Processing math: 85%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
physics_chemistry:point_groups:cs:orientation_z [2018/03/24 13:46] Maurits W. Haverkortphysics_chemistry:point_groups:cs:orientation_z [2018/04/06 09:16] (current) Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation Z ====== ====== Orientation Z ======
  
Line 73: Line 75:
   * [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]]   * [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]]
   * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]]   * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]]
 +  * [[physics_chemistry:point_groups:d5h:orientation_zx|Point Group D5h with orientation Zx]]
 +  * [[physics_chemistry:point_groups:d5h:orientation_zy|Point Group D5h with orientation Zy]]
   * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]]   * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]]
   * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]]   * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]]
Line 84: Line 88:
 ### ###
  
-Any potential (function) can be written in spherical coordinates as a sum over spherical harmonics $$V(\vec{r}) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$. With C(m)k(θ,ϕ) a renormalised spherical harmonics C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ)The allowed expansion coefficients $A_{k,m}(r)$or once evaluated for a given radial wave-function $A_{k,m}=\langle\psi(r)|A_{k,m}(r)|\psi(r)\rangle,suchthatV(\vec{r})$ is invariant under all symmetry operations of the Cs Point group with orientation Z are:+Any potential (function) can be written as a sum over spherical harmonics
 +$$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ 
 +Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. $C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ)
 +The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the Cs Point group with orientation Z the form of the expansion coefficients is:
  
 ### ###
  
-==== Input format suitable for Mathematica (Quanty.nb) ====+==== Expansion ====
  
 ### ###
Line 94: Line 101:
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
  A(0,0) & k=0\land m=0 \\  A(0,0) & k=0\land m=0 \\
- -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ + -A(1,1)+i B(1,1) & k=1\land m=-1 \\ 
- A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ + A(1,1)+i B(1,1) & k=1\land m=1 \\ 
- A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\+ A(2,2)-i B(2,2) & k=2\land m=-2 \\
  A(2,0) & k=2\land m=0 \\  A(2,0) & k=2\land m=0 \\
- A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ + A(2,2)+i B(2,2) & k=2\land m=2 \\ 
- -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ + -A(3,3)+i B(3,3) & k=3\land m=-3 \\ 
- -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ + -A(3,1)+i B(3,1) & k=3\land m=-1 \\ 
- A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ + A(3,1)+i B(3,1) & k=3\land m=1 \\ 
- A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ + A(3,3)+i B(3,3) & k=3\land m=3 \\ 
- A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ + A(4,4)-i B(4,4) & k=4\land m=-4 \\ 
- A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\+ A(4,2)-i B(4,2) & k=4\land m=-2 \\
  A(4,0) & k=4\land m=0 \\  A(4,0) & k=4\land m=0 \\
- A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ + A(4,2)+i B(4,2) & k=4\land m=2 \\ 
- A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ + A(4,4)+i B(4,4) & k=4\land m=4 \\ 
- -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ + -A(5,5)+i B(5,5) & k=5\land m=-5 \\ 
- -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ + -A(5,3)+i B(5,3) & k=5\land m=-3 \\ 
- -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ + -A(5,1)+i B(5,1) & k=5\land m=-1 \\ 
- A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ + A(5,1)+i B(5,1) & k=5\land m=1 \\ 
- A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ + A(5,3)+i B(5,3) & k=5\land m=3 \\ 
- A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ + A(5,5)+i B(5,5) & k=5\land m=5 \\ 
- A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ + A(6,6)-i B(6,6) & k=6\land m=-6 \\ 
- A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ + A(6,4)-i B(6,4) & k=6\land m=-4 \\ 
- A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\+ A(6,2)-i B(6,2) & k=6\land m=-2 \\
  A(6,0) & k=6\land m=0 \\  A(6,0) & k=6\land m=0 \\
- A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ + A(6,2)+i B(6,2) & k=6\land m=2 \\ 
- A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ + A(6,4)+i B(6,4) & k=6\land m=4 \\ 
- A(6,6)+i \text{Ap}(6,6) & k=6\land m=6+ A(6,6)+i B(6,6) & k=6\land m=6
 \end{cases}$$ \end{cases}$$
 +
 +###
 +
 +==== Input format suitable for Mathematica (Quanty.nb) ====
 +
 +###
 +
 +<code Quanty Akm_Cs_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]
 +
 +</code>
  
 ### ###
Line 132: Line 151:
  
 Akm = {{0, 0, A(0,0)} ,  Akm = {{0, 0, A(0,0)} , 
-       {1,-1, (-1)*(A(1,1)) + ((+1*I))*(Ap(1,1))} ,  +       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  
-       {1, 1, A(1,1) + ((+1*I))*(Ap(1,1))} , +       {1, 1, A(1,1) + (I)*(B(1,1))} , 
        {2, 0, A(2,0)} ,         {2, 0, A(2,0)} , 
-       {2,-2, A(2,2) + ((+-1*I))*(Ap(2,2))} ,  +       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  
-       {2, 2, A(2,2) + ((+1*I))*(Ap(2,2))} ,  +       {2, 2, A(2,2) + (I)*(B(2,2))} ,  
-       {3,-1, (-1)*(A(3,1)) + ((+1*I))*(Ap(3,1))} ,  +       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  
-       {3, 1, A(3,1) + ((+1*I))*(Ap(3,1))} ,  +       {3, 1, A(3,1) + (I)*(B(3,1))} ,  
-       {3,-3, (-1)*(A(3,3)) + ((+1*I))*(Ap(3,3))} ,  +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  
-       {3, 3, A(3,3) + ((+1*I))*(Ap(3,3))} , +       {3, 3, A(3,3) + (I)*(B(3,3))} , 
        {4, 0, A(4,0)} ,         {4, 0, A(4,0)} , 
-       {4,-2, A(4,2) + ((+-1*I))*(Ap(4,2))} ,  +       {4,-2, A(4,2) + (-I)*(B(4,2))} ,  
-       {4, 2, A(4,2) + ((+1*I))*(Ap(4,2))} ,  +       {4, 2, A(4,2) + (I)*(B(4,2))} ,  
-       {4,-4, A(4,4) + ((+-1*I))*(Ap(4,4))} ,  +       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  
-       {4, 4, A(4,4) + ((+1*I))*(Ap(4,4))} ,  +       {4, 4, A(4,4) + (I)*(B(4,4))} ,  
-       {5,-1, (-1)*(A(5,1)) + ((+1*I))*(Ap(5,1))} ,  +       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  
-       {5, 1, A(5,1) + ((+1*I))*(Ap(5,1))} ,  +       {5, 1, A(5,1) + (I)*(B(5,1))} ,  
-       {5,-3, (-1)*(A(5,3)) + ((+1*I))*(Ap(5,3))} ,  +       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} ,  
-       {5, 3, A(5,3) + ((+1*I))*(Ap(5,3))} ,  +       {5, 3, A(5,3) + (I)*(B(5,3))} ,  
-       {5,-5, (-1)*(A(5,5)) + ((+1*I))*(Ap(5,5))} ,  +       {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,  
-       {5, 5, A(5,5) + ((+1*I))*(Ap(5,5))} , +       {5, 5, A(5,5) + (I)*(B(5,5))} , 
        {6, 0, A(6,0)} ,         {6, 0, A(6,0)} , 
-       {6,-2, A(6,2) + ((+-1*I))*(Ap(6,2))} ,  +       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  
-       {6, 2, A(6,2) + ((+1*I))*(Ap(6,2))} ,  +       {6, 2, A(6,2) + (I)*(B(6,2))} ,  
-       {6,-4, A(6,4) + ((+-1*I))*(Ap(6,4))} ,  +       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  
-       {6, 4, A(6,4) + ((+1*I))*(Ap(6,4))} ,  +       {6, 4, A(6,4) + (I)*(B(6,4))} ,  
-       {6,-6, A(6,6) + ((+-1*I))*(Ap(6,6))} ,  +       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  
-       {6, 6, A(6,6) + ((+1*I))*(Ap(6,6))} }+       {6, 6, A(6,6) + (I)*(B(6,6))} }
  
 </code> </code>
Line 165: Line 184:
  
 ==== One particle coupling on a basis of spherical harmonics ==== ==== One particle coupling on a basis of spherical harmonics ====
 +
 +###
 +
 +The operator representing the potential in second quantisation is given as:
 +O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
 +Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l
 +Note the difference between the function Ak,m and the parameter Anl,nl(k,m)
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +we can express the operator as 
 +O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.
 +
 +###
 +
 +
  
 ### ###
Line 190: Line 242:
  
 ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== ==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
 +
 +###
 +
 +
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
 +
 +###
 +
 +
  
 ### ###
Line 206: Line 267:
 ^fx(5x2r2)|0|0|0|0|0|0|0|0|0|54|0|34|0|34|0|54| ^fx(5x2r2)|0|0|0|0|0|0|0|0|0|54|0|34|0|34|0|54|
 ^fy(5y2r2)|0|0|0|0|0|0|0|0|0|i54|0|i34|0|i34|0|i54| ^fy(5y2r2)|0|0|0|0|0|0|0|0|0|i54|0|i34|0|i34|0|i54|
-^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $|+^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $|
 ^fx(y2z2)|0|0|0|0|0|0|0|0|0|34|0|54|0|54|0|34| ^fx(y2z2)|0|0|0|0|0|0|0|0|0|34|0|54|0|54|0|34|
 ^fy(z2x2)|0|0|0|0|0|0|0|0|0|i34|0|i54|0|i54|0|i34| ^fy(z2x2)|0|0|0|0|0|0|0|0|0|i34|0|i54|0|i54|0|i34|
Line 218: Line 279:
 ### ###
  
-  ^  s  ^  px  ^  py  ^  pz  ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^+After rotation we find 
 + 
 +### 
 + 
 + 
 + 
 +### 
 + 
 +  ^  s  ^  px  ^  py  ^  pz  ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^
 ^s|Ass(0,0)|23Asp(1,1)|23Bsp(1,1)|0|25Asd(2,2)|Asd(2,0)5|0|0|25Bsd(2,2)|0|1237Asf(3,1)1257Asf(3,3)|1237Bsf(3,1)1257Bsf(3,3)|0|1257Asf(3,1)+1237Asf(3,3)|1257Bsf(3,1)1237Bsf(3,3)|0| ^s|Ass(0,0)|23Asp(1,1)|23Bsp(1,1)|0|25Asd(2,2)|Asd(2,0)5|0|0|25Bsd(2,2)|0|1237Asf(3,1)1257Asf(3,3)|1237Bsf(3,1)1257Bsf(3,3)|0|1257Asf(3,1)+1237Asf(3,3)|1257Bsf(3,1)1237Bsf(3,3)|0|
 ^px|23Asp(1,1)|App(0,0)15App(2,0)+156App(2,2)|156Bpp(2,2)|0|25Apd(1,1)+1735Apd(3,1)37Apd(3,3)|215Apd(1,1)6Apd(3,1)75|0|0|25Bpd(1,1)1735Bpd(3,1)+37Bpd(3,3)|0|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|0|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|0| ^px|23Asp(1,1)|App(0,0)15App(2,0)+156App(2,2)|156Bpp(2,2)|0|25Apd(1,1)+1735Apd(3,1)37Apd(3,3)|215Apd(1,1)6Apd(3,1)75|0|0|25Bpd(1,1)1735Bpd(3,1)+37Bpd(3,3)|0|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|0|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|0|
Line 231: Line 300:
 ^fx(5x2r2)|1237Asf(3,1)1257Asf(3,3)|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)1356Bpf(4,4)|0|3370Adf(1,1)+11Adf(3,1)635Adf(3,3)22153327Adf(5,1)+5Adf(5,3)22352253Adf(5,5)|3Adf(1,1)70+12335Adf(3,1)+5Adf(3,3)67+511314Adf(5,1)533Adf(5,3)|0|0|635Bdf(1,1)Bdf(3,1)635+Bdf(3,3)221+5Bdf(5,1)33145Bdf(5,3)223+52253Bdf(5,5)|0|Aff(0,0)215Aff(2,0)+2523Aff(2,2)+344Aff(4,0)11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)1716+25572353Aff(6,2)2528672Aff(6,4)+2552733Aff(6,6)|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|0| ^fx(5x2r2)|1237Asf(3,1)1257Asf(3,3)|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)1356Bpf(4,4)|0|3370Adf(1,1)+11Adf(3,1)635Adf(3,3)22153327Adf(5,1)+5Adf(5,3)22352253Adf(5,5)|3Adf(1,1)70+12335Adf(3,1)+5Adf(3,3)67+511314Adf(5,1)533Adf(5,3)|0|0|635Bdf(1,1)Bdf(3,1)635+Bdf(3,3)221+5Bdf(5,1)33145Bdf(5,3)223+52253Bdf(5,5)|0|Aff(0,0)215Aff(2,0)+2523Aff(2,2)+344Aff(4,0)11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)1716+25572353Aff(6,2)2528672Aff(6,4)+2552733Aff(6,6)|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|0|
 ^fy(5y2r2)|1237Bsf(3,1)1257Bsf(3,3)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|31037Apf(2,0)9Apf(2,2)514+Apf(4,0)221+131021Apf(4,2)+1356Apf(4,4)|0|3370Bdf(1,1)+11Bdf(3,1)635+Bdf(3,3)22153327Bdf(5,1)5Bdf(5,3)22352253Bdf(5,5)|3Bdf(1,1)7012335Bdf(3,1)+5Bdf(3,3)67511314Bdf(5,1)533Bdf(5,3)|0|0|635Adf(1,1)+Adf(3,1)635+Adf(3,3)2215Adf(5,1)33145Adf(5,3)22352253Adf(5,5)|0|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|Aff(0,0)215Aff(2,0)2523Aff(2,2)+344Aff(4,0)+11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)171625572353Aff(6,2)2528672Aff(6,4)2552733Aff(6,6)|0|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0| ^fy(5y2r2)|1237Bsf(3,1)1257Bsf(3,3)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|31037Apf(2,0)9Apf(2,2)514+Apf(4,0)221+131021Apf(4,2)+1356Apf(4,4)|0|3370Bdf(1,1)+11Bdf(3,1)635+Bdf(3,3)22153327Bdf(5,1)5Bdf(5,3)22352253Bdf(5,5)|3Bdf(1,1)7012335Bdf(3,1)+5Bdf(3,3)67511314Bdf(5,1)533Bdf(5,3)|0|0|635Adf(1,1)+Adf(3,1)635+Adf(3,3)2215Adf(5,1)33145Adf(5,3)22352253Adf(5,5)|0|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|Aff(0,0)215Aff(2,0)2523Aff(2,2)+344Aff(4,0)+11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)171625572353Aff(6,2)2528672Aff(6,4)2552733Aff(6,6)|0|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0|
-^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }|\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }|\color{darkred}{ 0 }| \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|+^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }|\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }|\color{darkred}{ 0 }| \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|
 ^fx(y2z2)|1257Asf(3,1)+1237Asf(3,3)|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)+Bpf(4,2)14+Bpf(4,4)32|0|Adf(1,1)14+Adf(3,1)2211657Adf(3,3)1111021Adf(5,1)+5665Adf(5,3)+522Adf(5,5)|314Adf(1,1)+Adf(3,1)2712521Adf(3,3)+511514Adf(5,1)+11153Adf(5,3)|0|0|27Bdf(1,1)1237Bdf(3,1)+1657Bdf(3,3)+1111514Bdf(5,1)5665Bdf(5,3)522Bdf(5,5)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+73352Aff(4,2)122352Aff(4,4)544Aff(6,0)+5572105Aff(6,2)+2528672Aff(6,4)+5522111Aff(6,6)|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|0| ^fx(y2z2)|1257Asf(3,1)+1237Asf(3,3)|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)+Bpf(4,2)14+Bpf(4,4)32|0|Adf(1,1)14+Adf(3,1)2211657Adf(3,3)1111021Adf(5,1)+5665Adf(5,3)+522Adf(5,5)|314Adf(1,1)+Adf(3,1)2712521Adf(3,3)+511514Adf(5,1)+11153Adf(5,3)|0|0|27Bdf(1,1)1237Bdf(3,1)+1657Bdf(3,3)+1111514Bdf(5,1)5665Bdf(5,3)522Bdf(5,5)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+73352Aff(4,2)122352Aff(4,4)544Aff(6,0)+5572105Aff(6,2)+2528672Aff(6,4)+5522111Aff(6,6)|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|0|
 ^fy(z2x2)|1257Bsf(3,1)1237Bsf(3,3)|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|3Apf(2,0)235370Apf(2,2)1657Apf(4,0)1327Apf(4,2)+Apf(4,4)32|0|Bdf(1,1)14Bdf(3,1)2211657Bdf(3,3)+1111021Bdf(5,1)+5665Bdf(5,3)522Bdf(5,5)|314Bdf(1,1)+Bdf(3,1)27+12521Bdf(3,3)+511514Bdf(5,1)11153Bdf(5,3)|0|0|27Adf(1,1)1237Adf(3,1)1657Adf(3,3)+1111514Adf(5,1)+5665Adf(5,3)522Adf(5,5)|0|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|Aff(0,0)+7132Aff(4,0)73352Aff(4,2)122352Aff(4,4)544Aff(6,0)5572105Aff(6,2)+2528672Aff(6,4)5522111Aff(6,6)|0| ^fy(z2x2)|1257Bsf(3,1)1237Bsf(3,3)|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|3Apf(2,0)235370Apf(2,2)1657Apf(4,0)1327Apf(4,2)+Apf(4,4)32|0|Bdf(1,1)14Bdf(3,1)2211657Bdf(3,3)+1111021Bdf(5,1)+5665Bdf(5,3)522Bdf(5,5)|314Bdf(1,1)+Bdf(3,1)27+12521Bdf(3,3)+511514Bdf(5,1)11153Bdf(5,3)|0|0|27Adf(1,1)1237Adf(3,1)1657Adf(3,3)+1111514Adf(5,1)+5665Adf(5,3)522Adf(5,5)|0|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|Aff(0,0)+7132Aff(4,0)73352Aff(4,2)122352Aff(4,4)544Aff(6,0)5572105Aff(6,2)+2528672Aff(6,4)5522111Aff(6,6)|0|
Line 239: Line 308:
 ### ###
  
-===== Potential for s orbitals =====+===== Coupling for a single shell =====
  
-===== Potential for p orbitals ===== 
  
-===== Potential for d orbitals ===== 
  
-===== Potential for f orbitals =====+###
  
-===== Potential for s-p orbital mixing =====+Although the parameters Al,l(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al,l(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l and l.
  
-===== Potential for s-d orbital mixing =====+###
  
-===== Potential for s-f orbital mixing ===== 
  
-===== Potential for p-d orbital mixing ===== 
  
-===== Potential for p-f orbital mixing =====+###
  
-===== Potential for d-f orbital mixing =====+Click on one of the subsections to expand it or <hiddenSwitch expand all>  
 + 
 +### 
 + 
 +==== Potential for s orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \text{Ap} & k=0\land m=0 \\ 
 + 0 & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{Ap, k == 0 && m == 0}}, 0] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{0, 0, Ap} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(0)0  ^ 
 +^Y(0)0|Ap
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  s  ^ 
 +^s|Ap
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +  ^  Y(0)0  ^ 
 +^s|1
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^Ap | {{:physics_chemistry:pointgroup:cs_z_orb_0_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |12π | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |12π | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for p orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \frac{1}{3} (\text{Eapp}+\text{Eapx}+\text{Eapy}) & k=0\land m=0 \\ 
 + 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ 
 + \frac{5 (\text{Eapx}-\text{Eapy}+2 i \text{Mapxy})}{2 \sqrt{6}} & k=2\land m=-2 \\ 
 + \frac{5}{6} (2 \text{Eapp}-\text{Eapx}-\text{Eapy}) & k=2\land m=0 \\ 
 + \frac{5 (\text{Eapx}-\text{Eapy}-2 i \text{Mapxy})}{2 \sqrt{6}} & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{(Eapp + Eapx + Eapy)/3, k == 0 && m == 0}, {0, k != 2 || (m != -2 && m != 0 && m != 2)}, {(5*(Eapx - Eapy + (2*I)*Mapxy))/(2*Sqrt[6]), k == 2 && m == -2}, {(5*(2*Eapp - Eapx - Eapy))/6, k == 2 && m == 0}}, (5*(Eapx - Eapy - (2*I)*Mapxy))/(2*Sqrt[6])] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{0, 0, (1/3)*(Eapp + Eapx + Eapy)} ,  
 +       {2, 0, (5/6)*((2)*(Eapp) + (-1)*(Eapx) + (-1)*(Eapy))} ,  
 +       {2, 2, (5/2)*((1/(sqrt(6)))*(Eapx + (-1)*(Eapy) + (-2*I)*(Mapxy)))} ,  
 +       {2,-2, (5/2)*((1/(sqrt(6)))*(Eapx + (-1)*(Eapy) + (2*I)*(Mapxy)))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^ 
 +^Y(1)1|Eapx+Eapy2|0|12(Eapx+Eapy2iMapxy)
 +^Y(1)0|0|Eapp|0
 +^Y(1)1|12(Eapx+Eapy+2iMapxy)|0|Eapx+Eapy2
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  px  ^  py  ^  pz  ^ 
 +^px|Eapx|Mapxy|0
 +^py|Mapxy|Eapy|0
 +^pz|0|0|Eapp
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^ 
 +^px|12|0|12
 +^py|i2|0|i2
 +^pz|0|1|0
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^Eapx | {{:physics_chemistry:pointgroup:cs_z_orb_1_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |123πsin(θ)cos(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |123πx | ::: | 
 +^ ^Eapy | {{:physics_chemistry:pointgroup:cs_z_orb_1_2.png?150}} | 
 +|ψ(θ,ϕ)=11 |123πsin(θ)sin(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |123πy | ::: | 
 +^ ^Eapp | {{:physics_chemistry:pointgroup:cs_z_orb_1_3.png?150}} | 
 +|ψ(θ,ϕ)=11 |123πcos(θ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |123πz | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for d orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \frac{1}{5} (\text{Eappxz}+\text{Eappyz}+\text{Eapx2y2}+\text{Eapxy}+\text{Eapz2}) & k=0\land m=0 \\ 
 + 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ 
 + \frac{\sqrt{3} \text{Eappxz}-\sqrt{3} \text{Eappyz}+2 i \sqrt{3} \text{Mappyzxz}-4 \text{Mapx2y2z2}-4 i \text{Mapz2xy}}{2 \sqrt{2}} & k=2\land m=-2 \\ 
 + \frac{1}{2} (\text{Eappxz}+\text{Eappyz}-2 (\text{Eapx2y2}+\text{Eapxy}-\text{Eapz2})) & k=2\land m=0 \\ 
 + \frac{\sqrt{3} \text{Eappxz}-\sqrt{3} \text{Eappyz}-2 i \sqrt{3} \text{Mappyzxz}-4 \text{Mapx2y2z2}+4 i \text{Mapz2xy}}{2 \sqrt{2}} & k=2\land m=2 \\ 
 + \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Eapx2y2}-\text{Eapxy}+2 i \text{Mapx2y2xy}) & k=4\land m=-4 \\ 
 + \frac{3 \left(\text{Eappxz}-\text{Eappyz}+2 i \text{Mappyzxz}+\sqrt{3} \text{Mapx2y2z2}+i \sqrt{3} \text{Mapz2xy}\right)}{\sqrt{10}} & k=4\land m=-2 \\ 
 + -\frac{3}{10} (4 \text{Eappxz}+4 \text{Eappyz}-\text{Eapx2y2}-\text{Eapxy}-6 \text{Eapz2}) & k=4\land m=0 \\ 
 + \frac{3 \left(\text{Eappxz}-\text{Eappyz}-2 i \text{Mappyzxz}+\sqrt{3} \text{Mapx2y2z2}-i \sqrt{3} \text{Mapz2xy}\right)}{\sqrt{10}} & k=4\land m=2 \\ 
 + \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Eapx2y2}-\text{Eapxy}-2 i \text{Mapx2y2xy}) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{(Eappxz + Eappyz + Eapx2y2 + Eapxy + Eapz2)/5, k == 0 && m == 0}, {0, (k != 4 && (k != 2 || (m != -2 && m != 0 && m != 2))) || (m != -4 && m != -2 && m != 0 && m != 2 && m != 4)}, {(Sqrt[3]*Eappxz - Sqrt[3]*Eappyz + (2*I)*Sqrt[3]*Mappyzxz - 4*Mapx2y2z2 - (4*I)*Mapz2xy)/(2*Sqrt[2]), k == 2 && m == -2}, {(Eappxz + Eappyz - 2*(Eapx2y2 + Eapxy - Eapz2))/2, k == 2 && m == 0}, {(Sqrt[3]*Eappxz - Sqrt[3]*Eappyz - (2*I)*Sqrt[3]*Mappyzxz - 4*Mapx2y2z2 + (4*I)*Mapz2xy)/(2*Sqrt[2]), k == 2 && m == 2}, {(3*Sqrt[7/10]*(Eapx2y2 - Eapxy + (2*I)*Mapx2y2xy))/2, k == 4 && m == -4}, {(3*(Eappxz - Eappyz + (2*I)*Mappyzxz + Sqrt[3]*Mapx2y2z2 + I*Sqrt[3]*Mapz2xy))/Sqrt[10], k == 4 && m == -2}, {(-3*(4*Eappxz + 4*Eappyz - Eapx2y2 - Eapxy - 6*Eapz2))/10, k == 4 && m == 0}, {(3*(Eappxz - Eappyz - (2*I)*Mappyzxz + Sqrt[3]*Mapx2y2z2 - I*Sqrt[3]*Mapz2xy))/Sqrt[10], k == 4 && m == 2}}, (3*Sqrt[7/10]*(Eapx2y2 - Eapxy - (2*I)*Mapx2y2xy))/2] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{0, 0, (1/5)*(Eappxz + Eappyz + Eapx2y2 + Eapxy + Eapz2)} ,  
 +       {2, 0, (1/2)*(Eappxz + Eappyz + (-2)*(Eapx2y2 + Eapxy + (-1)*(Eapz2)))} ,  
 +       {2, 2, (1/2)*((1/(sqrt(2)))*((sqrt(3))*(Eappxz) + (-1)*((sqrt(3))*(Eappyz)) + (-2*I)*((sqrt(3))*(Mappyzxz)) + (-4)*(Mapx2y2z2) + (4*I)*(Mapz2xy)))} ,  
 +       {2,-2, (1/2)*((1/(sqrt(2)))*((sqrt(3))*(Eappxz) + (-1)*((sqrt(3))*(Eappyz)) + (2*I)*((sqrt(3))*(Mappyzxz)) + (-4)*(Mapx2y2z2) + (-4*I)*(Mapz2xy)))} ,  
 +       {4, 0, (-3/10)*((4)*(Eappxz) + (4)*(Eappyz) + (-1)*(Eapx2y2) + (-1)*(Eapxy) + (-6)*(Eapz2))} ,  
 +       {4, 2, (3)*((1/(sqrt(10)))*(Eappxz + (-1)*(Eappyz) + (-2*I)*(Mappyzxz) + (sqrt(3))*(Mapx2y2z2) + (-I)*((sqrt(3))*(Mapz2xy))))} ,  
 +       {4,-2, (3)*((1/(sqrt(10)))*(Eappxz + (-1)*(Eappyz) + (2*I)*(Mappyzxz) + (sqrt(3))*(Mapx2y2z2) + (I)*((sqrt(3))*(Mapz2xy))))} ,  
 +       {4, 4, (3/2)*((sqrt(7/10))*(Eapx2y2 + (-1)*(Eapxy) + (-2*I)*(Mapx2y2xy)))} ,  
 +       {4,-4, (3/2)*((sqrt(7/10))*(Eapx2y2 + (-1)*(Eapxy) + (2*I)*(Mapx2y2xy)))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^ 
 +^Y(2)2|Eapx2y2+Eapxy2|0|Mapx2y2z2+iMapz2xy2|0|12(Eapx2y2Eapxy+2iMapx2y2xy)
 +^Y(2)1|0|Eappxz+Eappyz2|0|12(Eappxz+Eappyz2iMappyzxz)|0
 +^Y(2)0|Mapx2y2z2iMapz2xy2|0|Eapz2|0|Mapx2y2z2+iMapz2xy2
 +^Y(2)1|0|12(Eappxz+Eappyz+2iMappyzxz)|0|Eappxz+Eappyz2|0
 +^Y(2)2|12(Eapx2y2Eapxy2iMapx2y2xy)|0|Mapx2y2z2iMapz2xy2|0|Eapx2y2+Eapxy2
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^ 
 +^dx2y2|Eapx2y2|Mapx2y2z2|0|0|Mapx2y2xy
 +^d3z2r2|Mapx2y2z2|Eapz2|0|0|Mapz2xy
 +^dyz|0|0|Eappyz|Mappyzxz|0
 +^dxz|0|0|Mappyzxz|Eappxz|0
 +^dxy|Mapx2y2xy|Mapz2xy|0|0|Eapxy
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^ 
 +^dx2y2|12|0|0|0|12
 +^d3z2r2|0|0|1|0|0
 +^dyz|0|i2|0|i2|0
 +^dxz|0|12|0|12|0
 +^dxy|i2|0|0|0|i2
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^Eapx2y2 | {{:physics_chemistry:pointgroup:cs_z_orb_2_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin2(θ)cos(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1415π(x2y2) | ::: | 
 +^ ^Eapz2 | {{:physics_chemistry:pointgroup:cs_z_orb_2_2.png?150}} | 
 +|ψ(θ,ϕ)=11 |185π(3cos(2θ)+1) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |145π(3z21) | ::: | 
 +^ ^Eappyz | {{:physics_chemistry:pointgroup:cs_z_orb_2_3.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin(2θ)sin(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πyz | ::: | 
 +^ ^Eappxz | {{:physics_chemistry:pointgroup:cs_z_orb_2_4.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin(2θ)cos(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πxz | ::: | 
 +^ ^Eapxy | {{:physics_chemistry:pointgroup:cs_z_orb_2_5.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin2(θ)sin(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πxy | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \frac{1}{7} (\text{Eappx3}+\text{Eappxy2z2}+\text{Eappxyz}+\text{Eappy3}+\text{Eappyz2x2}+\text{Eappz3}+\text{Eappzx2y2}) & k=0\land m=0 \\ 
 + 0 & (k\neq 6\land (((k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2))\land k\neq 4)\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4)))\lor (m\neq -6\land m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4\land m\neq 6) \\ 
 + \frac{5 \left(2 \sqrt{3} \text{Eappx3}-2 \sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}-i \sqrt{3} \text{Mappx3y3}-i \sqrt{5} \text{Mappx3yz2x2}-5 i \sqrt{3} \text{Mappxy2z2yz2x2}-4 i \sqrt{5} \text{Mappxyzz3}+i \sqrt{5} \text{Mappy3xy2z2}+2 \sqrt{5} \text{Mappy3yz2x2}-4 \sqrt{5} \text{Mappz3zx2y2}\right)}{28 \sqrt{2}} & k=2\land m=-2 \\ 
 + -\frac{5}{14} \left(\text{Eappx3}+\text{Eappy3}-2 \text{Eappz3}-\sqrt{15} \text{Mappx3xy2z2}+\sqrt{15} \text{Mappy3yz2x2}\right) & k=2\land m=0 \\ 
 + \frac{5 \left(2 \sqrt{3} \text{Eappx3}-2 \sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}+i \sqrt{3} \text{Mappx3y3}+i \sqrt{5} \text{Mappx3yz2x2}+5 i \sqrt{3} \text{Mappxy2z2yz2x2}+4 i \sqrt{5} \text{Mappxyzz3}-i \sqrt{5} \text{Mappy3xy2z2}+2 \sqrt{5} \text{Mappy3yz2x2}-4 \sqrt{5} \text{Mappz3zx2y2}\right)}{28 \sqrt{2}} & k=2\land m=2 \\ 
 + \frac{3 \left(3 \sqrt{5} \text{Eappx3}-3 \sqrt{5} \text{Eappxy2z2}-4 \sqrt{5} \text{Eappxyz}+3 \sqrt{5} \text{Eappy3}-3 \sqrt{5} \text{Eappyz2x2}+4 \sqrt{5} \text{Eappzx2y2}+2 \sqrt{3} \text{Mappx3xy2z2}-8 i \sqrt{3} \text{Mappx3yz2x2}+8 i \sqrt{5} \text{Mappxyzzx2y2}-8 i \sqrt{3} \text{Mappy3xy2z2}-2 \sqrt{3} \text{Mappy3yz2x2}\right)}{8 \sqrt{14}} & k=4\land m=-4 \\ 
 + \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} \text{Eappxy2z2}+3 \sqrt{10} \text{Eappy3}-7 \sqrt{10} \text{Eappyz2x2}+2 \sqrt{6} \text{Mappx3xy2z2}+12 i \sqrt{10} \text{Mappx3y3}-8 i \sqrt{6} \text{Mappx3yz2x2}+4 i \sqrt{10} \text{Mappxy2z2yz2x2}-4 i \sqrt{6} \text{Mappxyzz3}+8 i \sqrt{6} \text{Mappy3xy2z2}+2 \sqrt{6} \text{Mappy3yz2x2}-4 \sqrt{6} \text{Mappz3zx2y2}\right) & k=4\land m=-2 \\ 
 + \frac{3}{56} \left(9 \text{Eappx3}+7 \text{Eappxy2z2}-28 \text{Eappxyz}+9 \text{Eappy3}+7 \text{Eappyz2x2}+24 \text{Eappz3}-28 \text{Eappzx2y2}-2 \sqrt{15} \text{Mappx3xy2z2}+2 \sqrt{15} \text{Mappy3yz2x2}\right) & k=4\land m=0 \\ 
 + \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} \text{Eappxy2z2}+3 \sqrt{10} \text{Eappy3}-7 \sqrt{10} \text{Eappyz2x2}+2 \sqrt{6} \text{Mappx3xy2z2}-12 i \sqrt{10} \text{Mappx3y3}+8 i \sqrt{6} \text{Mappx3yz2x2}-4 i \sqrt{10} \text{Mappxy2z2yz2x2}+4 i \sqrt{6} \text{Mappxyzz3}-8 i \sqrt{6} \text{Mappy3xy2z2}+2 \sqrt{6} \text{Mappy3yz2x2}-4 \sqrt{6} \text{Mappz3zx2y2}\right) & k=4\land m=2 \\ 
 + \frac{3 \left(3 \sqrt{5} \text{Eappx3}-3 \sqrt{5} \text{Eappxy2z2}-4 \sqrt{5} \text{Eappxyz}+3 \sqrt{5} \text{Eappy3}-3 \sqrt{5} \text{Eappyz2x2}+4 \sqrt{5} \text{Eappzx2y2}+2 \sqrt{3} \text{Mappx3xy2z2}+8 i \sqrt{3} \text{Mappx3yz2x2}-8 i \sqrt{5} \text{Mappxyzzx2y2}+8 i \sqrt{3} \text{Mappy3xy2z2}-2 \sqrt{3} \text{Mappy3yz2x2}\right)}{8 \sqrt{14}} & k=4\land m=4 \\ 
 + \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} \text{Eappxy2z2}-5 \sqrt{3} \text{Eappy3}-3 \sqrt{3} \text{Eappyz2x2}-6 \sqrt{5} \text{Mappx3xy2z2}-10 i \sqrt{3} \text{Mappx3y3}-6 i \sqrt{5} \text{Mappx3yz2x2}+6 i \sqrt{3} \text{Mappxy2z2yz2x2}+6 i \sqrt{5} \text{Mappy3xy2z2}-6 \sqrt{5} \text{Mappy3yz2x2}\right) & k=6\land m=-6 \\ 
 + -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}-8 i \sqrt{15} \text{Mappx3yz2x2}-48 i \text{Mappxyzzx2y2}-8 i \sqrt{15} \text{Mappy3xy2z2}-2 \sqrt{15} \text{Mappy3yz2x2}\right)}{80 \sqrt{14}} & k=6\land m=-4 \\ 
 + \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}+2 i \sqrt{15} \text{Mappx3y3}-26 i \text{Mappx3yz2x2}-14 i \sqrt{15} \text{Mappxy2z2yz2x2}+64 i \text{Mappxyzz3}+26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} & k=6\land m=-2 \\ 
 + -\frac{13}{560} \left(25 \text{Eappx3}+39 \text{Eappxy2z2}-24 \text{Eappxyz}+25 \text{Eappy3}+39 \text{Eappyz2x2}-80 \text{Eappz3}-24 \text{Eappzx2y2}+14 \sqrt{15} \text{Mappx3xy2z2}-14 \sqrt{15} \text{Mappy3yz2x2}\right) & k=6\land m=0 \\ 
 + \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}-2 i \sqrt{15} \text{Mappx3y3}+26 i \text{Mappx3yz2x2}+14 i \sqrt{15} \text{Mappxy2z2yz2x2}-64 i \text{Mappxyzz3}-26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} & k=6\land m=2 \\ 
 + -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}+8 i \sqrt{15} \text{Mappx3yz2x2}+48 i \text{Mappxyzzx2y2}+8 i \sqrt{15} \text{Mappy3xy2z2}-2 \sqrt{15} \text{Mappy3yz2x2}\right)}{80 \sqrt{14}} & k=6\land m=4 \\ 
 + \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} \text{Eappxy2z2}-5 \sqrt{3} \text{Eappy3}-3 \sqrt{3} \text{Eappyz2x2}-6 \sqrt{5} \text{Mappx3xy2z2}+10 i \sqrt{3} \text{Mappx3y3}+6 i \sqrt{5} \text{Mappx3yz2x2}-6 i \sqrt{3} \text{Mappxy2z2yz2x2}-6 i \sqrt{5} \text{Mappy3xy2z2}-6 \sqrt{5} \text{Mappy3yz2x2}\right) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{(Eappx3 + Eappxy2z2 + Eappxyz + Eappy3 + Eappyz2x2 + Eappz3 + Eappzx2y2)/7, k == 0 && m == 0}, {0, (k != 6 && (((k != 2 || (m != -2 && m != 0 && m != 2)) && k != 4) || (m != -4 && m != -2 && m != 0 && m != 2 && m != 4))) || (m != -6 && m != -4 && m != -2 && m != 0 && m != 2 && m != 4 && m != 6)}, {(5*(2*Sqrt[3]*Eappx3 - 2*Sqrt[3]*Eappy3 + 2*Sqrt[5]*Mappx3xy2z2 - I*Sqrt[3]*Mappx3y3 - I*Sqrt[5]*Mappx3yz2x2 - (5*I)*Sqrt[3]*Mappxy2z2yz2x2 - (4*I)*Sqrt[5]*Mappxyzz3 + I*Sqrt[5]*Mappy3xy2z2 + 2*Sqrt[5]*Mappy3yz2x2 - 4*Sqrt[5]*Mappz3zx2y2))/(28*Sqrt[2]), k == 2 && m == -2}, {(-5*(Eappx3 + Eappy3 - 2*Eappz3 - Sqrt[15]*Mappx3xy2z2 + Sqrt[15]*Mappy3yz2x2))/14, k == 2 && m == 0}, {(5*(2*Sqrt[3]*Eappx3 - 2*Sqrt[3]*Eappy3 + 2*Sqrt[5]*Mappx3xy2z2 + I*Sqrt[3]*Mappx3y3 + I*Sqrt[5]*Mappx3yz2x2 + (5*I)*Sqrt[3]*Mappxy2z2yz2x2 + (4*I)*Sqrt[5]*Mappxyzz3 - I*Sqrt[5]*Mappy3xy2z2 + 2*Sqrt[5]*Mappy3yz2x2 - 4*Sqrt[5]*Mappz3zx2y2))/(28*Sqrt[2]), k == 2 && m == 2}, {(3*(3*Sqrt[5]*Eappx3 - 3*Sqrt[5]*Eappxy2z2 - 4*Sqrt[5]*Eappxyz + 3*Sqrt[5]*Eappy3 - 3*Sqrt[5]*Eappyz2x2 + 4*Sqrt[5]*Eappzx2y2 + 2*Sqrt[3]*Mappx3xy2z2 - (8*I)*Sqrt[3]*Mappx3yz2x2 + (8*I)*Sqrt[5]*Mappxyzzx2y2 - (8*I)*Sqrt[3]*Mappy3xy2z2 - 2*Sqrt[3]*Mappy3yz2x2))/(8*Sqrt[14]), k == 4 && m == -4}, {(3*(-3*Sqrt[10]*Eappx3 + 7*Sqrt[10]*Eappxy2z2 + 3*Sqrt[10]*Eappy3 - 7*Sqrt[10]*Eappyz2x2 + 2*Sqrt[6]*Mappx3xy2z2 + (12*I)*Sqrt[10]*Mappx3y3 - (8*I)*Sqrt[6]*Mappx3yz2x2 + (4*I)*Sqrt[10]*Mappxy2z2yz2x2 - (4*I)*Sqrt[6]*Mappxyzz3 + (8*I)*Sqrt[6]*Mappy3xy2z2 + 2*Sqrt[6]*Mappy3yz2x2 - 4*Sqrt[6]*Mappz3zx2y2))/56, k == 4 && m == -2}, {(3*(9*Eappx3 + 7*Eappxy2z2 - 28*Eappxyz + 9*Eappy3 + 7*Eappyz2x2 + 24*Eappz3 - 28*Eappzx2y2 - 2*Sqrt[15]*Mappx3xy2z2 + 2*Sqrt[15]*Mappy3yz2x2))/56, k == 4 && m == 0}, {(3*(-3*Sqrt[10]*Eappx3 + 7*Sqrt[10]*Eappxy2z2 + 3*Sqrt[10]*Eappy3 - 7*Sqrt[10]*Eappyz2x2 + 2*Sqrt[6]*Mappx3xy2z2 - (12*I)*Sqrt[10]*Mappx3y3 + (8*I)*Sqrt[6]*Mappx3yz2x2 - (4*I)*Sqrt[10]*Mappxy2z2yz2x2 + (4*I)*Sqrt[6]*Mappxyzz3 - (8*I)*Sqrt[6]*Mappy3xy2z2 + 2*Sqrt[6]*Mappy3yz2x2 - 4*Sqrt[6]*Mappz3zx2y2))/56, k == 4 && m == 2}, {(3*(3*Sqrt[5]*Eappx3 - 3*Sqrt[5]*Eappxy2z2 - 4*Sqrt[5]*Eappxyz + 3*Sqrt[5]*Eappy3 - 3*Sqrt[5]*Eappyz2x2 + 4*Sqrt[5]*Eappzx2y2 + 2*Sqrt[3]*Mappx3xy2z2 + (8*I)*Sqrt[3]*Mappx3yz2x2 - (8*I)*Sqrt[5]*Mappxyzzx2y2 + (8*I)*Sqrt[3]*Mappy3xy2z2 - 2*Sqrt[3]*Mappy3yz2x2))/(8*Sqrt[14]), k == 4 && m == 4}, {(13*Sqrt[11/7]*(5*Sqrt[3]*Eappx3 + 3*Sqrt[3]*Eappxy2z2 - 5*Sqrt[3]*Eappy3 - 3*Sqrt[3]*Eappyz2x2 - 6*Sqrt[5]*Mappx3xy2z2 - (10*I)*Sqrt[3]*Mappx3y3 - (6*I)*Sqrt[5]*Mappx3yz2x2 + (6*I)*Sqrt[3]*Mappxy2z2yz2x2 + (6*I)*Sqrt[5]*Mappy3xy2z2 - 6*Sqrt[5]*Mappy3yz2x2))/160, k == 6 && m == -6}, {(-13*(15*Eappx3 - 15*Eappxy2z2 + 24*Eappxyz + 15*Eappy3 - 15*Eappyz2x2 - 24*Eappzx2y2 + 2*Sqrt[15]*Mappx3xy2z2 - (8*I)*Sqrt[15]*Mappx3yz2x2 - (48*I)*Mappxyzzx2y2 - (8*I)*Sqrt[15]*Mappy3xy2z2 - 2*Sqrt[15]*Mappy3yz2x2))/(80*Sqrt[14]), k == 6 && m == -4}, {(13*(5*Sqrt[15]*Eappx3 + 3*Sqrt[15]*Eappxy2z2 - 5*Sqrt[15]*Eappy3 - 3*Sqrt[15]*Eappyz2x2 + 34*Mappx3xy2z2 + (2*I)*Sqrt[15]*Mappx3y3 - (26*I)*Mappx3yz2x2 - (14*I)*Sqrt[15]*Mappxy2z2yz2x2 + (64*I)*Mappxyzz3 + (26*I)*Mappy3xy2z2 + 34*Mappy3yz2x2 + 64*Mappz3zx2y2))/(160*Sqrt[7]), k == 6 && m == -2}, {(-13*(25*Eappx3 + 39*Eappxy2z2 - 24*Eappxyz + 25*Eappy3 + 39*Eappyz2x2 - 80*Eappz3 - 24*Eappzx2y2 + 14*Sqrt[15]*Mappx3xy2z2 - 14*Sqrt[15]*Mappy3yz2x2))/560, k == 6 && m == 0}, {(13*(5*Sqrt[15]*Eappx3 + 3*Sqrt[15]*Eappxy2z2 - 5*Sqrt[15]*Eappy3 - 3*Sqrt[15]*Eappyz2x2 + 34*Mappx3xy2z2 - (2*I)*Sqrt[15]*Mappx3y3 + (26*I)*Mappx3yz2x2 + (14*I)*Sqrt[15]*Mappxy2z2yz2x2 - (64*I)*Mappxyzz3 - (26*I)*Mappy3xy2z2 + 34*Mappy3yz2x2 + 64*Mappz3zx2y2))/(160*Sqrt[7]), k == 6 && m == 2}, {(-13*(15*Eappx3 - 15*Eappxy2z2 + 24*Eappxyz + 15*Eappy3 - 15*Eappyz2x2 - 24*Eappzx2y2 + 2*Sqrt[15]*Mappx3xy2z2 + (8*I)*Sqrt[15]*Mappx3yz2x2 + (48*I)*Mappxyzzx2y2 + (8*I)*Sqrt[15]*Mappy3xy2z2 - 2*Sqrt[15]*Mappy3yz2x2))/(80*Sqrt[14]), k == 6 && m == 4}}, (13*Sqrt[11/7]*(5*Sqrt[3]*Eappx3 + 3*Sqrt[3]*Eappxy2z2 - 5*Sqrt[3]*Eappy3 - 3*Sqrt[3]*Eappyz2x2 - 6*Sqrt[5]*Mappx3xy2z2 + (10*I)*Sqrt[3]*Mappx3y3 + (6*I)*Sqrt[5]*Mappx3yz2x2 - (6*I)*Sqrt[3]*Mappxy2z2yz2x2 - (6*I)*Sqrt[5]*Mappy3xy2z2 - 6*Sqrt[5]*Mappy3yz2x2))/160] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{0, 0, (1/7)*(Eappx3 + Eappxy2z2 + Eappxyz + Eappy3 + Eappyz2x2 + Eappz3 + Eappzx2y2)} ,  
 +       {2, 0, (-5/14)*(Eappx3 + Eappy3 + (-2)*(Eappz3) + (-1)*((sqrt(15))*(Mappx3xy2z2)) + (sqrt(15))*(Mappy3yz2x2))} ,  
 +       {2,-2, (5/28)*((1/(sqrt(2)))*((2)*((sqrt(3))*(Eappx3)) + (-2)*((sqrt(3))*(Eappy3)) + (2)*((sqrt(5))*(Mappx3xy2z2)) + (-I)*((sqrt(3))*(Mappx3y3)) + (-I)*((sqrt(5))*(Mappx3yz2x2)) + (-5*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (-4*I)*((sqrt(5))*(Mappxyzz3)) + (I)*((sqrt(5))*(Mappy3xy2z2)) + (2)*((sqrt(5))*(Mappy3yz2x2)) + (-4)*((sqrt(5))*(Mappz3zx2y2))))} ,  
 +       {2, 2, (5/28)*((1/(sqrt(2)))*((2)*((sqrt(3))*(Eappx3)) + (-2)*((sqrt(3))*(Eappy3)) + (2)*((sqrt(5))*(Mappx3xy2z2)) + (I)*((sqrt(3))*(Mappx3y3)) + (I)*((sqrt(5))*(Mappx3yz2x2)) + (5*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (4*I)*((sqrt(5))*(Mappxyzz3)) + (-I)*((sqrt(5))*(Mappy3xy2z2)) + (2)*((sqrt(5))*(Mappy3yz2x2)) + (-4)*((sqrt(5))*(Mappz3zx2y2))))} ,  
 +       {4, 0, (3/56)*((9)*(Eappx3) + (7)*(Eappxy2z2) + (-28)*(Eappxyz) + (9)*(Eappy3) + (7)*(Eappyz2x2) + (24)*(Eappz3) + (-28)*(Eappzx2y2) + (-2)*((sqrt(15))*(Mappx3xy2z2)) + (2)*((sqrt(15))*(Mappy3yz2x2)))} ,  
 +       {4, 2, (3/56)*((-3)*((sqrt(10))*(Eappx3)) + (7)*((sqrt(10))*(Eappxy2z2)) + (3)*((sqrt(10))*(Eappy3)) + (-7)*((sqrt(10))*(Eappyz2x2)) + (2)*((sqrt(6))*(Mappx3xy2z2)) + (-12*I)*((sqrt(10))*(Mappx3y3)) + (8*I)*((sqrt(6))*(Mappx3yz2x2)) + (-4*I)*((sqrt(10))*(Mappxy2z2yz2x2)) + (4*I)*((sqrt(6))*(Mappxyzz3)) + (-8*I)*((sqrt(6))*(Mappy3xy2z2)) + (2)*((sqrt(6))*(Mappy3yz2x2)) + (-4)*((sqrt(6))*(Mappz3zx2y2)))} ,  
 +       {4,-2, (3/56)*((-3)*((sqrt(10))*(Eappx3)) + (7)*((sqrt(10))*(Eappxy2z2)) + (3)*((sqrt(10))*(Eappy3)) + (-7)*((sqrt(10))*(Eappyz2x2)) + (2)*((sqrt(6))*(Mappx3xy2z2)) + (12*I)*((sqrt(10))*(Mappx3y3)) + (-8*I)*((sqrt(6))*(Mappx3yz2x2)) + (4*I)*((sqrt(10))*(Mappxy2z2yz2x2)) + (-4*I)*((sqrt(6))*(Mappxyzz3)) + (8*I)*((sqrt(6))*(Mappy3xy2z2)) + (2)*((sqrt(6))*(Mappy3yz2x2)) + (-4)*((sqrt(6))*(Mappz3zx2y2)))} ,  
 +       {4,-4, (3/8)*((1/(sqrt(14)))*((3)*((sqrt(5))*(Eappx3)) + (-3)*((sqrt(5))*(Eappxy2z2)) + (-4)*((sqrt(5))*(Eappxyz)) + (3)*((sqrt(5))*(Eappy3)) + (-3)*((sqrt(5))*(Eappyz2x2)) + (4)*((sqrt(5))*(Eappzx2y2)) + (2)*((sqrt(3))*(Mappx3xy2z2)) + (-8*I)*((sqrt(3))*(Mappx3yz2x2)) + (8*I)*((sqrt(5))*(Mappxyzzx2y2)) + (-8*I)*((sqrt(3))*(Mappy3xy2z2)) + (-2)*((sqrt(3))*(Mappy3yz2x2))))} ,  
 +       {4, 4, (3/8)*((1/(sqrt(14)))*((3)*((sqrt(5))*(Eappx3)) + (-3)*((sqrt(5))*(Eappxy2z2)) + (-4)*((sqrt(5))*(Eappxyz)) + (3)*((sqrt(5))*(Eappy3)) + (-3)*((sqrt(5))*(Eappyz2x2)) + (4)*((sqrt(5))*(Eappzx2y2)) + (2)*((sqrt(3))*(Mappx3xy2z2)) + (8*I)*((sqrt(3))*(Mappx3yz2x2)) + (-8*I)*((sqrt(5))*(Mappxyzzx2y2)) + (8*I)*((sqrt(3))*(Mappy3xy2z2)) + (-2)*((sqrt(3))*(Mappy3yz2x2))))} ,  
 +       {6, 0, (-13/560)*((25)*(Eappx3) + (39)*(Eappxy2z2) + (-24)*(Eappxyz) + (25)*(Eappy3) + (39)*(Eappyz2x2) + (-80)*(Eappz3) + (-24)*(Eappzx2y2) + (14)*((sqrt(15))*(Mappx3xy2z2)) + (-14)*((sqrt(15))*(Mappy3yz2x2)))} ,  
 +       {6, 2, (13/160)*((1/(sqrt(7)))*((5)*((sqrt(15))*(Eappx3)) + (3)*((sqrt(15))*(Eappxy2z2)) + (-5)*((sqrt(15))*(Eappy3)) + (-3)*((sqrt(15))*(Eappyz2x2)) + (34)*(Mappx3xy2z2) + (-2*I)*((sqrt(15))*(Mappx3y3)) + (26*I)*(Mappx3yz2x2) + (14*I)*((sqrt(15))*(Mappxy2z2yz2x2)) + (-64*I)*(Mappxyzz3) + (-26*I)*(Mappy3xy2z2) + (34)*(Mappy3yz2x2) + (64)*(Mappz3zx2y2)))} ,  
 +       {6,-2, (13/160)*((1/(sqrt(7)))*((5)*((sqrt(15))*(Eappx3)) + (3)*((sqrt(15))*(Eappxy2z2)) + (-5)*((sqrt(15))*(Eappy3)) + (-3)*((sqrt(15))*(Eappyz2x2)) + (34)*(Mappx3xy2z2) + (2*I)*((sqrt(15))*(Mappx3y3)) + (-26*I)*(Mappx3yz2x2) + (-14*I)*((sqrt(15))*(Mappxy2z2yz2x2)) + (64*I)*(Mappxyzz3) + (26*I)*(Mappy3xy2z2) + (34)*(Mappy3yz2x2) + (64)*(Mappz3zx2y2)))} ,  
 +       {6,-4, (-13/80)*((1/(sqrt(14)))*((15)*(Eappx3) + (-15)*(Eappxy2z2) + (24)*(Eappxyz) + (15)*(Eappy3) + (-15)*(Eappyz2x2) + (-24)*(Eappzx2y2) + (2)*((sqrt(15))*(Mappx3xy2z2)) + (-8*I)*((sqrt(15))*(Mappx3yz2x2)) + (-48*I)*(Mappxyzzx2y2) + (-8*I)*((sqrt(15))*(Mappy3xy2z2)) + (-2)*((sqrt(15))*(Mappy3yz2x2))))} ,  
 +       {6, 4, (-13/80)*((1/(sqrt(14)))*((15)*(Eappx3) + (-15)*(Eappxy2z2) + (24)*(Eappxyz) + (15)*(Eappy3) + (-15)*(Eappyz2x2) + (-24)*(Eappzx2y2) + (2)*((sqrt(15))*(Mappx3xy2z2)) + (8*I)*((sqrt(15))*(Mappx3yz2x2)) + (48*I)*(Mappxyzzx2y2) + (8*I)*((sqrt(15))*(Mappy3xy2z2)) + (-2)*((sqrt(15))*(Mappy3yz2x2))))} ,  
 +       {6,-6, (13/160)*((sqrt(11/7))*((5)*((sqrt(3))*(Eappx3)) + (3)*((sqrt(3))*(Eappxy2z2)) + (-5)*((sqrt(3))*(Eappy3)) + (-3)*((sqrt(3))*(Eappyz2x2)) + (-6)*((sqrt(5))*(Mappx3xy2z2)) + (-10*I)*((sqrt(3))*(Mappx3y3)) + (-6*I)*((sqrt(5))*(Mappx3yz2x2)) + (6*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (6*I)*((sqrt(5))*(Mappy3xy2z2)) + (-6)*((sqrt(5))*(Mappy3yz2x2))))} ,  
 +       {6, 6, (13/160)*((sqrt(11/7))*((5)*((sqrt(3))*(Eappx3)) + (3)*((sqrt(3))*(Eappxy2z2)) + (-5)*((sqrt(3))*(Eappy3)) + (-3)*((sqrt(3))*(Eappyz2x2)) + (-6)*((sqrt(5))*(Mappx3xy2z2)) + (10*I)*((sqrt(3))*(Mappx3y3)) + (6*I)*((sqrt(5))*(Mappx3yz2x2)) + (-6*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (-6*I)*((sqrt(5))*(Mappy3xy2z2)) + (-6)*((sqrt(5))*(Mappy3yz2x2))))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^ 
 +^Y(3)3|116(5Eappx3+3Eappxy2z2+5Eappy3+3Eappyz2x2+215(Mappy3yz2x2Mappx3xy2z2))|0|116(15Eappx3+15Eappxy2z2+15Eappy315Eappyz2x22Mappx3xy2z2+2i(15Mappx3y3Mappx3yz2x2+15Mappxy2z2yz2x2+Mappy3xy2z2+iMappy3yz2x2))|0|116(15Eappx315Eappxy2z2+15Eappy315Eappyz2x2+2(Mappx3xy2z24i(Mappx3yz2x2+Mappy3xy2z2)Mappy3yz2x2))|0|116(5Eappx33Eappxy2z2+5Eappy3+3Eappyz2x2+2(15Mappx3xy2z2+5iMappx3y3+i15Mappx3yz2x23iMappxy2z2yz2x2+15(Mappy3yz2x2iMappy3xy2z2)))
 +^Y(3)2|0|Eappxyz+Eappzx2y22|0|Mappz3zx2y2+iMappxyzz32|0|12(Eappxyz+Eappzx2y2+2iMappxyzzx2y2)|0
 +^Y(3)1|116(15Eappx3+15Eappxy2z2+15Eappy315Eappyz2x22Mappx3xy2z22i(15Mappx3y3Mappx3yz2x2+15Mappxy2z2yz2x2+Mappy3xy2z2iMappy3yz2x2))|0|116(3Eappx3+5Eappxy2z2+3Eappy3+5Eappyz2x2+215(Mappx3xy2z2Mappy3yz2x2))|0|116(3Eappx35Eappxy2z2+3Eappy3+5Eappyz2x22(15Mappx3xy2z2+3iMappx3y3i15Mappx3yz2x25iMappxy2z2yz2x2+15(Mappy3yz2x2+iMappy3xy2z2)))|0|116(15Eappx315Eappxy2z2+15Eappy315Eappyz2x2+2(Mappx3xy2z24i(Mappx3yz2x2+Mappy3xy2z2)Mappy3yz2x2))
 +^Y(3)0|0|Mappz3zx2y2iMappxyzz32|0|Eappz3|0|Mappz3zx2y2+iMappxyzz32|0
 +^Y(3)1|116(15Eappx315Eappxy2z2+15Eappy315Eappyz2x2+2(Mappx3xy2z2+4i(Mappx3yz2x2+Mappy3xy2z2)Mappy3yz2x2))|0|116(3Eappx35Eappxy2z2+3Eappy3+5Eappyz2x2215Mappx3xy2z2+2i(3Mappx3y315Mappx3yz2x25Mappxy2z2yz2x2+15(Mappy3xy2z2+iMappy3yz2x2)))|0|116(3Eappx3+5Eappxy2z2+3Eappy3+5Eappyz2x2+215(Mappx3xy2z2Mappy3yz2x2))|0|116(15Eappx3+15Eappxy2z2+15Eappy315Eappyz2x22Mappx3xy2z2+2i(15Mappx3y3Mappx3yz2x2+15Mappxy2z2yz2x2+Mappy3xy2z2+iMappy3yz2x2))
 +^Y(3)2|0|12(Eappxyz+Eappzx2y22iMappxyzzx2y2)|0|Mappz3zx2y2iMappxyzz32|0|Eappxyz+Eappzx2y22|0
 +^Y(3)3|116(5Eappx33Eappxy2z2+5Eappy3+3Eappyz2x2+2(15Mappx3xy2z25iMappx3y3i15Mappx3yz2x2+3iMappxy2z2yz2x2+15(Mappy3yz2x2+iMappy3xy2z2)))|0|116(15Eappx315Eappxy2z2+15Eappy315Eappyz2x2+2(Mappx3xy2z2+4i(Mappx3yz2x2+Mappy3xy2z2)Mappy3yz2x2))|0|116(15Eappx3+15Eappxy2z2+15Eappy315Eappyz2x22Mappx3xy2z22i(15Mappx3y3Mappx3yz2x2+15Mappxy2z2yz2x2+Mappy3xy2z2iMappy3yz2x2))|0|116(5Eappx3+3Eappxy2z2+5Eappy3+3Eappyz2x2+215(Mappy3yz2x2Mappx3xy2z2))
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  fz(5z2r2)  ^  fx(y2z2)  ^  fy(z2x2)  ^  fz(x2y2)  ^ 
 +^fxyz|Eappxyz|0|0|Mappxyzz3|0|0|Mappxyzzx2y2
 +^fx(5x2r2)|0|Eappx3|Mappx3y3|0|Mappx3xy2z2|Mappx3yz2x2|0
 +^fy(5y2r2)|0|Mappx3y3|Eappy3|0|Mappy3xy2z2|Mappy3yz2x2|0
 +^fz(5z2r2)|Mappxyzz3|0|0|Eappz3|0|0|Mappz3zx2y2
 +^fx(y2z2)|0|Mappx3xy2z2|Mappy3xy2z2|0|Eappxy2z2|Mappxy2z2yz2x2|0
 +^fy(z2x2)|0|Mappx3yz2x2|Mappy3yz2x2|0|Mappxy2z2yz2x2|Eappyz2x2|0
 +^fz(x2y2)|Mappxyzzx2y2|0|0|Mappz3zx2y2|0|0|Eappzx2y2
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^ 
 +^fxyz|0|i2|0|0|0|i2|0
 +^fx(5x2r2)|54|0|34|0|34|0|54
 +^fy(5y2r2)|i54|0|i34|0|i34|0|i54
 +^fz(5z2r2)|0|0|0|1|0|0|0
 +^fx(y2z2)|34|0|54|0|54|0|34
 +^fy(z2x2)|i34|0|i54|0|i54|0|i34
 +^fz(x2y2)|0|12|0|0|0|12|0
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^Eappxyz | {{:physics_chemistry:pointgroup:cs_z_orb_3_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |14105πsin2(θ)cos(θ)sin(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |12105πxyz | ::: | 
 +^ ^Eappx3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_2.png?150}} | 
 +|ψ(θ,ϕ)=11 |1167πsin(θ)cos(ϕ)(10sin2(θ)cos(2ϕ)5cos(2θ)7) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1167πx(5x215y215z2+3) | ::: | 
 +^ ^Eappy3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_3.png?150}} | 
 +|ψ(θ,ϕ)=11 |1167πsin(θ)sin(ϕ)(10sin2(θ)cos(2ϕ)+5cos(2θ)+7) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1167πy(15x2+5y215z2+3) | ::: | 
 +^ ^Eappz3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_4.png?150}} | 
 +|ψ(θ,ϕ)=11 |1167π(3cos(θ)+5cos(3θ)) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |147πz(5z23) | ::: | 
 +^ ^Eappxy2z2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_5.png?150}} | 
 +|ψ(θ,ϕ)=11 |116105πsin(θ)cos(ϕ)(2sin2(θ)cos(2ϕ)+3cos(2θ)+1) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |116105πx(x23y2+5z21) | ::: | 
 +^ ^Eappyz2x2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_6.png?150}} | 
 +|ψ(θ,ϕ)=11 |132105πsin(θ)sin(ϕ)(4sin2(θ)cos(2ϕ)+6cos(2θ)+2) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |116105πy(3x2+y2+5z21) | ::: | 
 +^ ^Eappzx2y2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_7.png?150}} | 
 +|ψ(θ,ϕ)=11 |14105πsin2(θ)cos(θ)cos(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |14105πz(x2y2) | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +===== Coupling between two shells ===== 
 + 
 + 
 + 
 +### 
 + 
 +Click on one of the subsections to expand it or <hiddenSwitch expand all>  
 + 
 +### 
 + 
 +==== Potential for s-p orbital mixing ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} \begin{cases} 
 + 0 & k\neq 1\lor (m\neq -1\land m\neq 1) \\ 
 + -A(1,1)+i B(1,1) & k=1\land m=-1 \\ 
 + A(1,1)+i B(1,1) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{0, k != 1 || (m != -1 && m != 1)}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}}, A[1, 1] + I*B[1, 1]] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  
 +       {1, 1, A(1,1) + (I)*(B(1,1))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^ 
 +^Y(0)0|A(1,1)+iB(1,1)3|0|A(1,1)iB(1,1)3
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  px  ^  py  ^  pz  ^ 
 +^s|23A(1,1)|23B(1,1)|0
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for s-d orbital mixing ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ 
 + A(2,2)-i B(2,2) & k=2\land m=-2 \\ 
 + A(2,0) & k=2\land m=0 \\ 
 + A(2,2)+i B(2,2) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{0, k != 2 || (m != -2 && m != 0 && m != 2)}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}}, A[2, 2] + I*B[2, 2]] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{2, 0, A(2,0)} ,  
 +       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  
 +       {2, 2, A(2,2) + (I)*(B(2,2))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^ 
 +^Y(0)0|A(2,2)+iB(2,2)5|0|A(2,0)5|0|A(2,2)iB(2,2)5
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^ 
 +^s|25A(2,2)|A(2,0)5|0|0|25B(2,2)
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for s-f orbital mixing ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + 0 & k\neq 3\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ 
 + -A(3,3)+i B(3,3) & k=3\land m=-3 \\ 
 + -A(3,1)+i B(3,1) & k=3\land m=-1 \\ 
 + A(3,1)+i B(3,1) & k=3\land m=1 \\ 
 + A(3,3)+i B(3,3) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -3 && m != -1 && m != 1 && m != 3)}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}}, A[3, 3] + I*B[3, 3]] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  
 +       {3, 1, A(3,1) + (I)*(B(3,1))} ,  
 +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  
 +       {3, 3, A(3,3) + (I)*(B(3,3))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^ 
 +^Y(0)0|A(3,3)+iB(3,3)7|0|A(3,1)+iB(3,1)7|0|A(3,1)iB(3,1)7|0|A(3,3)iB(3,3)7
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  fz(5z2r2)  ^  fx(y2z2)  ^  fy(z2x2)  ^  fz(x2y2)  ^ 
 +^s|0|114(21A(3,1)35A(3,3))|3B(3,1)+5B(3,3)27|0|5A(3,1)+3A(3,3)27|114(35B(3,1)21B(3,3))|0
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for p-d orbital mixing ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + 0 & (k\neq 3\land (k\neq 1\lor (m\neq -1\land m\neq 1)))\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ 
 + -A(1,1)+i B(1,1) & k=1\land m=-1 \\ 
 + A(1,1)+i B(1,1) & k=1\land m=1 \\ 
 + -A(3,3)+i B(3,3) & k=3\land m=-3 \\ 
 + -A(3,1)+i B(3,1) & k=3\land m=-1 \\ 
 + A(3,1)+i B(3,1) & k=3\land m=1 \\ 
 + A(3,3)+i B(3,3) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{0, (k != 3 && (k != 1 || (m != -1 && m != 1))) || (m != -3 && m != -1 && m != 1 && m != 3)}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}}, A[3, 3] + I*B[3, 3]] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  
 +       {1, 1, A(1,1) + (I)*(B(1,1))} ,  
 +       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  
 +       {3, 1, A(3,1) + (I)*(B(3,1))} ,  
 +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  
 +       {3, 3, A(3,3) + (I)*(B(3,3))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^ 
 +^Y(1)1|1735(A(3,1)+iB(3,1))25(A(1,1)+iB(1,1))|0|1105(715(A(1,1)iB(1,1))910(A(3,1)iB(3,1)))|0|37(A(3,3)iB(3,3))
 +^Y(1)0|0|A(1,1)+iB(1,1)52765(A(3,1)+iB(3,1))|0|7A(1,1)+26A(3,1)i(7B(1,1)+26B(3,1))75|0
 +^Y(1)1|37(A(3,3)+iB(3,3))|0|3725(A(3,1)+iB(3,1))A(1,1)+iB(1,1)15|0|25(A(1,1)iB(1,1))1735(A(3,1)iB(3,1))
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +  ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^ 
 +^px|135(710A(1,1)+15A(3,1)15A(3,3))|215A(1,1)6A(3,1)75|0|0|25B(1,1)1735B(3,1)+37B(3,3)
 +^py|135(710B(1,1)+15B(3,1)+15B(3,3))|6B(3,1)75215B(1,1)|0| 0 | \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)+15 A(3,3)\right)
 +^ p_z | 0 | 0 | \sqrt{\frac{2}{5}} B(1,1)+\frac{4}{7} \sqrt{\frac{3}{5}} B(3,1) | -\frac{1}{7} \sqrt{\frac{2}{5}} \left(7 A(1,1)+2 \sqrt{6} A(3,1)\right) | 0
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for p-f orbital mixing ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ 
 + A(2,2)-i B(2,2) & k=2\land m=-2 \\ 
 + A(2,0) & k=2\land m=0 \\ 
 + A(2,2)+i B(2,2) & k=2\land m=2 \\ 
 + A(4,4)-i B(4,4) & k=4\land m=-4 \\ 
 + A(4,2)-i B(4,2) & k=4\land m=-2 \\ 
 + A(4,0) & k=4\land m=0 \\ 
 + A(4,2)+i B(4,2) & k=4\land m=2 \\ 
 + A(4,4)+i B(4,4) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || (m != -2 && m != 0 && m != 2))) || (m != -4 && m != -2 && m != 0 && m != 2 && m != 4)}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}}, A[4, 4] + I*B[4, 4]] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{2, 0, A(2,0)} ,  
 +       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  
 +       {2, 2, A(2,2) + (I)*(B(2,2))} ,  
 +       {4, 0, A(4,0)} ,  
 +       {4,-2, A(4,2) + (-I)*(B(4,2))} ,  
 +       {4, 2, A(4,2) + (I)*(B(4,2))} ,  
 +       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  
 +       {4, 4, A(4,4) + (I)*(B(4,4))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^ 
 +^ {Y_{-1}^{(1)}} | \frac{3 (A(2,2)+i B(2,2))}{\sqrt{35}}-\frac{A(4,2)+i B(4,2)}{3 \sqrt{21}} | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)-i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)-i B(4,2)) | 0 | -\frac{2 (A(4,4)-i B(4,4))}{3 \sqrt{3}}
 +^ {Y_{0}^{(1)}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)+i B(2,2))+\frac{2 (A(4,2)+i B(4,2))}{3 \sqrt{7}} | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)-i B(2,2))+\frac{2 (A(4,2)-i B(4,2))}{3 \sqrt{7}} | 0
 +^ {Y_{1}^{(1)}} | -\frac{2 (A(4,4)+i B(4,4))}{3 \sqrt{3}} | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)+i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)+i B(4,2)) | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{3 (A(2,2)-i B(2,2))}{\sqrt{35}}-\frac{A(4,2)-i B(4,2)}{3 \sqrt{21}}
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +    ^  f_{\text{xyz}}   ^  f_{x\left(5x^2-r^2\right)}   ^  f_{y\left(5y^2-r^2\right)}   ^  f_{z\left(5z^2-r^2\right)}   ^  f_{x\left(y^2-z^2\right)}   ^  f_{y\left(z^2-x^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^ 
 +^ p_x | 0 | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)+81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)-2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)+7 B(4,4)\right)\right) | 0 | \frac{1}{210} \left(-9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)+5 \left(\sqrt{35} A(4,0)-2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | \sqrt{\frac{6}{35}} B(2,2)-\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | 0
 +^ p_y | 0 | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)-7 B(4,4)\right)\right) | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)-81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)+2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | 0 | -\sqrt{\frac{6}{35}} B(2,2)+\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0
 +^ p_z | -\sqrt{\frac{6}{35}} B(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} B(4,2) | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | \sqrt{\frac{6}{35}} A(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} A(4,2)
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for d-f orbital mixing ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + 0 & (k\neq 5\land (((k\neq 1\lor (m\neq -1\land m\neq 1))\land k\neq 3)\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3)))\lor (m\neq -5\land m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3\land m\neq 5) \\ 
 + -A(1,1)+i B(1,1) & k=1\land m=-1 \\ 
 + A(1,1)+i B(1,1) & k=1\land m=1 \\ 
 + -A(3,3)+i B(3,3) & k=3\land m=-3 \\ 
 + -A(3,1)+i B(3,1) & k=3\land m=-1 \\ 
 + A(3,1)+i B(3,1) & k=3\land m=1 \\ 
 + A(3,3)+i B(3,3) & k=3\land m=3 \\ 
 + -A(5,5)+i B(5,5) & k=5\land m=-5 \\ 
 + -A(5,3)+i B(5,3) & k=5\land m=-3 \\ 
 + -A(5,1)+i B(5,1) & k=5\land m=-1 \\ 
 + A(5,1)+i B(5,1) & k=5\land m=1 \\ 
 + A(5,3)+i B(5,3) & k=5\land m=3 \\ 
 + A(5,5)+i B(5,5) & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{0, (k != 5 && (((k != 1 || (m != -1 && m != 1)) && k != 3) || (m != -3 && m != -1 && m != 1 && m != 3))) || (m != -5 && m != -3 && m != -1 && m != 1 && m != 3 && m != 5)}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}}, A[5, 5] + I*B[5, 5]] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Cs_Z.Quanty> 
 + 
 +Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  
 +       {1, 1, A(1,1) + (I)*(B(1,1))} ,  
 +       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  
 +       {3, 1, A(3,1) + (I)*(B(3,1))} ,  
 +       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  
 +       {3, 3, A(3,3) + (I)*(B(3,3))} ,  
 +       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  
 +       {5, 1, A(5,1) + (I)*(B(5,1))} ,  
 +       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} ,  
 +       {5, 3, A(5,3) + (I)*(B(5,3))} ,  
 +       {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,  
 +       {5, 5, A(5,5) + (I)*(B(5,5))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^ 
 +^ {Y_{-2}^{(2)}} | -\sqrt{\frac{3}{7}} (A(1,1)+i B(1,1))+\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)+i B(3,1))-\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)+i B(5,1)) | 0 | \frac{33 \sqrt{35} (A(1,1)-i B(1,1))-22 \sqrt{210} (A(3,1)-i B(3,1))+25 \sqrt{21} (A(5,1)-i B(5,1))}{1155} | 0 | \frac{5}{33} \sqrt{2} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)-i B(3,3)) | 0 | \frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)-i B(5,5))
 +^ {Y_{-1}^{(2)}} | 0 | -\sqrt{\frac{2}{7}} (A(1,1)+i B(1,1))-\frac{A(3,1)+i B(3,1)}{\sqrt{21}}+\frac{2}{11} \sqrt{\frac{10}{21}} (A(5,1)+i B(5,1)) | 0 | \frac{33 \sqrt{105} (A(1,1)-i B(1,1))-11 \sqrt{70} (A(3,1)-i B(3,1))-100 \sqrt{7} (A(5,1)-i B(5,1))}{1155} | 0 | -\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3))-\frac{4}{33} \sqrt{5} (A(5,3)-i B(5,3)) | 0
 +^ {Y_{0}^{(2)}} | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))-\frac{2}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | -\sqrt{\frac{6}{35}} (A(1,1)+i B(1,1))-\frac{A(3,1)+i B(3,1)}{\sqrt{35}}-\frac{5}{11} \sqrt{\frac{2}{7}} (A(5,1)+i B(5,1)) | 0 | \frac{1}{385} \left(11 \sqrt{210} (A(1,1)-i B(1,1))+11 \sqrt{35} (A(3,1)-i B(3,1))+25 \sqrt{14} (A(5,1)-i B(5,1))\right) | 0 | \frac{2}{33} \sqrt{5} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3))
 +^ {Y_{1}^{(2)}} | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))+\frac{4}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | -\sqrt{\frac{3}{35}} (A(1,1)+i B(1,1))+\frac{1}{3} \sqrt{\frac{2}{35}} (A(3,1)+i B(3,1))+\frac{20 (A(5,1)+i B(5,1))}{33 \sqrt{7}} | 0 | \frac{1}{231} \left(33 \sqrt{14} (A(1,1)-i B(1,1))+11 \sqrt{21} (A(3,1)-i B(3,1))-2 \sqrt{210} (A(5,1)-i B(5,1))\right) | 0
 +^ {Y_{2}^{(2)}} | -\frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)+i B(5,5)) | 0 | \frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)+i B(3,3))-\frac{5}{33} \sqrt{2} (A(5,3)+i B(5,3)) | 0 | -\frac{A(1,1)+i B(1,1)}{\sqrt{35}}+2 \sqrt{\frac{2}{105}} (A(3,1)+i B(3,1))-\frac{5 (A(5,1)+i B(5,1))}{11 \sqrt{21}} | 0 | \sqrt{\frac{3}{7}} (A(1,1)-i B(1,1))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)-i B(3,1))+\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)-i B(5,1))
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +    ^  f_{\text{xyz}}   ^  f_{x\left(5x^2-r^2\right)}   ^  f_{y\left(5y^2-r^2\right)}   ^  f_{z\left(5z^2-r^2\right)}   ^  f_{x\left(y^2-z^2\right)}   ^  f_{y\left(z^2-x^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^ 
 +^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} | \frac{-99 \sqrt{210} B(1,1)+121 \sqrt{35} B(3,1)+55 \sqrt{21} B(3,3)-50 \sqrt{14} B(5,1)-175 \sqrt{3} B(5,3)-175 \sqrt{15} B(5,5)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) | \frac{1}{462} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)-11 \sqrt{35} B(3,3)+2 \sqrt{210} B(5,1)+35 \sqrt{5} B(5,3)-105 B(5,5)\right) | 0
 +^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} | \frac{-99 \sqrt{70} B(1,1)-33 \sqrt{105} B(3,1)+275 \sqrt{7} B(3,3)-75 \sqrt{42} B(5,1)-350 B(5,3)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) | \frac{1}{462} \left(33 \sqrt{42} B(1,1)+33 \sqrt{7} B(3,1)+11 \sqrt{105} B(3,3)+15 \sqrt{70} B(5,1)-14 \sqrt{15} B(5,3)\right) | 0
 +^ d_{\text{yz}} | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)+28 A(5,3)\right)\right) | 0 | 0 | -\sqrt{\frac{6}{35}} B(1,1)+\frac{2 B(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} B(5,1) | 0 | 0 | \frac{1}{231} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)+\sqrt{5} \left(11 \sqrt{7} B(3,3)+2 \sqrt{42} B(5,1)+28 B(5,3)\right)\right)
 +^ d_{\text{xz}} | \frac{1}{231} \left(33 \sqrt{14} B(1,1)+11 \sqrt{21} B(3,1)+\sqrt{5} \left(11 \sqrt{7} B(3,3)-2 \sqrt{42} B(5,1)+28 B(5,3)\right)\right) | 0 | 0 | \sqrt{\frac{6}{35}} A(1,1)-\frac{2 A(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} A(5,1) | 0 | 0 | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(-11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)-28 A(5,3)\right)\right)
 +^ d_{\text{xy}} | 0 | \frac{-66 \sqrt{210} B(1,1)-11 \sqrt{35} B(3,1)+5 \left(11 \sqrt{21} B(3,3)+5 \sqrt{14} B(5,1)-35 \sqrt{3} B(5,3)+35 \sqrt{15} B(5,5)\right)}{2310} | \frac{66 \sqrt{210} A(1,1)+11 \sqrt{35} A(3,1)+5 \left(11 \sqrt{21} A(3,3)-5 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)-35 \sqrt{15} A(5,5)\right)}{2310} | 0 | \frac{1}{462} \left(66 \sqrt{14} B(1,1)-33 \sqrt{21} B(3,1)+11 \sqrt{35} B(3,3)+3 \sqrt{210} B(5,1)-35 \sqrt{5} B(5,3)-105 B(5,5)\right) | \frac{1}{462} \left(66 \sqrt{14} A(1,1)-33 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)+3 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)-105 A(5,5)\right) | 0
 + 
 + 
 +###
  
 +</hidden>
  
 ===== Table of several point groups ===== ===== Table of several point groups =====
Print/export