Processing math: 51%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
physics_chemistry:point_groups:c3:orientation_z [2018/03/21 15:17] Stefano Agrestiniphysics_chemistry:point_groups:c3:orientation_z [2018/04/06 09:12] (current) Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation Z ====== ====== Orientation Z ======
 +
 +===== Symmetry Operations =====
  
 ### ###
-alligned paragraph text+ 
 +In the C3 Point Group, with orientation Z there are the following symmetry operations 
 ### ###
  
-===== Example =====+### 
 + 
 +{{:physics_chemistry:pointgroup:c3_z.png}}
  
 ### ###
-description text+
 ### ###
  
-==== Input ==== +^ Operator ^ Orientation ^ 
-<code Quanty Example.Quanty> +^ E | {0,0,0} , | 
--- some example code+^ C3 | {0,0,1} , {0,0,1} , | 
 + 
 +### 
 + 
 +===== Different Settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c3:orientation_x|Point Group C3 with orientation X]] 
 +  * [[physics_chemistry:point_groups:c3:orientation_y|Point Group C3 with orientation Y]] 
 +  * [[physics_chemistry:point_groups:c3:orientation_z|Point Group C3 with orientation Z]] 
 + 
 +### 
 + 
 +===== Character Table ===== 
 + 
 +### 
 + 
 +  ^  E(1)  ^  C3(2)  ^ 
 +^ A11
 +^ E21
 + 
 +### 
 + 
 +===== Product Table ===== 
 + 
 +### 
 + 
 +  ^  A  ^  E  ^ 
 +^ A  | A  | E  | 
 +^ E  | E  | 2A+E  | 
 + 
 +### 
 + 
 +===== Sub Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] 
 + 
 +### 
 + 
 +===== Super Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c3h:orientation_z|Point Group C3h with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c3v:orientation_zx|Point Group C3v with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:c3v:orientation_zy|Point Group C3v with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:c6h:orientation_z|Point Group C6h with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c6v:orientation_zx|Point Group C6v with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:c6v:orientation_zy|Point Group C6v with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:c6:orientation_z|Point Group C6 with orientation Z]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx|Point Group D3d with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx_a|Point Group D3d with orientation Zx_A]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx_b|Point Group D3d with orientation Zx_B]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_z(x-y)|Point Group D3d with orientation Z(x-y)]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_z(x-y)_a|Point Group D3d with orientation Z(x-y)_A]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_z(x-y)_b|Point Group D3d with orientation Z(x-y)_B]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zy|Point Group D3d with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zy_a|Point Group D3d with orientation Zy_A]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zy_b|Point Group D3d with orientation Zy_B]] 
 +  * [[physics_chemistry:point_groups:d3h:orientation_zx|Point Group D3h with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:d3:orientation_zx|Point Group D3 with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d3:orientation_zy|Point Group D3 with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:d6:orientation_zxy|Point Group D6 with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt2-1z|Point Group Oh with orientation 0sqrt2-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt21z|Point Group Oh with orientation 0sqrt21z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_111z|Point Group Oh with orientation 111z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt20-1z|Point Group Oh with orientation sqrt20-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt201z|Point Group Oh with orientation sqrt201z]] 
 +  * [[physics_chemistry:point_groups:s6:orientation_z|Point Group S6 with orientation Z]] 
 + 
 +### 
 + 
 +===== Invariant Potential expanded on renormalized spherical Harmonics ===== 
 + 
 +### 
 + 
 +Any potential (function) can be written as a sum over spherical harmonics. 
 +V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) 
 +Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) 
 +The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the C3 Point group with orientation Z the form of the expansion coefficients is: 
 + 
 +### 
 + 
 +==== Expansion ==== 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + A(0,0) & k=0\land m=0 \\ 
 + A(1,0) & k=1\land m=0 \\ 
 + A(2,0) & k=2\land m=0 \\ 
 + -A(3,3)+i B(3,3) & k=3\land m=-3 \\ 
 + A(3,0) & k=3\land m=0 \\ 
 + A(3,3)+i B(3,3) & k=3\land m=3 \\ 
 + -A(4,3)+i B(4,3) & k=4\land m=-3 \\ 
 + A(4,0) & k=4\land m=0 \\ 
 + A(4,3)+i B(4,3) & k=4\land m=3 \\ 
 + -A(5,3)+i B(5,3) & k=5\land m=-3 \\ 
 + A(5,0) & k=5\land m=0 \\ 
 + A(5,3)+i B(5,3) & k=5\land m=3 \\ 
 + A(6,6)-i B(6,6) & k=6\land m=-6 \\ 
 + -A(6,3)+i B(6,3) & k=6\land m=-3 \\ 
 + A(6,0) & k=6\land m=0 \\ 
 + A(6,3)+i B(6,3) & k=6\land m=3 \\ 
 + A(6,6)+i B(6,6) & k=6\land m=6 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +==== Input format suitable for Mathematica (Quanty.nb) ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_C3_Z.Quanty.nb
 + 
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[1, 0], k == 1 && m == 0}, {A[2, 0], k == 2 && m == 0}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {A[3, 0], k == 3 && m == 0}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {-A[4, 3] + I*B[4, 3], k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}, {A[4, 3] + I*B[4, 3], k == 4 && m == 3}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {A[5, 0], k == 5 && m == 0}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {-A[6, 3] + I*B[6, 3], k == 6 && m == -3}, {A[6, 0], k == 6 && m == 0}, {A[6, 3] + I*B[6, 3], k == 6 && m == 3}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] 
 </code> </code>
  
-==== Result ==== +###
-<WRAP center box 100%> +
-text produced as output +
-</WRAP>+
  
-===== Table of contents ===== +==== Input format suitable for Quanty ====
-{{indexmenu>.#1}}+
  
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{0, 0, A(0,0)} , 
 +       {1, 0, A(1,0)} , 
 +       {2, 0, A(2,0)} , 
 +       {3, 0, A(3,0)} , 
 +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , 
 +       {3, 3, A(3,3) + (I)*(B(3,3))} , 
 +       {4, 0, A(4,0)} , 
 +       {4,-3, (-1)*(A(4,3)) + (I)*(B(4,3))} , 
 +       {4, 3, A(4,3) + (I)*(B(4,3))} , 
 +       {5, 0, A(5,0)} , 
 +       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , 
 +       {5, 3, A(5,3) + (I)*(B(5,3))} , 
 +       {6, 0, A(6,0)} , 
 +       {6,-3, (-1)*(A(6,3)) + (I)*(B(6,3))} , 
 +       {6, 3, A(6,3) + (I)*(B(6,3))} , 
 +       {6,-6, A(6,6) + (-I)*(B(6,6))} , 
 +       {6, 6, A(6,6) + (I)*(B(6,6))} }
 +
 +</code>
 +
 +###
 +
 +==== One particle coupling on a basis of spherical harmonics ====
 +
 +###
 +
 +The operator representing the potential in second quantisation is given as:
 +O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
 +Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l
 +Note the difference between the function Ak,m and the parameter Anl,nl(k,m)
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +we can express the operator as 
 +O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^Y(0)0|Ass(0,0)|0|Asp(1,0)3|0|0|0|Asd(2,0)5|0|0|Asf(3,3)+iBsf(3,3)7|0|0|Asf(3,0)7|0|0|Asf(3,3)+iBsf(3,3)7|
 +^Y(1)1|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|37(Apd(3,3)+iBpd(3,3))|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|13(Apf(4,3)+iBpf(4,3))|0|
 +^Y(1)0|Asp(1,0)3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)15+3735Apd(3,0)|0|0|Apf(4,3)+iBpf(4,3)33|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|Apf(4,3)+iBpf(4,3)33|
 +^Y(1)1|0|0|0|App(0,0)15App(2,0)|37(Apd(3,3)+iBpd(3,3))|0|0|Apd(1,0)53Apd(3,0)75|0|0|13(Apf(4,3)+iBpf(4,3))|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|
 +^Y(2)2|0|0|0|37(Apd(3,3)+iBpd(3,3))|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|1357(Add(4,3)+iBdd(4,3))|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|1327(Adf(3,3)+iBdf(3,3))5332(Adf(5,3)+iBdf(5,3))|0|0|
 +^Y(2)1|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|1357(Add(4,3)+iBdd(4,3))|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|1357(Adf(3,3)+iBdf(3,3))+4335(Adf(5,3)+iBdf(5,3))|0|
 +^Y(2)0|Asd(2,0)5|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|1357(Adf(3,3)+iBdf(3,3))2335(Adf(5,3)+iBdf(5,3))|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|1357(Adf(3,3)+iBdf(3,3))2335(Adf(5,3)+iBdf(5,3))|
 +^Y(2)1|0|0|0|Apd(1,0)53Apd(3,0)75|1357(Add(4,3)+iBdd(4,3))|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|1357(Adf(3,3)+iBdf(3,3))+4335(Adf(5,3)+iBdf(5,3))|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|
 +^Y(2)2|0|37(Apd(3,3)+iBpd(3,3))|0|0|0|1357(Add(4,3)+iBdd(4,3))|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|1327(Adf(3,3)+iBdf(3,3))5332(Adf(5,3)+iBdf(5,3))|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|
 +^Y(3)3|Asf(3,3)+iBsf(3,3)7|0|Apf(4,3)+iBpf(4,3)33|0|0|0|2335(Adf(5,3)+iBdf(5,3))1357(Adf(3,3)+iBdf(3,3))|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|0|0|1014373(Aff(6,3)+iBff(6,3))1117(Aff(4,3)+iBff(4,3))|0|0|1013733(Aff(6,6)iBff(6,6))|
 +^Y(3)2|0|0|0|13(Apf(4,3)iBpf(4,3))|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|1357(Adf(3,3)+iBdf(3,3))4335(Adf(5,3)+iBdf(5,3))|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|0|13314(Aff(4,3)+iBff(4,3))514342(Aff(6,3)+iBff(6,3))|0|0|
 +^Y(3)1|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|5332(Adf(5,3)+iBdf(5,3))1327(Adf(3,3)+iBdf(3,3))|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|13314(Aff(4,3)+iBff(4,3))+514342(Aff(6,3)+iBff(6,3))|0|
 +^Y(3)0|Asf(3,0)7|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|1117(Aff(4,3)+iBff(4,3))1014373(Aff(6,3)+iBff(6,3))|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|1117(Aff(4,3)+iBff(4,3))1014373(Aff(6,3)+iBff(6,3))|
 +^Y(3)1|0|0|0|3527Apf(2,0)1327Apf(4,0)|5332(Adf(5,3)+iBdf(5,3))1327(Adf(3,3)+iBdf(3,3))|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|13314(Aff(4,3)+iBff(4,3))+514342(Aff(6,3)+iBff(6,3))|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|
 +^Y(3)2|0|13(Apf(4,3)iBpf(4,3))|0|0|0|1357(Adf(3,3)+iBdf(3,3))4335(Adf(5,3)+iBdf(5,3))|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|13314(Aff(4,3)+iBff(4,3))514342(Aff(6,3)+iBff(6,3))|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|
 +^Y(3)3|Asf(3,3)+iBsf(3,3)7|0|Apf(4,3)+iBpf(4,3)33|0|0|0|2335(Adf(5,3)+iBdf(5,3))1357(Adf(3,3)+iBdf(3,3))|0|0|1013733(Aff(6,6)+iBff(6,6))|0|0|1014373(Aff(6,3)+iBff(6,3))1117(Aff(4,3)+iBff(4,3))|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|
 +
 +
 +###
 +
 +==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
 +
 +###
 +
 +
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^s|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^py|0|i2|0|i2|0|0|0|0|0|0|0|0|0|0|0|0|
 +^pz|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^px|0|12|0|12|0|0|0|0|0|0|0|0|0|0|0|0|
 +^dxy|0|0|0|0|i2|0|0|0|i2|0|0|0|0|0|0|0|
 +^dyz|0|0|0|0|0|i2|0|i2|0|0|0|0|0|0|0|0|
 +^d3z2r2|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|
 +^dxz|0|0|0|0|0|12|0|12|0|0|0|0|0|0|0|0|
 +^dx2y2|0|0|0|0|12|0|0|0|12|0|0|0|0|0|0|0|
 +^fy(3x2y2)|0|0|0|0|0|0|0|0|0|i2|0|0|0|0|0|i2|
 +^fxyz|0|0|0|0|0|0|0|0|0|0|i2|0|0|0|i2|0|
 +^fy(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|i2|0|i2|0|0|
 +^fz(5z23r2)|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|
 +^fx(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|12|0|12|0|0|
 +^fz(x2y2)|0|0|0|0|0|0|0|0|0|0|12|0|0|0|12|0|
 +^fx(x23y2)|0|0|0|0|0|0|0|0|0|12|0|0|0|0|0|12|
 +
 +
 +###
 +
 +==== One particle coupling on a basis of symmetry adapted functions ====
 +
 +###
 +
 +After rotation we find
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  s  ^  py  ^  pz  ^  px  ^  dxy  ^  dyz  ^  d3z2r2  ^  dxz  ^  dx2y2  ^  fy(3x2y2)  ^  fxyz  ^  fy(5z2r2)  ^  fz(5z23r2)  ^  fx(5z2r2)  ^  fz(x2y2)  ^  fx(x23y2)  ^
 +^s|Ass(0,0)|0|Asp(1,0)3|0|0|0|Asd(2,0)5|0|0|27Bsf(3,3)|0|0|Asf(3,0)7|0|0|27Asf(3,3)|
 +^py|0|App(0,0)15App(2,0)|0|0|37Apd(3,3)|Apd(1,0)53Apd(3,0)75|0|0|37Bpd(3,3)|0|13Apf(4,3)|3527Apf(2,0)1327Apf(4,0)|0|0|13Bpf(4,3)|0|
 +^pz|Asp(1,0)3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)15+3735Apd(3,0)|0|0|1323Bpf(4,3)|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|1323Apf(4,3)|
 +^px|0|0|0|App(0,0)15App(2,0)|37Bpd(3,3)|0|0|Apd(1,0)53Apd(3,0)75|37Apd(3,3)|0|13Bpf(4,3)|0|0|3527Apf(2,0)1327Apf(4,0)|13Apf(4,3)|0|
 +^dxy|0|37Apd(3,3)|0|37Bpd(3,3)|Add(0,0)27Add(2,0)+121Add(4,0)|1357Add(4,3)|0|1357Bdd(4,3)|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|5332Adf(5,3)1327Adf(3,3)|0|5332Bdf(5,3)1327Bdf(3,3)|0|0|
 +^dyz|0|Apd(1,0)53Apd(3,0)75|0|0|1357Add(4,3)|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|1357Bdd(4,3)|0|1357Adf(3,3)+4335Adf(5,3)|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|1357Bdf(3,3)+4335Bdf(5,3)|0|
 +^d3z2r2|Asd(2,0)5|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|23310Bdf(5,3)13107Bdf(3,3)|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|13107Adf(3,3)23310Adf(5,3)|
 +^dxz|0|0|0|Apd(1,0)53Apd(3,0)75|1357Bdd(4,3)|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|1357Add(4,3)|0|1357Bdf(3,3)+4335Bdf(5,3)|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|1357Adf(3,3)4335Adf(5,3)|0|
 +^dx2y2|0|37Bpd(3,3)|0|37Apd(3,3)|0|1357Bdd(4,3)|0|1357Add(4,3)|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|5332Bdf(5,3)1327Bdf(3,3)|0|1327Adf(3,3)5332Adf(5,3)|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|
 +^fy(3x2y2)|27Bsf(3,3)|0|1323Bpf(4,3)|0|0|0|23310Bdf(5,3)13107Bdf(3,3)|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)1013733Aff(6,6)|0|0|10143143Bff(6,3)11114Bff(4,3)|0|0|1013733Bff(6,6)|
 +^fxyz|0|13Apf(4,3)|0|13Bpf(4,3)|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|1357Adf(3,3)+4335Adf(5,3)|0|1357Bdf(3,3)+4335Bdf(5,3)|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|13314Aff(4,3)+514342Aff(6,3)|0|13314Bff(4,3)+514342Bff(6,3)|0|0|
 +^fy(5z2r2)|0|3527Apf(2,0)1327Apf(4,0)|0|0|5332Adf(5,3)1327Adf(3,3)|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|5332Bdf(5,3)1327Bdf(3,3)|0|13314Aff(4,3)+514342Aff(6,3)|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|13314Bff(4,3)+514342Bff(6,3)|0|
 +^fz(5z23r2)|Asf(3,0)7|0|3537Apf(2,0)+4Apf(4,0)321| 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{10}{143} \sqrt{\frac{14}{3}} \text{Bff}(6,3)-\frac{1}{11} \sqrt{14} \text{Bff}(4,3) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | \frac{1}{11} \sqrt{14} \text{Aff}(4,3)-\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,3) |
 +^ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) |\color{darkred}{ \frac{5}{33} \sqrt{2} \text{Bdf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,3) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }|\color{darkred}{ \frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3)-\frac{5}{33} \sqrt{2} \text{Adf}(5,3) }| 0 | \frac{1}{33} \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} \sqrt{42} \text{Bff}(6,3) | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | -\frac{1}{33} \sqrt{14} \text{Aff}(4,3)-\frac{5}{143} \sqrt{42} \text{Aff}(6,3) | 0 |
 +^ f_{z\left(x^2-y^2\right)} |\color{darkred}{ 0 }| \frac{1}{3} \text{Bpf}(4,3) | 0 | -\frac{1}{3} \text{Apf}(4,3) |\color{darkred}{ 0 }|\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) }|\color{darkred}{ 0 }|\color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }|\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }| 0 | 0 | \frac{1}{33} \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} \sqrt{42} \text{Bff}(6,3) | 0 | -\frac{1}{33} \sqrt{14} \text{Aff}(4,3)-\frac{5}{143} \sqrt{42} \text{Aff}(6,3) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
 +^ f_{x\left(x^2-3y^2\right)} |\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Asf}(3,3) }| 0 | -\frac{1}{3} \sqrt{\frac{2}{3}} \text{Apf}(4,3) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{1}{3} \sqrt{\frac{10}{7}} \text{Adf}(3,3)-\frac{2}{33} \sqrt{10} \text{Adf}(5,3) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Bff}(6,6) | 0 | 0 | \frac{1}{11} \sqrt{14} \text{Aff}(4,3)-\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,3) | 0 | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)+\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) |
 +
 +
 +###
 +
 +===== Coupling for a single shell =====
 +
 +
 +
 +###
 +
 +Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
 +
 +###
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Ea} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Ea, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{0, 0, Ea} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ {Y_{0}^{(0)}} | \text{Ea} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  \text{s}   ^
 +^ \text{s} | \text{Ea} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ \text{s} | 1 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ea} | {{:physics_chemistry:pointgroup:c3_z_orb_0_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{3} (\text{Ea}+2 \text{Ee}) & k=0\land m=0 \\
 + 0 & k\neq 2\lor m\neq 0 \\
 + \frac{5 (\text{Ea}-\text{Ee})}{3} & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + 2*Ee)/3, k == 0 && m == 0}, {0, k != 2 || m != 0}}, (5*(Ea - Ee))/3]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{0, 0, (1/3)*(Ea + (2)*(Ee))} , 
 +       {2, 0, (5/3)*(Ea + (-1)*(Ee))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ {Y_{-1}^{(1)}} | \text{Ee} | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | \text{Ea} | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | \text{Ee} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  p_y   ^  p_z   ^  p_x   ^
 +^ p_y | \text{Ee} | 0 | 0 |
 +^ p_z | 0 | \text{Ea} | 0 |
 +^ p_x | 0 | 0 | \text{Ee} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |
 +^ p_z | 0 | 1 | 0 |
 +^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ee} | {{:physics_chemistry:pointgroup:c3_z_orb_1_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: |
 +^ ^\text{Ea} | {{:physics_chemistry:pointgroup:c3_z_orb_1_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: |
 +^ ^\text{Ee} | {{:physics_chemistry:pointgroup:c3_z_orb_1_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{5} (\text{Ea}+2 (\text{Ee1}+\text{Ee2})) & k=0\land m=0 \\
 + 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -3\land m\neq 0\land m\neq 3) \\
 + \text{Ea}+\text{Ee1}-2 \text{Ee2} & k=2\land m=0 \\
 + 3 i \sqrt{\frac{7}{5}} (\text{MeIm}+i \text{MeRe}) & k=4\land m=-3 \\
 + \frac{3}{5} (3 \text{Ea}-4 \text{Ee1}+\text{Ee2}) & k=4\land m=0 \\
 + 3 \sqrt{\frac{7}{5}} (\text{MeRe}+i \text{MeIm}) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + 2*(Ee1 + Ee2))/5, k == 0 && m == 0}, {0, (k != 4 && (k != 2 || m != 0)) || (m != -3 && m != 0 && m != 3)}, {Ea + Ee1 - 2*Ee2, k == 2 && m == 0}, {(3*I)*Sqrt[7/5]*(MeIm + I*MeRe), k == 4 && m == -3}, {(3*(3*Ea - 4*Ee1 + Ee2))/5, k == 4 && m == 0}}, 3*Sqrt[7/5]*(I*MeIm + MeRe)]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{0, 0, (1/5)*(Ea + (2)*(Ee1 + Ee2))} , 
 +       {2, 0, Ea + Ee1 + (-2)*(Ee2)} , 
 +       {4, 0, (3/5)*((3)*(Ea) + (-4)*(Ee1) + Ee2)} , 
 +       {4,-3, (3*I)*((sqrt(7/5))*(MeIm + (I)*(MeRe)))} , 
 +       {4, 3, (3)*((sqrt(7/5))*((I)*(MeIm) + MeRe))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-2}^{(2)}} | \text{Ee2} | 0 | 0 | \text{MeRe}-i \text{MeIm} | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | \text{Ee1} | 0 | 0 | -\text{MeRe}+i \text{MeIm} |
 +^ {Y_{0}^{(2)}} | 0 | 0 | \text{Ea} | 0 | 0 |
 +^ {Y_{1}^{(2)}} | \text{MeRe}+i \text{MeIm} | 0 | 0 | \text{Ee1} | 0 |
 +^ {Y_{2}^{(2)}} | 0 | -\text{MeRe}-i \text{MeIm} | 0 | 0 | \text{Ee2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ d_{\text{xy}} | \text{Ee2} | \text{MeRe} | 0 | \text{MeIm} | 0 |
 +^ d_{\text{yz}} | \text{MeRe} | \text{Ee1} | 0 | 0 | \text{MeIm} |
 +^ d_{3z^2-r^2} | 0 | 0 | \text{Ea} | 0 | 0 |
 +^ d_{\text{xz}} | \text{MeIm} | 0 | 0 | \text{Ee1} | -\text{MeRe} |
 +^ d_{x^2-y^2} | 0 | \text{MeIm} | 0 | -\text{MeRe} | \text{Ee2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} |
 +^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 |
 +^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 |
 +^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 |
 +^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c3_z_orb_2_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c3_z_orb_2_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: |
 +^ ^\text{Ea} | {{:physics_chemistry:pointgroup:c3_z_orb_2_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c3_z_orb_2_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: |
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c3_z_orb_2_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for f orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{7} (\text{Eaxx23y2}+\text{Eaz3}+\text{Eaz3x2y2}+2 \text{Ee1}+2 \text{Ee2}) & k=0\land m=0 \\
 + 0 & (k\neq 6\land (((k\neq 2\lor m\neq 0)\land k\neq 4)\lor (m\neq -3\land m\neq 0\land m\neq 3)))\lor (m\neq -6\land m\neq -3\land m\neq 0\land m\neq 3\land m\neq 6) \\
 + -\frac{5}{28} (5 \text{Eaxx23y2}-4 \text{Eaz3}+5 \text{Eaz3x2y2}-6 \text{Ee1}) & k=2\land m=0 \\
 + -\frac{3 (3 \text{Maxx2y2z3}+3 i \text{Maz3y3x2y2}-2 i \text{MeIm}+2 \text{MeRe})}{\sqrt{14}} & k=4\land m=-3 \\
 + \frac{3}{14} (3 \text{Eaxx23y2}+6 \text{Eaz3}+3 \text{Eaz3x2y2}+2 \text{Ee1}-14 \text{Ee2}) & k=4\land m=0 \\
 + \frac{9 \text{Maxx2y2z3}-9 i \text{Maz3y3x2y2}+6 i \text{MeIm}+6 \text{MeRe}}{\sqrt{14}} & k=4\land m=3 \\
 + \frac{13}{20} \sqrt{\frac{33}{7}} (\text{Eaxx23y2}-\text{Eaz3x2y2}+2 i \text{Maxx23y2y3x2y2}) & k=6\land m=-6 \\
 + \frac{13}{5} \sqrt{\frac{3}{14}} (\text{Maxx2y2z3}+i (\text{Maz3y3x2y2}+3 \text{MeIm}+3 i \text{MeRe})) & k=6\land m=-3 \\
 + -\frac{13}{140} (\text{Eaxx23y2}-20 \text{Eaz3}+\text{Eaz3x2y2}+30 \text{Ee1}-12 \text{Ee2}) & k=6\land m=0 \\
 + \frac{13}{5} \sqrt{\frac{3}{14}} (-\text{Maxx2y2z3}+i \text{Maz3y3x2y2}+3 i \text{MeIm}+3 \text{MeRe}) & k=6\land m=3 \\
 + \frac{13}{20} \sqrt{\frac{33}{7}} (\text{Eaxx23y2}-\text{Eaz3x2y2}-2 i \text{Maxx23y2y3x2y2}) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Eaxx23y2 + Eaz3 + Eaz3x2y2 + 2*Ee1 + 2*Ee2)/7, k == 0 && m == 0}, {0, (k != 6 && (((k != 2 || m != 0) && k != 4) || (m != -3 && m != 0 && m != 3))) || (m != -6 && m != -3 && m != 0 && m != 3 && m != 6)}, {(-5*(5*Eaxx23y2 - 4*Eaz3 + 5*Eaz3x2y2 - 6*Ee1))/28, k == 2 && m == 0}, {(-3*(3*Maxx2y2z3 + (3*I)*Maz3y3x2y2 - (2*I)*MeIm + 2*MeRe))/Sqrt[14], k == 4 && m == -3}, {(3*(3*Eaxx23y2 + 6*Eaz3 + 3*Eaz3x2y2 + 2*Ee1 - 14*Ee2))/14, k == 4 && m == 0}, {(9*Maxx2y2z3 - (9*I)*Maz3y3x2y2 + (6*I)*MeIm + 6*MeRe)/Sqrt[14], k == 4 && m == 3}, {(13*Sqrt[33/7]*(Eaxx23y2 - Eaz3x2y2 + (2*I)*Maxx23y2y3x2y2))/20, k == 6 && m == -6}, {(13*Sqrt[3/14]*(Maxx2y2z3 + I*(Maz3y3x2y2 + 3*MeIm + (3*I)*MeRe)))/5, k == 6 && m == -3}, {(-13*(Eaxx23y2 - 20*Eaz3 + Eaz3x2y2 + 30*Ee1 - 12*Ee2))/140, k == 6 && m == 0}, {(13*Sqrt[3/14]*(-Maxx2y2z3 + I*Maz3y3x2y2 + (3*I)*MeIm + 3*MeRe))/5, k == 6 && m == 3}}, (13*Sqrt[33/7]*(Eaxx23y2 - Eaz3x2y2 - (2*I)*Maxx23y2y3x2y2))/20]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{0, 0, (1/7)*(Eaxx23y2 + Eaz3 + Eaz3x2y2 + (2)*(Ee1) + (2)*(Ee2))} , 
 +       {2, 0, (-5/28)*((5)*(Eaxx23y2) + (-4)*(Eaz3) + (5)*(Eaz3x2y2) + (-6)*(Ee1))} , 
 +       {4, 0, (3/14)*((3)*(Eaxx23y2) + (6)*(Eaz3) + (3)*(Eaz3x2y2) + (2)*(Ee1) + (-14)*(Ee2))} , 
 +       {4, 3, (1/(sqrt(14)))*((9)*(Maxx2y2z3) + (-9*I)*(Maz3y3x2y2) + (6*I)*(MeIm) + (6)*(MeRe))} , 
 +       {4,-3, (-3)*((1/(sqrt(14)))*((3)*(Maxx2y2z3) + (3*I)*(Maz3y3x2y2) + (-2*I)*(MeIm) + (2)*(MeRe)))} , 
 +       {6, 0, (-13/140)*(Eaxx23y2 + (-20)*(Eaz3) + Eaz3x2y2 + (30)*(Ee1) + (-12)*(Ee2))} , 
 +       {6, 3, (13/5)*((sqrt(3/14))*((-1)*(Maxx2y2z3) + (I)*(Maz3y3x2y2) + (3*I)*(MeIm) + (3)*(MeRe)))} , 
 +       {6,-3, (13/5)*((sqrt(3/14))*(Maxx2y2z3 + (I)*(Maz3y3x2y2 + (3)*(MeIm) + (3*I)*(MeRe))))} , 
 +       {6, 6, (13/20)*((sqrt(33/7))*(Eaxx23y2 + (-1)*(Eaz3x2y2) + (-2*I)*(Maxx23y2y3x2y2)))} , 
 +       {6,-6, (13/20)*((sqrt(33/7))*(Eaxx23y2 + (-1)*(Eaz3x2y2) + (2*I)*(Maxx23y2y3x2y2)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-3}^{(3)}} | \frac{\text{Eaxx23y2}+\text{Eaz3x2y2}}{2} | 0 | 0 | \frac{\text{Maxx2y2z3}+i \text{Maz3y3x2y2}}{\sqrt{2}} | 0 | 0 | \frac{1}{2} (-\text{Eaxx23y2}+\text{Eaz3x2y2}-2 i \text{Maxx23y2y3x2y2}) |
 +^ {Y_{-2}^{(3)}} | 0 | \text{Ee2} | 0 | 0 | \text{MeRe}-i \text{MeIm} | 0 | 0 |
 +^ {Y_{-1}^{(3)}} | 0 | 0 | \text{Ee1} | 0 | 0 | -\text{MeRe}+i \text{MeIm} | 0 |
 +^ {Y_{0}^{(3)}} | \frac{\text{Maxx2y2z3}-i \text{Maz3y3x2y2}}{\sqrt{2}} | 0 | 0 | \text{Eaz3} | 0 | 0 | -\frac{\text{Maxx2y2z3}+i \text{Maz3y3x2y2}}{\sqrt{2}} |
 +^ {Y_{1}^{(3)}} | 0 | \text{MeRe}+i \text{MeIm} | 0 | 0 | \text{Ee1} | 0 | 0 |
 +^ {Y_{2}^{(3)}} | 0 | 0 | -\text{MeRe}-i \text{MeIm} | 0 | 0 | \text{Ee2} | 0 |
 +^ {Y_{3}^{(3)}} | \frac{1}{2} (-\text{Eaxx23y2}+\text{Eaz3x2y2}+2 i \text{Maxx23y2y3x2y2}) | 0 | 0 | -\frac{\text{Maxx2y2z3}-i \text{Maz3y3x2y2}}{\sqrt{2}} | 0 | 0 | \frac{\text{Eaxx23y2}+\text{Eaz3x2y2}}{2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ f_{y\left(3x^2-y^2\right)} | \text{Eaz3x2y2} | 0 | 0 | \text{Maz3y3x2y2} | 0 | 0 | \text{Maxx23y2y3x2y2} |
 +^ f_{\text{xyz}} | 0 | \text{Ee2} | \text{MeRe} | 0 | \text{MeIm} | 0 | 0 |
 +^ f_{y\left(5z^2-r^2\right)} | 0 | \text{MeRe} | \text{Ee1} | 0 | 0 | \text{MeIm} | 0 |
 +^ f_{z\left(5z^2-3r^2\right)} | \text{Maz3y3x2y2} | 0 | 0 | \text{Eaz3} | 0 | 0 | \text{Maxx2y2z3} |
 +^ f_{x\left(5z^2-r^2\right)} | 0 | \text{MeIm} | 0 | 0 | \text{Ee1} | -\text{MeRe} | 0 |
 +^ f_{z\left(x^2-y^2\right)} | 0 | 0 | \text{MeIm} | 0 | -\text{MeRe} | \text{Ee2} | 0 |
 +^ f_{x\left(x^2-3y^2\right)} | \text{Maxx23y2y3x2y2} | 0 | 0 | \text{Maxx2y2z3} | 0 | 0 | \text{Eaxx23y2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ f_{y\left(3x^2-y^2\right)} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{i}{\sqrt{2}} |
 +^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
 +^ f_{y\left(5z^2-r^2\right)} | 0 | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 |
 +^ f_{z\left(5z^2-3r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
 +^ f_{x\left(5z^2-r^2\right)} | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | 0 |
 +^ f_{z\left(x^2-y^2\right)} | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
 +^ f_{x\left(x^2-3y^2\right)} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Eaz3x2y2} | {{:physics_chemistry:pointgroup:c3_z_orb_3_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right) | ::: |
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c3_z_orb_3_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c3_z_orb_3_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{21}{2 \pi }} \sin (\theta ) (5 \cos (2 \theta )+3) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} y \left(5 z^2-1\right) | ::: |
 +^ ^\text{Eaz3} | {{:physics_chemistry:pointgroup:c3_z_orb_3_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta )) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right) | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c3_z_orb_3_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{21}{2 \pi }} (\sin (\theta )+5 \sin (3 \theta )) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} x \left(5 z^2-1\right) | ::: |
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c3_z_orb_3_6.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right) | ::: |
 +^ ^\text{Eaxx23y2} | {{:physics_chemistry:pointgroup:c3_z_orb_3_7.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +===== Coupling between two shells =====
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s-p orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 1\lor m\neq 0 \\
 + A(1,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 1 || m != 0}}, A[1, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ {Y_{0}^{(0)}} | 0 | \frac{A(1,0)}{\sqrt{3}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  p_y   ^  p_z   ^  p_x   ^
 +^ \text{s} | 0 | \frac{A(1,0)}{\sqrt{3}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for s-d orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 2\lor m\neq 0 \\
 + A(2,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{2, 0, A(2,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{0}^{(0)}} | 0 | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ \text{s} | 0 | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for s-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 3\lor (m\neq -3\land m\neq 0\land m\neq 3) \\
 + -A(3,3)+i B(3,3) & k=3\land m=-3 \\
 + A(3,0) & k=3\land m=0 \\
 + A(3,3)+i B(3,3) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -3 && m != 0 && m != 3)}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {A[3, 0], k == 3 && m == 0}}, A[3, 3] + I*B[3, 3]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{3, 0, A(3,0)} , 
 +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , 
 +       {3, 3, A(3,3) + (I)*(B(3,3))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{0}^{(0)}} | -\frac{A(3,3)+i B(3,3)}{\sqrt{7}} | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | \frac{A(3,3)-i B(3,3)}{\sqrt{7}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ \text{s} | \sqrt{\frac{2}{7}} B(3,3) | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | -\sqrt{\frac{2}{7}} A(3,3) |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p-d orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 3\land (k\neq 1\lor m\neq 0))\lor (m\neq -3\land m\neq 0\land m\neq 3) \\
 + A(1,0) & k=1\land m=0 \\
 + -A(3,3)+i B(3,3) & k=3\land m=-3 \\
 + A(3,0) & k=3\land m=0 \\
 + A(3,3)+i B(3,3) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 3 && (k != 1 || m != 0)) || (m != -3 && m != 0 && m != 3)}, {A[1, 0], k == 1 && m == 0}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {A[3, 0], k == 3 && m == 0}}, A[3, 3] + I*B[3, 3]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} , 
 +       {3, 0, A(3,0)} , 
 +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , 
 +       {3, 3, A(3,3) + (I)*(B(3,3))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | -\frac{3}{7} (A(3,3)-i B(3,3)) |
 +^ {Y_{0}^{(1)}} | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 |
 +^ {Y_{1}^{(1)}} | \frac{3}{7} (A(3,3)+i B(3,3)) | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ p_y | \frac{3}{7} A(3,3) | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | \frac{3}{7} B(3,3) |
 +^ p_z | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 |
 +^ p_x | \frac{3}{7} B(3,3) | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | -\frac{3}{7} A(3,3) |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -3\land m\neq 0\land m\neq 3) \\
 + A(2,0) & k=2\land m=0 \\
 + -A(4,3)+i B(4,3) & k=4\land m=-3 \\
 + A(4,0) & k=4\land m=0 \\
 + A(4,3)+i B(4,3) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || m != 0)) || (m != -3 && m != 0 && m != 3)}, {A[2, 0], k == 2 && m == 0}, {-A[4, 3] + I*B[4, 3], k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}}, A[4, 3] + I*B[4, 3]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{2, 0, A(2,0)} , 
 +       {4, 0, A(4,0)} , 
 +       {4,-3, (-1)*(A(4,3)) + (I)*(B(4,3))} , 
 +       {4, 3, A(4,3) + (I)*(B(4,3))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | \frac{1}{3} (-A(4,3)+i B(4,3)) | 0 |
 +^ {Y_{0}^{(1)}} | -\frac{A(4,3)+i B(4,3)}{3 \sqrt{3}} | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | \frac{A(4,3)-i B(4,3)}{3 \sqrt{3}} |
 +^ {Y_{1}^{(1)}} | 0 | \frac{1}{3} (A(4,3)+i B(4,3)) | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ p_y | 0 | \frac{1}{3} A(4,3) | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | \frac{1}{3} B(4,3) | 0 |
 +^ p_z | \frac{1}{3} \sqrt{\frac{2}{3}} B(4,3) | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{3}} A(4,3) |
 +^ p_x | 0 | \frac{1}{3} B(4,3) | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | -\frac{1}{3} A(4,3) | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 3\land k\neq 5\land (k\neq 1\lor m\neq 0))\lor (m\neq -3\land m\neq 0\land m\neq 3) \\
 + A(1,0) & k=1\land m=0 \\
 + -A(3,3)+i B(3,3) & k=3\land m=-3 \\
 + A(3,0) & k=3\land m=0 \\
 + A(3,3)+i B(3,3) & k=3\land m=3 \\
 + -A(5,3)+i B(5,3) & k=5\land m=-3 \\
 + A(5,0) & k=5\land m=0 \\
 + A(5,3)+i B(5,3) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 3 && k != 5 && (k != 1 || m != 0)) || (m != -3 && m != 0 && m != 3)}, {A[1, 0], k == 1 && m == 0}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {A[3, 0], k == 3 && m == 0}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {A[5, 0], k == 5 && m == 0}}, A[5, 3] + I*B[5, 3]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C3_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} , 
 +       {3, 0, A(3,0)} , 
 +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , 
 +       {3, 3, A(3,3) + (I)*(B(3,3))} , 
 +       {5, 0, A(5,0)} , 
 +       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , 
 +       {5, 3, A(5,3) + (I)*(B(5,3))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-2}^{(2)}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | 0 | \frac{5}{33} \sqrt{2} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)-i B(3,3)) | 0 | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | -\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3))-\frac{4}{33} \sqrt{5} (A(5,3)-i B(5,3)) | 0 |
 +^ {Y_{0}^{(2)}} | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))-\frac{2}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | \frac{2}{33} \sqrt{5} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3)) |
 +^ {Y_{1}^{(2)}} | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))+\frac{4}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 |
 +^ {Y_{2}^{(2)}} | 0 | 0 | \frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)+i B(3,3))-\frac{5}{33} \sqrt{2} (A(5,3)+i B(5,3)) | 0 | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ d_{\text{xy}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | \frac{5}{33} \sqrt{2} A(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} A(3,3) | 0 | \frac{5}{33} \sqrt{2} B(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} B(3,3) | 0 | 0 |
 +^ d_{\text{yz}} | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} A(3,3)+\frac{4}{33} \sqrt{5} A(5,3) | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} B(3,3)+\frac{4}{33} \sqrt{5} B(5,3) | 0 |
 +^ d_{3z^2-r^2} | \frac{2}{33} \sqrt{10} B(5,3)-\frac{1}{3} \sqrt{\frac{10}{7}} B(3,3) | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | \frac{1}{231} \sqrt{10} \left(11 \sqrt{7} A(3,3)-14 A(5,3)\right) |
 +^ d_{\text{xz}} | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} B(3,3)+\frac{4}{33} \sqrt{5} B(5,3) | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | -\frac{1}{231} \sqrt{5} \left(11 \sqrt{7} A(3,3)+28 A(5,3)\right) | 0 |
 +^ d_{x^2-y^2} | 0 | 0 | \frac{5}{33} \sqrt{2} B(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} B(3,3) | 0 | \frac{1}{3} \sqrt{\frac{2}{7}} A(3,3)-\frac{5}{33} \sqrt{2} A(5,3) | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +
 +===== Table of several point groups =====
 +
 +###
 +
 +[[physics_chemistry:point_groups|Return to Main page on Point Groups]]
 +
 +###
 +
 +###
 +
 +^Nonaxial groups      | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | |
 +^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub>
 +^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub>
 +^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub>
 +^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | | 
 +^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub>
 +^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub>
 +^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> |  | 
 +^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub>
 +^Linear groups      | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|\inftyv]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|\inftyh]]</sub> | | | | | |
 +
 +###
Print/export