Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
physics_chemistry:point_groups:cs:orientation_z [2018/03/24 13:46] – Maurits W. Haverkort | physics_chemistry:point_groups:cs:orientation_z [2018/04/06 09:16] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Z ====== | ====== Orientation Z ====== | ||
Line 73: | Line 75: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
Line 84: | Line 88: | ||
### | ### | ||
- | Any potential (function) can be written | + | Any potential (function) can be written as a sum over spherical harmonics. |
+ | $$V(r, | ||
+ | Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. $C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ)$ | ||
+ | The presence of symmetry induces relations between the expansion coefficients | ||
### | ### | ||
- | ==== Input format suitable for Mathematica (Quanty.nb) | + | ==== Expansion |
### | ### | ||
Line 94: | Line 101: | ||
| | ||
| | ||
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 132: | Line 151: | ||
Akm = {{0, 0, A(0,0)} , | Akm = {{0, 0, A(0,0)} , | ||
- | | + | |
- | {1, 1, A(1,1) + ((+1*I))*(Ap(1,1))} , | + | {1, 1, A(1,1) + (I)*(B(1,1))} , |
{2, 0, A(2,0)} , | {2, 0, A(2,0)} , | ||
- | | + | |
- | {2, 2, A(2,2) + ((+1*I))*(Ap(2,2))} , | + | {2, 2, A(2,2) + (I)*(B(2,2))} , |
- | | + | |
- | {3, 1, A(3,1) + ((+1*I))*(Ap(3,1))} , | + | {3, 1, A(3,1) + (I)*(B(3,1))} , |
- | | + | |
- | {3, 3, A(3,3) + ((+1*I))*(Ap(3,3))} , | + | {3, 3, A(3,3) + (I)*(B(3,3))} , |
{4, 0, A(4,0)} , | {4, 0, A(4,0)} , | ||
- | | + | |
- | {4, 2, A(4,2) + ((+1*I))*(Ap(4,2))} , | + | {4, 2, A(4,2) + (I)*(B(4,2))} , |
- | | + | |
- | {4, 4, A(4,4) + ((+1*I))*(Ap(4,4))} , | + | {4, 4, A(4,4) + (I)*(B(4,4))} , |
- | | + | |
- | {5, 1, A(5,1) + ((+1*I))*(Ap(5,1))} , | + | {5, 1, A(5,1) + (I)*(B(5,1))} , |
- | | + | |
- | {5, 3, A(5,3) + ((+1*I))*(Ap(5,3))} , | + | {5, 3, A(5,3) + (I)*(B(5,3))} , |
- | | + | |
- | {5, 5, A(5,5) + ((+1*I))*(Ap(5,5))} , | + | {5, 5, A(5,5) + (I)*(B(5,5))} , |
{6, 0, A(6,0)} , | {6, 0, A(6,0)} , | ||
- | | + | |
- | {6, 2, A(6,2) + ((+1*I))*(Ap(6,2))} , | + | {6, 2, A(6,2) + (I)*(B(6,2))} , |
- | | + | |
- | {6, 4, A(6,4) + ((+1*I))*(Ap(6,4))} , | + | {6, 4, A(6,4) + (I)*(B(6,4))} , |
- | | + | |
- | {6, 6, A(6,6) + ((+1*I))*(Ap(6,6))} } | + | {6, 6, A(6,6) + (I)*(B(6,6))} } |
</ | </ | ||
Line 165: | Line 184: | ||
==== One particle coupling on a basis of spherical harmonics ==== | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. | ||
+ | An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ | ||
+ | Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m) | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
### | ### | ||
Line 190: | Line 242: | ||
==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
### | ### | ||
Line 206: | Line 267: | ||
^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| | ^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| | ||
^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| | ^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| | ||
- | ^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $| | + | ^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $| |
^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| | ^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| | ||
^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| | ^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| | ||
Line 218: | Line 279: | ||
### | ### | ||
- | | ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | + | After rotation we find |
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | ||
^s|Ass(0,0)|−√23Asp(1,1)|√23Bsp(1,1)|0|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|0|12√37Asf(3,1)−12√57Asf(3,3)|−12√37Bsf(3,1)−12√57Bsf(3,3)|0|12√57Asf(3,1)+12√37Asf(3,3)|12√57Bsf(3,1)−12√37Bsf(3,3)|0| | ^s|Ass(0,0)|−√23Asp(1,1)|√23Bsp(1,1)|0|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|0|12√37Asf(3,1)−12√57Asf(3,3)|−12√37Bsf(3,1)−12√57Bsf(3,3)|0|12√57Asf(3,1)+12√37Asf(3,3)|12√57Bsf(3,1)−12√37Bsf(3,3)|0| | ||
^px|−√23Asp(1,1)|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|√215Apd(1,1)−6Apd(3,1)7√5|0|0|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| | ^px|−√23Asp(1,1)|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|√215Apd(1,1)−6Apd(3,1)7√5|0|0|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| | ||
Line 231: | Line 300: | ||
^fx(5x2−r2)|12√37Asf(3,1)−12√57Asf(3,3)|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|0|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|0|Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6)|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|0| | ^fx(5x2−r2)|12√37Asf(3,1)−12√57Asf(3,3)|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|0|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|0|Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6)|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|0| | ||
^fy(5y2−r2)|−12√37Bsf(3,1)−12√57Bsf(3,3)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|0|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6)|0|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0| | ^fy(5y2−r2)|−12√37Bsf(3,1)−12√57Bsf(3,3)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|0|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6)|0|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0| | ||
- | ^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, | + | ^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, |
^fx(y2−z2)|12√57Asf(3,1)+12√37Asf(3,3)|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|−√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2|0|Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5)|√314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3)|0|0|√27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)+5572√105Aff(6,2)+25286√72Aff(6,4)+552√2111Aff(6,6)|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|0| | ^fx(y2−z2)|12√57Asf(3,1)+12√37Asf(3,3)|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|−√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2|0|Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5)|√314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3)|0|0|√27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)+5572√105Aff(6,2)+25286√72Aff(6,4)+552√2111Aff(6,6)|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|0| | ||
^fy(z2−x2)|12√57Bsf(3,1)−12√37Bsf(3,3)|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2|0|−Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5)|√314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3)|0|0|√27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5)|0|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|Aff(0,0)+7132Aff(4,0)−733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)−5572√105Aff(6,2)+25286√72Aff(6,4)−552√2111Aff(6,6)|0| | ^fy(z2−x2)|12√57Bsf(3,1)−12√37Bsf(3,3)|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2|0|−Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5)|√314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3)|0|0|√27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5)|0|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|Aff(0,0)+7132Aff(4,0)−733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)−5572√105Aff(6,2)+25286√72Aff(6,4)−552√2111Aff(6,6)|0| | ||
Line 239: | Line 308: | ||
### | ### | ||
- | ===== Potential | + | ===== Coupling |
- | ===== Potential for p orbitals ===== | ||
- | ===== Potential for d orbitals ===== | ||
- | ===== Potential for f orbitals ===== | + | ### |
- | ===== Potential for s-p orbital mixing ===== | + | Although the parameters Al″,l′(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al″,l′(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l″ and l′. |
- | ===== Potential for s-d orbital mixing ===== | + | ### |
- | ===== Potential for s-f orbital mixing ===== | ||
- | ===== Potential for p-d orbital mixing ===== | ||
- | ===== Potential for p-f orbital mixing ===== | + | ### |
- | ===== Potential for d-f orbital mixing ===== | + | Click on one of the subsections to expand it or < |
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ap} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(0)0 ^ | ||
+ | ^Y(0)0|Ap| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ s ^ | ||
+ | ^s|Ap| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(0)0 ^ | ||
+ | ^s|1| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^Ap | {{: | ||
+ | |ψ(θ,ϕ)=√11 |12√π | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√π | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/3)*(Eapp + Eapx + Eapy)} , | ||
+ | {2, 0, (5/ | ||
+ | {2, 2, (5/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ | ||
+ | ^Y(1)−1|Eapx+Eapy2|0|12(−Eapx+Eapy−2iMapxy)| | ||
+ | ^Y(1)0|0|Eapp|0| | ||
+ | ^Y(1)1|12(−Eapx+Eapy+2iMapxy)|0|Eapx+Eapy2| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ px ^ py ^ pz ^ | ||
+ | ^px|Eapx|Mapxy|0| | ||
+ | ^py|Mapxy|Eapy|0| | ||
+ | ^pz|0|0|Eapp| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ | ||
+ | ^px|1√2|0|−1√2| | ||
+ | ^py|i√2|0|i√2| | ||
+ | ^pz|0|1|0| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^Eapx | {{: | ||
+ | |ψ(θ,ϕ)=√11 |12√3πsin(θ)cos(ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√3πx | ::: | | ||
+ | ^ ^Eapy | {{: | ||
+ | |ψ(θ,ϕ)=√11 |12√3πsin(θ)sin(ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√3πy | ::: | | ||
+ | ^ ^Eapp | {{: | ||
+ | |ψ(θ,ϕ)=√11 |12√3πcos(θ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√3πz | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {2, 0, (1/ | ||
+ | {2, 2, (1/ | ||
+ | | ||
+ | {4, 0, (-3/ | ||
+ | {4, 2, (3)*((1/ | ||
+ | | ||
+ | {4, 4, (3/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ | ||
+ | ^Y(2)−2|Eapx2y2+Eapxy2|0|Mapx2y2z2+iMapz2xy√2|0|12(Eapx2y2−Eapxy+2iMapx2y2xy)| | ||
+ | ^Y(2)−1|0|Eappxz+Eappyz2|0|12(−Eappxz+Eappyz−2iMappyzxz)|0| | ||
+ | ^Y(2)0|Mapx2y2z2−iMapz2xy√2|0|Eapz2|0|Mapx2y2z2+iMapz2xy√2| | ||
+ | ^Y(2)1|0|12(−Eappxz+Eappyz+2iMappyzxz)|0|Eappxz+Eappyz2|0| | ||
+ | ^Y(2)2|12(Eapx2y2−Eapxy−2iMapx2y2xy)|0|Mapx2y2z2−iMapz2xy√2|0|Eapx2y2+Eapxy2| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ | ||
+ | ^dx2−y2|Eapx2y2|Mapx2y2z2|0|0|Mapx2y2xy| | ||
+ | ^d3z2−r2|Mapx2y2z2|Eapz2|0|0|Mapz2xy| | ||
+ | ^dyz|0|0|Eappyz|Mappyzxz|0| | ||
+ | ^dxz|0|0|Mappyzxz|Eappxz|0| | ||
+ | ^dxy|Mapx2y2xy|Mapz2xy|0|0|Eapxy| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ | ||
+ | ^dx2−y2|1√2|0|0|0|1√2| | ||
+ | ^d3z2−r2|0|0|1|0|0| | ||
+ | ^dyz|0|i√2|0|i√2|0| | ||
+ | ^dxz|0|1√2|0|−1√2|0| | ||
+ | ^dxy|i√2|0|0|0|−i√2| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^Eapx2y2 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |14√15πsin2(θ)cos(2ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |14√15π(x2−y2) | ::: | | ||
+ | ^ ^Eapz2 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |18√5π(3cos(2θ)+1) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |14√5π(3z2−1) | ::: | | ||
+ | ^ ^Eappyz | {{: | ||
+ | |ψ(θ,ϕ)=√11 |14√15πsin(2θ)sin(ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√15πyz | ::: | | ||
+ | ^ ^Eappxz | {{: | ||
+ | |ψ(θ,ϕ)=√11 |14√15πsin(2θ)cos(ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√15πxz | ::: | | ||
+ | ^ ^Eapxy | {{: | ||
+ | |ψ(θ,ϕ)=√11 |14√15πsin2(θ)sin(2ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√15πxy | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 6\land (((k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2))\land k\neq 4)\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4)))\lor (m\neq -6\land m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4\land m\neq 6) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {2, 0, (-5/ | ||
+ | | ||
+ | {2, 2, (5/ | ||
+ | {4, 0, (3/ | ||
+ | {4, 2, (3/ | ||
+ | | ||
+ | | ||
+ | {4, 4, (3/ | ||
+ | {6, 0, (-13/ | ||
+ | {6, 2, (13/ | ||
+ | | ||
+ | | ||
+ | {6, 4, (-13/ | ||
+ | | ||
+ | {6, 6, (13/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^Y(3)−3|116(5Eappx3+3Eappxy2z2+5Eappy3+3Eappyz2x2+2√15(Mappy3yz2x2−Mappx3xy2z2))|0|116(−√15Eappx3+√15Eappxy2z2+√15Eappy3−√15Eappyz2x2−2Mappx3xy2z2+2i(√15Mappx3y3−Mappx3yz2x2+√15Mappxy2z2yz2x2+Mappy3xy2z2+iMappy3yz2x2))|0|116(√15Eappx3−√15Eappxy2z2+√15Eappy3−√15Eappyz2x2+2(Mappx3xy2z2−4i(Mappx3yz2x2+Mappy3xy2z2)−Mappy3yz2x2))|0|116(−5Eappx3−3Eappxy2z2+5Eappy3+3Eappyz2x2+2(√15Mappx3xy2z2+5iMappx3y3+i√15Mappx3yz2x2−3iMappxy2z2yz2x2+√15(Mappy3yz2x2−iMappy3xy2z2)))| | ||
+ | ^Y(3)−2|0|Eappxyz+Eappzx2y22|0|Mappz3zx2y2+iMappxyzz3√2|0|12(−Eappxyz+Eappzx2y2+2iMappxyzzx2y2)|0| | ||
+ | ^Y(3)−1|116(−√15Eappx3+√15Eappxy2z2+√15Eappy3−√15Eappyz2x2−2Mappx3xy2z2−2i(√15Mappx3y3−Mappx3yz2x2+√15Mappxy2z2yz2x2+Mappy3xy2z2−iMappy3yz2x2))|0|116(3Eappx3+5Eappxy2z2+3Eappy3+5Eappyz2x2+2√15(Mappx3xy2z2−Mappy3yz2x2))|0|116(−3Eappx3−5Eappxy2z2+3Eappy3+5Eappyz2x2−2(√15Mappx3xy2z2+3iMappx3y3−i√15Mappx3yz2x2−5iMappxy2z2yz2x2+√15(Mappy3yz2x2+iMappy3xy2z2)))|0|116(√15Eappx3−√15Eappxy2z2+√15Eappy3−√15Eappyz2x2+2(Mappx3xy2z2−4i(Mappx3yz2x2+Mappy3xy2z2)−Mappy3yz2x2))| | ||
+ | ^Y(3)0|0|Mappz3zx2y2−iMappxyzz3√2|0|Eappz3|0|Mappz3zx2y2+iMappxyzz3√2|0| | ||
+ | ^Y(3)1|116(√15Eappx3−√15Eappxy2z2+√15Eappy3−√15Eappyz2x2+2(Mappx3xy2z2+4i(Mappx3yz2x2+Mappy3xy2z2)−Mappy3yz2x2))|0|116(−3Eappx3−5Eappxy2z2+3Eappy3+5Eappyz2x2−2√15Mappx3xy2z2+2i(3Mappx3y3−√15Mappx3yz2x2−5Mappxy2z2yz2x2+√15(Mappy3xy2z2+iMappy3yz2x2)))|0|116(3Eappx3+5Eappxy2z2+3Eappy3+5Eappyz2x2+2√15(Mappx3xy2z2−Mappy3yz2x2))|0|116(−√15Eappx3+√15Eappxy2z2+√15Eappy3−√15Eappyz2x2−2Mappx3xy2z2+2i(√15Mappx3y3−Mappx3yz2x2+√15Mappxy2z2yz2x2+Mappy3xy2z2+iMappy3yz2x2))| | ||
+ | ^Y(3)2|0|12(−Eappxyz+Eappzx2y2−2iMappxyzzx2y2)|0|Mappz3zx2y2−iMappxyzz3√2|0|Eappxyz+Eappzx2y22|0| | ||
+ | ^Y(3)3|116(−5Eappx3−3Eappxy2z2+5Eappy3+3Eappyz2x2+2(√15Mappx3xy2z2−5iMappx3y3−i√15Mappx3yz2x2+3iMappxy2z2yz2x2+√15(Mappy3yz2x2+iMappy3xy2z2)))|0|116(√15Eappx3−√15Eappxy2z2+√15Eappy3−√15Eappyz2x2+2(Mappx3xy2z2+4i(Mappx3yz2x2+Mappy3xy2z2)−Mappy3yz2x2))|0|116(−√15Eappx3+√15Eappxy2z2+√15Eappy3−√15Eappyz2x2−2Mappx3xy2z2−2i(√15Mappx3y3−Mappx3yz2x2+√15Mappxy2z2yz2x2+Mappy3xy2z2−iMappy3yz2x2))|0|116(5Eappx3+3Eappxy2z2+5Eappy3+3Eappyz2x2+2√15(Mappy3yz2x2−Mappx3xy2z2))| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ fz(5z2−r2) ^ fx(y2−z2) ^ fy(z2−x2) ^ fz(x2−y2) ^ | ||
+ | ^fxyz|Eappxyz|0|0|Mappxyzz3|0|0|Mappxyzzx2y2| | ||
+ | ^fx(5x2−r2)|0|Eappx3|Mappx3y3|0|Mappx3xy2z2|Mappx3yz2x2|0| | ||
+ | ^fy(5y2−r2)|0|Mappx3y3|Eappy3|0|Mappy3xy2z2|Mappy3yz2x2|0| | ||
+ | ^fz(5z2−r2)|Mappxyzz3|0|0|Eappz3|0|0|Mappz3zx2y2| | ||
+ | ^fx(y2−z2)|0|Mappx3xy2z2|Mappy3xy2z2|0|Eappxy2z2|Mappxy2z2yz2x2|0| | ||
+ | ^fy(z2−x2)|0|Mappx3yz2x2|Mappy3yz2x2|0|Mappxy2z2yz2x2|Eappyz2x2|0| | ||
+ | ^fz(x2−y2)|Mappxyzzx2y2|0|0|Mappz3zx2y2|0|0|Eappzx2y2| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^fxyz|0|i√2|0|0|0|−i√2|0| | ||
+ | ^fx(5x2−r2)|√54|0|−√34|0|√34|0|−√54| | ||
+ | ^fy(5y2−r2)|−i√54|0|−i√34|0|−i√34|0|−i√54| | ||
+ | ^fz(5z2−r2)|0|0|0|1|0|0|0| | ||
+ | ^fx(y2−z2)|−√34|0|−√54|0|√54|0|√34| | ||
+ | ^fy(z2−x2)|−i√34|0|i√54|0|i√54|0|−i√34| | ||
+ | ^fz(x2−y2)|0|1√2|0|0|0|1√2|0| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^Eappxyz | {{: | ||
+ | |ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)sin(2ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |12√105πxyz | ::: | | ||
+ | ^ ^Eappx3 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |116√7πsin(θ)cos(ϕ)(10sin2(θ)cos(2ϕ)−5cos(2θ)−7) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |116√7πx(5x2−15y2−15z2+3) | ::: | | ||
+ | ^ ^Eappy3 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |−116√7πsin(θ)sin(ϕ)(10sin2(θ)cos(2ϕ)+5cos(2θ)+7) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |116√7πy(−15x2+5y2−15z2+3) | ::: | | ||
+ | ^ ^Eappz3 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |116√7π(3cos(θ)+5cos(3θ)) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |14√7πz(5z2−3) | ::: | | ||
+ | ^ ^Eappxy2z2 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |−116√105πsin(θ)cos(ϕ)(2sin2(θ)cos(2ϕ)+3cos(2θ)+1) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |−116√105πx(x2−3y2+5z2−1) | ::: | | ||
+ | ^ ^Eappyz2x2 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |132√105πsin(θ)sin(ϕ)(−4sin2(θ)cos(2ϕ)+6cos(2θ)+2) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |116√105πy(−3x2+y2+5z2−1) | ::: | | ||
+ | ^ ^Eappzx2y2 | {{: | ||
+ | |ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)cos(2ϕ) | ::: | | ||
+ | |ψ(ˆx,ˆy,ˆz)=√11 |14√105πz(x2−y2) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s-p orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 1\lor (m\neq -1\land m\neq 1) \\ | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{1,-1, (-1)*(A(1, | ||
+ | {1, 1, A(1,1) + (I)*(B(1, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ | ||
+ | ^Y(0)0|−A(1,1)+iB(1,1)√3|0|A(1,1)−iB(1,1)√3| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ px ^ py ^ pz ^ | ||
+ | ^s|−√23A(1,1)|√23B(1,1)|0| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | | ||
+ | {2, 2, A(2,2) + (I)*(B(2, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ | ||
+ | ^Y(0)0|A(2,2)+iB(2,2)√5|0|A(2,0)√5|0|A(2,2)−iB(2,2)√5| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ | ||
+ | ^s|√25A(2,2)|A(2,0)√5|0|0|−√25B(2,2)| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 3\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{3,-1, (-1)*(A(3, | ||
+ | {3, 1, A(3,1) + (I)*(B(3, | ||
+ | | ||
+ | {3, 3, A(3,3) + (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^Y(0)0|−A(3,3)+iB(3,3)√7|0|−A(3,1)+iB(3,1)√7|0|A(3,1)−iB(3,1)√7|0|A(3,3)−iB(3,3)√7| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ fz(5z2−r2) ^ fx(y2−z2) ^ fy(z2−x2) ^ fz(x2−y2) ^ | ||
+ | ^s|0|114(√21A(3,1)−√35A(3,3))|−√3B(3,1)+√5B(3,3)2√7|0|√5A(3,1)+√3A(3,3)2√7|114(√35B(3,1)−√21B(3,3))|0| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 3\land (k\neq 1\lor (m\neq -1\land m\neq 1)))\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{1,-1, (-1)*(A(1, | ||
+ | {1, 1, A(1,1) + (I)*(B(1, | ||
+ | | ||
+ | {3, 1, A(3,1) + (I)*(B(3, | ||
+ | | ||
+ | {3, 3, A(3,3) + (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ | ||
+ | ^Y(1)−1|17√35(A(3,1)+iB(3,1))−√25(A(1,1)+iB(1,1))|0|1105(7√15(A(1,1)−iB(1,1))−9√10(A(3,1)−iB(3,1)))|0|−37(A(3,3)−iB(3,3))| | ||
+ | ^Y(1)0|0|−A(1,1)+iB(1,1)√5−27√65(A(3,1)+iB(3,1))|0|7A(1,1)+2√6A(3,1)−i(7B(1,1)+2√6B(3,1))7√5|0| | ||
+ | ^Y(1)1|37(A(3,3)+iB(3,3))|0|37√25(A(3,1)+iB(3,1))−A(1,1)+iB(1,1)√15|0|√25(A(1,1)−iB(1,1))−17√35(A(3,1)−iB(3,1))| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ | ||
+ | ^px|135(−7√10A(1,1)+√15A(3,1)−15A(3,3))|√215A(1,1)−6A(3,1)7√5|0|0|√25B(1,1)−17√35B(3,1)+37B(3,3)| | ||
+ | ^py|135(−7√10B(1,1)+√15B(3,1)+15B(3,3))|6B(3,1)7√5−√215B(1,1)|0| 0 | \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)+15 A(3,3)\right) | | ||
+ | ^ p_z | 0 | 0 | \sqrt{\frac{2}{5}} B(1,1)+\frac{4}{7} \sqrt{\frac{3}{5}} B(3,1) | -\frac{1}{7} \sqrt{\frac{2}{5}} \left(7 A(1,1)+2 \sqrt{6} A(3,1)\right) | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | | ||
+ | {2, 2, A(2,2) + (I)*(B(2, | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 2, A(4,2) + (I)*(B(4, | ||
+ | | ||
+ | {4, 4, A(4,4) + (I)*(B(4, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \frac{3 (A(2,2)+i B(2,2))}{\sqrt{35}}-\frac{A(4,2)+i B(4,2)}{3 \sqrt{21}} | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)-i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)-i B(4,2)) | 0 | -\frac{2 (A(4,4)-i B(4,4))}{3 \sqrt{3}} | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)+i B(2,2))+\frac{2 (A(4,2)+i B(4,2))}{3 \sqrt{7}} | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)-i B(2,2))+\frac{2 (A(4,2)-i B(4,2))}{3 \sqrt{7}} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | -\frac{2 (A(4,4)+i B(4,4))}{3 \sqrt{3}} | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)+i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)+i B(4,2)) | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{3 (A(2,2)-i B(2,2))}{\sqrt{35}}-\frac{A(4,2)-i B(4,2)}{3 \sqrt{21}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ p_x | 0 | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)+81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)-2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)+7 B(4,4)\right)\right) | 0 | \frac{1}{210} \left(-9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)+5 \left(\sqrt{35} A(4,0)-2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | \sqrt{\frac{6}{35}} B(2,2)-\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | 0 | | ||
+ | ^ p_y | 0 | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)-7 B(4,4)\right)\right) | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)-81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)+2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | 0 | -\sqrt{\frac{6}{35}} B(2,2)+\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0 | | ||
+ | ^ p_z | -\sqrt{\frac{6}{35}} B(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} B(4,2) | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | \sqrt{\frac{6}{35}} A(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} A(4,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 5\land (((k\neq 1\lor (m\neq -1\land m\neq 1))\land k\neq 3)\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3)))\lor (m\neq -5\land m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3\land m\neq 5) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{1,-1, (-1)*(A(1, | ||
+ | {1, 1, A(1,1) + (I)*(B(1, | ||
+ | | ||
+ | {3, 1, A(3,1) + (I)*(B(3, | ||
+ | | ||
+ | {3, 3, A(3,3) + (I)*(B(3, | ||
+ | | ||
+ | {5, 1, A(5,1) + (I)*(B(5, | ||
+ | | ||
+ | {5, 3, A(5,3) + (I)*(B(5, | ||
+ | | ||
+ | {5, 5, A(5,5) + (I)*(B(5, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | -\sqrt{\frac{3}{7}} (A(1,1)+i B(1,1))+\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)+i B(3,1))-\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)+i B(5,1)) | 0 | \frac{33 \sqrt{35} (A(1,1)-i B(1,1))-22 \sqrt{210} (A(3,1)-i B(3,1))+25 \sqrt{21} (A(5,1)-i B(5,1))}{1155} | 0 | \frac{5}{33} \sqrt{2} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)-i B(3,3)) | 0 | \frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)-i B(5,5)) | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | -\sqrt{\frac{2}{7}} (A(1,1)+i B(1,1))-\frac{A(3,1)+i B(3,1)}{\sqrt{21}}+\frac{2}{11} \sqrt{\frac{10}{21}} (A(5,1)+i B(5,1)) | 0 | \frac{33 \sqrt{105} (A(1,1)-i B(1,1))-11 \sqrt{70} (A(3,1)-i B(3,1))-100 \sqrt{7} (A(5,1)-i B(5,1))}{1155} | 0 | -\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3))-\frac{4}{33} \sqrt{5} (A(5,3)-i B(5,3)) | 0 | | ||
+ | ^ {Y_{0}^{(2)}} | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))-\frac{2}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | -\sqrt{\frac{6}{35}} (A(1,1)+i B(1,1))-\frac{A(3,1)+i B(3,1)}{\sqrt{35}}-\frac{5}{11} \sqrt{\frac{2}{7}} (A(5,1)+i B(5,1)) | 0 | \frac{1}{385} \left(11 \sqrt{210} (A(1,1)-i B(1,1))+11 \sqrt{35} (A(3,1)-i B(3,1))+25 \sqrt{14} (A(5,1)-i B(5,1))\right) | 0 | \frac{2}{33} \sqrt{5} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3)) | | ||
+ | ^ {Y_{1}^{(2)}} | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))+\frac{4}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | -\sqrt{\frac{3}{35}} (A(1,1)+i B(1,1))+\frac{1}{3} \sqrt{\frac{2}{35}} (A(3,1)+i B(3,1))+\frac{20 (A(5,1)+i B(5,1))}{33 \sqrt{7}} | 0 | \frac{1}{231} \left(33 \sqrt{14} (A(1,1)-i B(1,1))+11 \sqrt{21} (A(3,1)-i B(3,1))-2 \sqrt{210} (A(5,1)-i B(5,1))\right) | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | -\frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)+i B(5,5)) | 0 | \frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)+i B(3,3))-\frac{5}{33} \sqrt{2} (A(5,3)+i B(5,3)) | 0 | -\frac{A(1,1)+i B(1,1)}{\sqrt{35}}+2 \sqrt{\frac{2}{105}} (A(3,1)+i B(3,1))-\frac{5 (A(5,1)+i B(5,1))}{11 \sqrt{21}} | 0 | \sqrt{\frac{3}{7}} (A(1,1)-i B(1,1))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)-i B(3,1))+\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)-i B(5,1)) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} | \frac{-99 \sqrt{210} B(1,1)+121 \sqrt{35} B(3,1)+55 \sqrt{21} B(3,3)-50 \sqrt{14} B(5,1)-175 \sqrt{3} B(5,3)-175 \sqrt{15} B(5,5)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) | \frac{1}{462} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)-11 \sqrt{35} B(3,3)+2 \sqrt{210} B(5,1)+35 \sqrt{5} B(5,3)-105 B(5,5)\right) | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} | \frac{-99 \sqrt{70} B(1,1)-33 \sqrt{105} B(3,1)+275 \sqrt{7} B(3,3)-75 \sqrt{42} B(5,1)-350 B(5,3)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) | \frac{1}{462} \left(33 \sqrt{42} B(1,1)+33 \sqrt{7} B(3,1)+11 \sqrt{105} B(3,3)+15 \sqrt{70} B(5,1)-14 \sqrt{15} B(5,3)\right) | 0 | | ||
+ | ^ d_{\text{yz}} | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)+28 A(5,3)\right)\right) | 0 | 0 | -\sqrt{\frac{6}{35}} B(1,1)+\frac{2 B(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} B(5,1) | 0 | 0 | \frac{1}{231} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)+\sqrt{5} \left(11 \sqrt{7} B(3,3)+2 \sqrt{42} B(5,1)+28 B(5,3)\right)\right) | | ||
+ | ^ d_{\text{xz}} | \frac{1}{231} \left(33 \sqrt{14} B(1,1)+11 \sqrt{21} B(3,1)+\sqrt{5} \left(11 \sqrt{7} B(3,3)-2 \sqrt{42} B(5,1)+28 B(5,3)\right)\right) | 0 | 0 | \sqrt{\frac{6}{35}} A(1,1)-\frac{2 A(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} A(5,1) | 0 | 0 | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(-11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)-28 A(5,3)\right)\right) | | ||
+ | ^ d_{\text{xy}} | 0 | \frac{-66 \sqrt{210} B(1,1)-11 \sqrt{35} B(3,1)+5 \left(11 \sqrt{21} B(3,3)+5 \sqrt{14} B(5,1)-35 \sqrt{3} B(5,3)+35 \sqrt{15} B(5,5)\right)}{2310} | \frac{66 \sqrt{210} A(1,1)+11 \sqrt{35} A(3,1)+5 \left(11 \sqrt{21} A(3,3)-5 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)-35 \sqrt{15} A(5,5)\right)}{2310} | 0 | \frac{1}{462} \left(66 \sqrt{14} B(1,1)-33 \sqrt{21} B(3,1)+11 \sqrt{35} B(3,3)+3 \sqrt{210} B(5,1)-35 \sqrt{5} B(5,3)-105 B(5,5)\right) | \frac{1}{462} \left(66 \sqrt{14} A(1,1)-33 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)+3 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)-105 A(5,5)\right) | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | </ | ||
===== Table of several point groups ===== | ===== Table of several point groups ===== |