name = "dichalcogenide tight binding" +Units: 2Pi (g.r=2PiAngstrom Absolute atom positions 
-HTB.Cell {{sqrt(3),0,0}, +Unit cell parameters: 
-            {sqrt(3/4),3/2,0}, +a:       1.7320508       0.0000000       0.0000000 
-            {0,0,1}} +b:       0.8660254       1.5000000       0.0000000 
-HTB.Atoms = { {"A", {0,0,0},       {{"p", {"0"}}}}, +c:       0.0000000       0.0000000       1.0000000 
-                {"B", {sqrt(3),1,0}, {{"p", {"0"}}}}+Reciprocal latice: 
-HTB.Hopping = {{"A.p","A.p",        0,   0,0},{{-dAB/2}}}, +a:       3.6275987      -2.0943951       0.0000000 
-                {"B.p","B.p",        0,   0,0},{{ dAB/2}}}, +b:       0.0000000       4.1887902       0.0000000 
-                {"A.p","B.p",        0,   1,0},{{ tnn  }}}, +c:       0.0000000       0.0000000       6.2831853 
-                {"B.p","A.p",        0,  -1,0},{{ tnn  }}}, +Number of atoms 2 
-                {"A.p","B.p",sqrt(3/4),-1/2,0},{tnn  }}}, +#   0 | ( 0 ) at position       0.0000000 ,       0.0000000 ,       0.0000000 } 
-                {"B.p","A.p",{-sqrt(3/4), 1/2,0},{{ tnn  }}}, +      | shell with 1 orbitals { 0 } 
-                {"A.p","B.p",{-sqrt(3/4),-1/2,0},{{ tnn  }}}, +#   1 | B ( at position {       1.7320508       1.0000000       0.0000000 } 
-                {"B.p","A.p",sqrt(3/4), 1/2,0},{{ tnn  }}} +      | shell with 1 orbitals { 0 } 
-                } +Containing a total number of 2 orbitals 
-  +Hopping definitions ( 8 ) 
-print("create a periodic cluster Hamiltonian with 4 unit-cells along the z-axis:"+Hopping from 0 : to 0 : with translation vector in unit cells: { 0 , 0 , 0 } (0.00000000E+00  0.00000000E+00  0.00000000E+00 }) 
-HCl CreateClusterHamiltonian(HTB{"periodic"{{1,0,0},{0,1,0},{0,0,4}}}) +Matrix = 
-print(HCl)+Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0] -1.00000000E-01  
 + 
 +Hopping from 1 : B - to 1 : with translation vector in unit cells: { 0 , 0 , 0 } (0.00000000E+00  0.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.00000000E-01  
 + 
 +Hopping from 0 : A - to 1 : with translation vector in unit cells: -1 , 0 , 0 } (0.00000000E+00  1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.10000000E+00  
 + 
 +Hopping from 1 : B - to 0 : with translation vector in unit cells: { 1 , 0 , 0 } (0.00000000E+00 -1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.10000000E+00  
 + 
 +Hopping from 0 : A - to 1 : with translation vector in unit cells: , -1 , 0 } (8.66025404E-01 -5.00000000E-01  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.10000000E+00  
 + 
 +Hopping from 1 : B - to 0 : with translation vector in unit cells: , 1 , 0 } ({-8.66025404E-01  5.00000000E-01  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.10000000E+00  
 + 
 +Hopping from 0 : A - to 1 : with translation vector in unit cells: { -, -1 , 0 } ({-8.66025404E-01 -5.00000000E-01  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.10000000E+00  
 + 
 +Hopping from 1 : B - to 0 : with translation vector in unit cells: , 1 , 0 } (8.66025404E-01  5.00000000E-01  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.10000000E+00  
 + 
 + 
 + 
 +create a periodic cluster Hamiltonian with 4 unit-cells along the z-axis: 
 + 
 +Operator: Operator 
 +QComplex                  0 (Real==0 or Complex==1 or Mixed==2
 +MaxLength                 2 (largest number of product of lader operators) 
 +NFermionic modes =          8 (Number of fermionic modes (sitespinorbital...) in the one particle basis) 
 +NBosonic modes            (Number of bosonic modes (phonon modes...) in the one particle basis) 
 + 
 +Operator of Length   2 
 +QComplex      =          (Real==or Complex==1
 +N                     16 (number of operators of length   2) 
 +C  A  | -1.00000000000000E-01 
 +C  1 A  1 |  1.00000000000000E-01 
 +C  A  1 |  3.30000000000000E+00 
 +C  1 A  0 |  3.30000000000000E+00 
 +C  2 A  2 | -1.00000000000000E-01 
 +C  3 A  3 |  1.00000000000000E-01 
 +C  2 A  3 |  3.30000000000000E+00 
 +C  3 A  2 |  3.30000000000000E+00 
 +C  A  4 | -1.00000000000000E-01 
 +C  5 A  5 |  1.00000000000000E-01 
 +C  4 A  5 |  3.30000000000000E+00 
 +C  5 A  4 |  3.30000000000000E+00 
 +C  6 A  6 | -1.00000000000000E-01 
 +C  7 A  7 |  1.00000000000000E-01 
 +C  6 A  7 |  3.30000000000000E+00 
 +C  7 A  6 |  3.30000000000000E+00
 </file> </file>
  
Print/export