Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
physics_chemistry:point_groups:cs:orientation_z [2018/03/29 20:52] – old revision restored (2018/03/24 23:08) Maurits W. Haverkort | physics_chemistry:point_groups:cs:orientation_z [2018/04/06 09:16] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Z ====== | ====== Orientation Z ====== | ||
Line 73: | Line 75: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
Line 91: | Line 95: | ||
### | ### | ||
- | ==== Input format suitable for Mathematica (Quanty.nb) | + | ==== Expansion |
### | ### | ||
Line 97: | Line 101: | ||
| | ||
| | ||
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 135: | Line 151: | ||
Akm = {{0, 0, A(0,0)} , | Akm = {{0, 0, A(0,0)} , | ||
- | | + | |
- | {1, 1, A(1,1) + (I)*(Ap(1,1))} , | + | {1, 1, A(1,1) + (I)*(B(1,1))} , |
{2, 0, A(2,0)} , | {2, 0, A(2,0)} , | ||
- | | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2,2))} , | + | {2, 2, A(2,2) + (I)*(B(2,2))} , |
- | | + | |
- | {3, 1, A(3,1) + (I)*(Ap(3,1))} , | + | {3, 1, A(3,1) + (I)*(B(3,1))} , |
- | | + | |
- | {3, 3, A(3,3) + (I)*(Ap(3,3))} , | + | {3, 3, A(3,3) + (I)*(B(3,3))} , |
{4, 0, A(4,0)} , | {4, 0, A(4,0)} , | ||
- | | + | |
- | {4, 2, A(4,2) + (I)*(Ap(4,2))} , | + | {4, 2, A(4,2) + (I)*(B(4,2))} , |
- | | + | |
- | {4, 4, A(4,4) + (I)*(Ap(4,4))} , | + | {4, 4, A(4,4) + (I)*(B(4,4))} , |
- | | + | |
- | {5, 1, A(5,1) + (I)*(Ap(5,1))} , | + | {5, 1, A(5,1) + (I)*(B(5,1))} , |
- | | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5,3))} , | + | {5, 3, A(5,3) + (I)*(B(5,3))} , |
- | | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5,5))} , | + | {5, 5, A(5,5) + (I)*(B(5,5))} , |
{6, 0, A(6,0)} , | {6, 0, A(6,0)} , | ||
- | | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6,2))} , | + | {6, 2, A(6,2) + (I)*(B(6,2))} , |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6,4))} , | + | {6, 4, A(6,4) + (I)*(B(6,4))} , |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | {6, 6, A(6,6) + (I)*(B(6,6))} } |
</ | </ | ||
Line 251: | Line 267: | ||
^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| | ^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| | ||
^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| | ^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| | ||
- | ^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $| | + | ^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $| |
^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| | ^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| | ||
^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| | ^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| | ||
Line 271: | Line 287: | ||
### | ### | ||
- | | ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | + | | ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
^s|Ass(0,0)|−√23Asp(1,1)|√23Bsp(1,1)|0|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|0|12√37Asf(3,1)−12√57Asf(3,3)|−12√37Bsf(3,1)−12√57Bsf(3,3)|0|12√57Asf(3,1)+12√37Asf(3,3)|12√57Bsf(3,1)−12√37Bsf(3,3)|0| | ^s|Ass(0,0)|−√23Asp(1,1)|√23Bsp(1,1)|0|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|0|12√37Asf(3,1)−12√57Asf(3,3)|−12√37Bsf(3,1)−12√57Bsf(3,3)|0|12√57Asf(3,1)+12√37Asf(3,3)|12√57Bsf(3,1)−12√37Bsf(3,3)|0| | ||
^px|−√23Asp(1,1)|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|√215Apd(1,1)−6Apd(3,1)7√5|0|0|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| | ^px|−√23Asp(1,1)|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|√215Apd(1,1)−6Apd(3,1)7√5|0|0|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| | ||
Line 284: | Line 300: | ||
^fx(5x2−r2)|12√37Asf(3,1)−12√57Asf(3,3)|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|0|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|0|Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6)|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|0| | ^fx(5x2−r2)|12√37Asf(3,1)−12√57Asf(3,3)|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|0|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|0|Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6)|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|0| | ||
^fy(5y2−r2)|−12√37Bsf(3,1)−12√57Bsf(3,3)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|0|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6)|0|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0| | ^fy(5y2−r2)|−12√37Bsf(3,1)−12√57Bsf(3,3)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|0|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6)|0| -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | | ||
- | ^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, | + | ^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, |
^ f_{x\left(y^2-z^2\right)} |\color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,1)+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,3) }| -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)+\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | 0 |\color{darkred}{ \frac{\text{Adf}(1,1)}{\sqrt{14}}+\frac{\text{Adf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{1}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)+\frac{5}{22} \text{Adf}(5,5) }|\color{darkred}{ \sqrt{\frac{3}{14}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{2 \sqrt{7}}-\frac{1}{2} \sqrt{\frac{5}{21}} \text{Adf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Adf}(5,1)+\frac{1}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,3) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bdf}(3,1)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Bdf}(5,1)-\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) }| 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | 0 | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | 0 | | ^ f_{x\left(y^2-z^2\right)} |\color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,1)+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,3) }| -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)+\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | 0 |\color{darkred}{ \frac{\text{Adf}(1,1)}{\sqrt{14}}+\frac{\text{Adf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{1}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)+\frac{5}{22} \text{Adf}(5,5) }|\color{darkred}{ \sqrt{\frac{3}{14}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{2 \sqrt{7}}-\frac{1}{2} \sqrt{\frac{5}{21}} \text{Adf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Adf}(5,1)+\frac{1}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,3) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bdf}(3,1)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Bdf}(5,1)-\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) }| 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | 0 | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | 0 | | ||
^ f_{y\left(z^2-x^2\right)} |\color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Bsf}(3,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bsf}(3,3) }| \sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | 0 |\color{darkred}{ -\frac{\text{Bdf}(1,1)}{\sqrt{14}}-\frac{\text{Bdf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) }|\color{darkred}{ \sqrt{\frac{3}{14}} \text{Bdf}(1,1)+\frac{\text{Bdf}(3,1)}{2 \sqrt{7}}+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bdf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Bdf}(5,1)-\frac{1}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,3) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)-\frac{5}{22} \text{Adf}(5,5) }| 0 | \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)-\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)-\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | 0 | | ^ f_{y\left(z^2-x^2\right)} |\color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Bsf}(3,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bsf}(3,3) }| \sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | 0 |\color{darkred}{ -\frac{\text{Bdf}(1,1)}{\sqrt{14}}-\frac{\text{Bdf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) }|\color{darkred}{ \sqrt{\frac{3}{14}} \text{Bdf}(1,1)+\frac{\text{Bdf}(3,1)}{2 \sqrt{7}}+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bdf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Bdf}(5,1)-\frac{1}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,3) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)-\frac{5}{22} \text{Adf}(5,5) }| 0 | \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)-\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)-\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | 0 | | ||
Line 299: | Line 315: | ||
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
### | ### | ||
Line 304: | Line 328: | ||
==== Potential for s orbitals ==== | ==== Potential for s orbitals ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | | + | |
0 & \text{True} | 0 & \text{True} | ||
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 321: | Line 358: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, Eag} } | + | Akm = {{0, 0, Ap} } |
</ | </ | ||
Line 327: | Line 364: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{0}^{(0)}} ^ | | ^ {Y_{0}^{(0)}} ^ | ||
- | ^ {Y_{0}^{(0)}} |$ \text{Eag} $| | + | ^ {Y_{0}^{(0)}} |$ \text{Ap} $| |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
| ^ \text{s} ^ | | ^ \text{s} ^ | ||
- | ^ \text{s} |$ \text{Eag} $| | + | ^ \text{s} |$ \text{Ap} $| |
### | ### | ||
- | </ | + | </ |
+ | <hidden **Rotation matrix used** > | ||
### | ### | ||
- | TODO | + | | $ ^ {Y_{0}^{(0)}} $ ^ |
+ | ^ \text{s} | 1 | | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **Irriducible representations and their onsite energy** > | ||
### | ### | ||
- | | + | ^ ^\text{Ap} | {{: |
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for p orbitals ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | | + | |
- | \frac{5 | + | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ |
- | | + | |
- | -\frac{5}{6} (\text{Epxpx}+\text{Epypy}-2 \text{Epzpz}) & k=2\land m=0 \\ | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 386: | Line 445: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, (1/3)*(Epxpx + Epypy + Epzpz)} , | + | Akm = {{0, 0, (1/3)*(Eapp + Eapx + Eapy)} , |
- | {2, 0, (-5/6)*(Epxpx + Epypy + (-2)*(Epzpz))} , | + | {2, 0, (5/ |
- | {2,-1, (5)*((1/ | + | {2, 2, (5/ |
- | {2, 1, (5*I)*((1/(sqrt(6)))*(Epypz + (I)*(Epzpx)))} , | + | |
- | {2, 2, (5/ | + | |
- | | + | |
</ | </ | ||
Line 397: | Line 454: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
- | ^ {Y_{-1}^{(1)}} |$ \frac{\text{Epxpx}+\text{Epypy}}{2} | \frac{\text{Epzpx}+i \text{Epypz}}{\sqrt{2}} | + | ^ {Y_{-1}^{(1)}} |$ \frac{\text{Eapx}+\text{Eapy}}{2} | 0 | \frac{1}{2} (-\text{Eapx}+\text{Eapy}-2 i \text{Mapxy}) $| |
- | ^ {Y_{0}^{(1)}} |$ \frac{\text{Epzpx}-i \text{Epypz}}{\sqrt{2}} | + | ^ {Y_{0}^{(1)}} |$ 0 | \text{Eapp} | 0 $| |
- | ^ {Y_{1}^{(1)}} |$ \frac{1}{2} (-\text{Epxpx}+2 i \text{Epypx}+\text{Epypy}) | \frac{i (\text{Epypz}+i \text{Epzpx})}{\sqrt{2}} | + | ^ {Y_{1}^{(1)}} |$ \frac{1}{2} (-\text{Eapx}+\text{Eapy}+2 i \text{Mapxy}) | 0 | \frac{\text{Eapx}+\text{Eapy}}{2} $| |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
| ^ p_x ^ p_y ^ p_z ^ | | ^ p_x ^ p_y ^ p_z ^ | ||
- | ^ p_x |$ \text{Epxpx} | \text{Epypx} | \text{Epzpx} | + | ^ p_x |$ \text{Eapx} | \text{Mapxy} | 0 $| |
- | ^ p_y |$ \text{Epypx} | \text{Epypy} | \text{Epypz} | + | ^ p_y |$ \text{Mapxy} | \text{Eapy} | 0 $| |
- | ^ p_z |$ \text{Epzpx} | + | ^ p_z |$ 0 | 0 | \text{Eapp} $| |
### | ### | ||
- | </ | + | </ |
+ | <hidden **Rotation matrix used** > | ||
### | ### | ||
- | TODO | + | | $ ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} $ ^ |
+ | ^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | | ||
+ | ^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | | ||
+ | ^ p_z | 0 | 1 | 0 | | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **Irriducible representations and their onsite energy** > | ||
### | ### | ||
- | | + | ^ ^\text{Eapx} | {{: |
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: | | ||
+ | ^ ^\text{Eapy} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: | | ||
+ | ^ ^\text{Eapp} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: | | ||
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for d orbitals ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | | + | |
- | \frac{-4 i \text{Edxydz2}+\sqrt{3} \text{Edxzdxz}+2 i \sqrt{3} | + | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq |
- | | + | |
- | -\text{Edx2y2dx2y2}-\text{Edxydxy}+\frac{\text{Edxzdxz}+\text{Edyzdyz}}{2}+\text{Edz2dz2} & k=2\land m=0 \\ | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | -\frac{3}{10} (4 \text{Eappxz}+4 \text{Eappyz}-\text{Eapx2y2}-\text{Eapxy}-6 \text{Eapz2}) & k=4\land m=0 \\ |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 469: | Line 552: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, (1/5)*(Edx2y2dx2y2 | + | Akm = {{0, 0, (1/5)*(Eappxz |
- | {2, 0, (-1)*(Edx2y2dx2y2) + (-1)*(Edxydxy) + (1/2)*(Edxzdxz | + | {2, 0, (1/2)*(Eappxz |
- | {2,-1, (1/(sqrt(2)))*((I)*((sqrt(3))*(Edxydxz)) | + | |
- | | + | |
- | | + | {4, 0, (-3/ |
- | {2, 2, (1/ | + | |
- | {4, 0, (3/10)*(Edx2y2dx2y2 + Edxydxy + (-4)*(Edxzdxz + Edyzdyz) + (6)*(Edz2dz2))} , | + | {4,-2, (3)*((1/ |
- | {4,-1, (3/ | + | |
- | | + | {4,-4, (3/ |
- | {4, 2, (3)*((1/ | + | |
- | | + | |
- | {4,-3, (3/ | + | |
- | {4, 3, (3/2)*((sqrt(7/ | + | |
- | {4, 4, (3/ | + | |
- | | + | |
</ | </ | ||
Line 489: | Line 566: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
- | ^ {Y_{-2}^{(2)}} |$ \frac{\text{Edx2y2dx2y2}+\text{Edxydxy}}{2} | \frac{1}{2} (i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}-i \text{Edyzdx2y2}) | + | ^ {Y_{-2}^{(2)}} |$ \frac{\text{Eapx2y2}+\text{Eapxy}}{2} | 0 | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} | 0 | \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}+2 i \text{Mapx2y2xy}) $| |
- | ^ {Y_{-1}^{(2)}} |$ \frac{1}{2} (-i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}) | + | ^ {Y_{-1}^{(2)}} |$ 0 | \frac{\text{Eappxz}+\text{Eappyz}}{2} | 0 | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}-2 i \text{Mappyzxz}) | 0 $| |
- | ^ {Y_{0}^{(2)}} |$ \frac{\text{Edz2dx2y2}-i \text{Edxydz2}}{\sqrt{2}} | \frac{\text{Edz2dxz}-i \text{Edyzdz2}}{\sqrt{2}} | + | ^ {Y_{0}^{(2)}} |$ \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | 0 | \text{Eapz2} | 0 | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} $| |
- | ^ {Y_{1}^{(2)}} |$ \frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) | + | ^ {Y_{1}^{(2)}} |$ 0 | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}+2 i \text{Mappyzxz}) | 0 | \frac{\text{Eappxz}+\text{Eappyz}}{2} | 0 $| |
- | ^ {Y_{2}^{(2)}} |$ \frac{1}{2} (\text{Edx2y2dx2y2}-2 i \text{Edxydx2y2}-\text{Edxydxy}) | -\frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) | + | ^ {Y_{2}^{(2)}} |$ \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}-2 i \text{Mapx2y2xy}) | 0 | \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | 0 | \frac{\text{Eapx2y2}+\text{Eapxy}}{2} $| |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
| ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
- | ^ d_{x^2-y^2} |$ \text{Edx2y2dx2y2} | \text{Edz2dx2y2} | \text{Edyzdx2y2} | + | ^ d_{x^2-y^2} |$ \text{Eapx2y2} | \text{Mapx2y2z2} | 0 | 0 | \text{Mapx2y2xy} $| |
- | ^ d_{3z^2-r^2} |$ \text{Edz2dx2y2} | \text{Edz2dz2} | \text{Edyzdz2} | + | ^ d_{3z^2-r^2} |$ \text{Mapx2y2z2} | \text{Eapz2} | 0 | 0 | \text{Mapz2xy} $| |
- | ^ d_{\text{yz}} |$ \text{Edyzdx2y2} | + | ^ d_{\text{yz}} |$ 0 | 0 | \text{Eappyz} | \text{Mappyzxz} | 0 $| |
- | ^ d_{\text{xz}} |$ \text{Edxzdx2y2} | + | ^ d_{\text{xz}} |$ 0 | 0 | \text{Mappyzxz} | \text{Eappxz} | 0 $| |
- | ^ d_{\text{xy}} |$ \text{Edxydx2y2} | \text{Edxydz2} | \text{Edxydyz} | + | ^ d_{\text{xy}} |$ \text{Mapx2y2xy} | \text{Mapz2xy} | 0 | 0 | \text{Eapxy} $| |
### | ### | ||
- | </ | + | </ |
+ | <hidden **Rotation matrix used** > | ||
### | ### | ||
- | TODO | + | | $ ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} $ ^ |
+ | ^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 | | ||
+ | ^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **Irriducible representations and their onsite energy** > | ||
### | ### | ||
- | | + | ^ ^\text{Eapx2y2} | {{: |
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: | | ||
+ | ^ ^\text{Eapz2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eappyz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: | | ||
+ | ^ ^\text{Eappxz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: | | ||
+ | ^ ^\text{Eapxy} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: | | ||
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for f orbitals ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | A(0,0) & k=0\land m=0 \\ | + | \frac{1}{7} |
- | -A(1, | + | 0 & (k\neq 6\land |
- | A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ | + | \frac{5 \left(2 \sqrt{3} \text{Eappx3}-2 \sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}-i \sqrt{3} |
- | A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ | + | -\frac{5}{14} \left(\text{Eappx3}+\text{Eappy3}-2 \text{Eappz3}-\sqrt{15} \text{Mappx3xy2z2}+\sqrt{15} \text{Mappy3yz2x2}\right) & k=2\land m=0 \\ |
- | A(2,0) & k=2\land m=0 \\ | + | \frac{5 \left(2 \sqrt{3} \text{Eappx3}-2 \sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}+i \sqrt{3} |
- | A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ | + | \frac{3 \left(3 \sqrt{5} |
- | -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ | + | \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} |
- | -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ | + | \frac{3}{56} \left(9 \text{Eappx3}+7 \text{Eappxy2z2}-28 \text{Eappxyz}+9 \text{Eappy3}+7 \text{Eappyz2x2}+24 \text{Eappz3}-28 \text{Eappzx2y2}-2 \sqrt{15} \text{Mappx3xy2z2}+2 \sqrt{15} \text{Mappy3yz2x2}\right) & k=4\land m=0 \\ |
- | A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ | + | \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} |
- | A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ | + | \frac{3 \left(3 \sqrt{5} \text{Eappx3}-3 \sqrt{5} |
- | | + | \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} |
- | | + | -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}-8 |
- | A(4,0) & k=4\land m=0 \\ | + | \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}+2 i \sqrt{15} \text{Mappx3y3}-26 i \text{Mappx3yz2x2}-14 i \sqrt{15} \text{Mappxy2z2yz2x2}+64 i \text{Mappxyzz3}+26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} |
- | A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ | + | -\frac{13}{560} \left(25 \text{Eappx3}+39 \text{Eappxy2z2}-24 \text{Eappxyz}+25 \text{Eappy3}+39 \text{Eappyz2x2}-80 \text{Eappz3}-24 \text{Eappzx2y2}+14 \sqrt{15} \text{Mappx3xy2z2}-14 \sqrt{15} \text{Mappy3yz2x2}\right) & k=6\land m=0 \\ |
- | | + | \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}-2 i \sqrt{15} \text{Mappx3y3}+26 i \text{Mappx3yz2x2}+14 i \sqrt{15} \text{Mappxy2z2yz2x2}-64 i \text{Mappxyzz3}-26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} |
- | -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ | + | -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}+8 |
- | -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ | + | \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} \text{Eappxy2z2}-5 \sqrt{3} \text{Eappy3}-3 \sqrt{3} \text{Eappyz2x2}-6 \sqrt{5} \text{Mappx3xy2z2}+10 i \sqrt{3} |
- | -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ | + | |
- | A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ | + | |
- | A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ | + | |
- | A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ | + | |
- | A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ | + | |
- | A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ | + | |
- | A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ | + | |
- | A(6,0) & k=6\land m=0 \\ | + | |
- | A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ | + | |
- | A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ | + | |
- | A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 578: | Line 683: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, A(0,0)} , | + | Akm = {{0, 0, (1/ |
- | {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , | + | {2, 0, (-5/14)*(Eappx3 + Eappy3 + (-2)*(Eappz3) + (-1)*((sqrt(15))*(Mappx3xy2z2)) + (sqrt(15))*(Mappy3yz2x2))} , |
- | {1, 1, A(1,1) + (I)*(Ap(1,1))} , | + | {2,-2, (5/ |
- | | + | {2, 2, (5/28)*((1/(sqrt(2)))*((2)*((sqrt(3))*(Eappx3)) + (-2)*((sqrt(3))*(Eappy3)) + (2)*((sqrt(5))*(Mappx3xy2z2)) + (I)*((sqrt(3))*(Mappx3y3)) + (I)*((sqrt(5))*(Mappx3yz2x2)) + (5*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (4*I)*((sqrt(5))*(Mappxyzz3)) + (-I)*((sqrt(5))*(Mappy3xy2z2)) + (2)*((sqrt(5))*(Mappy3yz2x2)) + (-4)*((sqrt(5))*(Mappz3zx2y2))))} , |
- | {2,-2, A(2,2) + (-I)*(Ap(2,2))} , | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2,2))} , | + | {4, 2, (3/ |
- | | + | {4,-2, (3/ |
- | {3, 1, A(3,1) + (I)*(Ap(3,1))} , | + | {4,-4, (3/8)*((1/(sqrt(14)))*((3)*((sqrt(5))*(Eappx3)) + (-3)*((sqrt(5))*(Eappxy2z2)) + (-4)*((sqrt(5))*(Eappxyz)) + (3)*((sqrt(5))*(Eappy3)) + (-3)*((sqrt(5))*(Eappyz2x2)) + (4)*((sqrt(5))*(Eappzx2y2)) + (2)*((sqrt(3))*(Mappx3xy2z2)) + (-8*I)*((sqrt(3))*(Mappx3yz2x2)) + (8*I)*((sqrt(5))*(Mappxyzzx2y2)) + (-8*I)*((sqrt(3))*(Mappy3xy2z2)) + (-2)*((sqrt(3))*(Mappy3yz2x2))))} , |
- | {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , | + | {4, 4, (3/8)*((1/ |
- | {3, 3, A(3,3) + (I)*(Ap(3,3))} , | + | {6, 0, (-13/ |
- | {4, 0, A(4,0)} , | + | {6, 2, (13/ |
- | {4,-2, A(4,2) + (-I)*(Ap(4,2))} , | + | {6,-2, (13/ |
- | {4, 2, A(4,2) + (I)*(Ap(4,2))} , | + | |
- | {4,-4, A(4,4) + (-I)*(Ap(4,4))} , | + | {6, 4, (-13/ |
- | | + | |
- | {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , | + | {6, 6, (13/ |
- | {5, 1, A(5,1) + (I)*(Ap(5,1))} , | + | |
- | {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5,3))} , | + | |
- | {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5,5))} , | + | |
- | {6, 0, A(6,0)} , | + | |
- | {6,-2, A(6,2) + (-I)*(Ap(6,2))} , | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6,2))} , | + | |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6,4))} , | + | |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | |
</ | </ | ||
Line 611: | Line 704: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
- | ^ {Y_{-3}^{(3)}} |$ A(0,0)-\frac{1}{3} A(2,0)+\frac{1}{11} A(4,0)-\frac{5}{429} A(6,0) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2, | + | ^ {Y_{-3}^{(3)}} |$ \frac{1}{16} \left(5 \text{Eappx3}+3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappy3yz2x2}-\text{Mappx3xy2z2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}+2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}+i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} |
- | ^ {Y_{-2}^{(3)}} | 0 |$ A(0,0)-\frac{7}{33} A(4,0)+\frac{10}{143} A(6, | + | ^ {Y_{-2}^{(3)}} | 0 |$ \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{1}{2} (-\text{Eappxyz}+\text{Eappzx2y2}+2 i \text{Mappxyzzx2y2}) | 0 $| |
- | ^ {Y_{-1}^{(3)}} |$ -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2, | + | ^ {Y_{-1}^{(3)}} |$ \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}-2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}-i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(3 \text{Eappx3}+5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappx3xy2z2}-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} |
- | ^ {Y_{0}^{(3)}} | 0 |$ -\frac{2 (A(2, | + | ^ {Y_{0}^{(3)}} | 0 |$ \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \text{Eappz3} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 $| |
- | ^$ {Y_{1}^{(3)}} | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4, | + | ^$ {Y_{1}^{(3)}} | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}+4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-3 \text{Eappx3}-5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}-2 \sqrt{15} \text{Mappx3xy2z2}+2 i \left(3 \text{Mappx3y3}-\sqrt{15} \text{Mappx3yz2x2}-5 \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3xy2z2}+i \text{Mappy3yz2x2})\right)\right) | 0 | \frac{1}{16} |
- | ^ {Y_{2}^{(3)}} | 0 |$ \frac{1}{429} \sqrt{14} \left(13 \sqrt{5} (A(4,4)+i \text{Ap}(4,4))+30 (A(6,4)+i \text{Ap}(6, | + | ^ {Y_{2}^{(3)}} | 0 |$ \frac{1}{2} (-\text{Eappxyz}+\text{Eappzx2y2}-2 i \text{Mappxyzzx2y2}) | 0 | \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 $| |
- | ^ {Y_{3}^{(3)}} |$ -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)+i \text{Ap}(6,6)) | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)+i \text{Ap}(6,4))\right) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2, | + | ^ {Y_{3}^{(3)}} |$ \frac{1}{16} \left(-5 \text{Eappx3}-3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \left(\sqrt{15} \text{Mappx3xy2z2}-5 i \text{Mappx3y3}-i \sqrt{15} \text{Mappx3yz2x2}+3 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}+i \text{Mappy3xy2z2})\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
- | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | + | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
- | ^ f_{\text{xyz}} |$ \frac{1}{429} \left(429 A(0,0)-91 A(4,0)-13 \sqrt{70} A(4,4)+30 A(6,0)-30 \sqrt{14} A(6, | + | ^ f_{\text{xyz}} |$ \text{Eappxyz} | 0 | 0 | \text{Mappxyzz3} | 0 | 0 | \text{Mappxyzzx2y2} $| |
- | ^ f_{x\left(5x^2-r^2\right)} | 0 |$ \frac{8580 A(0,0)-1144 A(2,0)+1144 \sqrt{6} A(2,2)+585 A(4,0)-390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)+125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)+125 \sqrt{231} A(6,6)}{8580} | \frac{286 \sqrt{6} | + | ^ f_{x\left(5x^2-r^2\right)} | 0 |$ \text{Eappx3} | \text{Mappx3y3} | 0 | \text{Mappx3xy2z2} | \text{Mappx3yz2x2} | 0 $| |
- | ^ f_{y\left(5y^2-r^2\right)} | 0 |$ \frac{286 \sqrt{6} | + | ^ f_{y\left(5y^2-r^2\right)} | 0 |$ \text{Mappx3y3} | \text{Eappy3} | 0 | \text{Mappy3xy2z2} | \text{Mappy3yz2x2} | 0 $| |
- | ^$ f_{x\left(5z^2-r^2\right)} | \frac{286 \sqrt{10} | + | ^$ f_{z\left(5z^2-r^2\right)} | \text{Mappxyzz3} | 0 | 0 | \text{Eappz3} | 0 | 0 | \text{Mappz3zx2y2} $| |
- | ^ f_{x\left(y^2-z^2\right)} | 0 |$ \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6, | + | ^ f_{x\left(y^2-z^2\right)} | 0 |$ \text{Mappx3xy2z2} | \text{Mappy3xy2z2} | 0 | \text{Eappxy2z2} | \text{Mappxy2z2yz2x2} | 0 $| |
- | ^ f_{y\left(z^2-x^2\right)} | 0 |$ \frac{286 \sqrt{10} | + | ^ f_{y\left(z^2-x^2\right)} | 0 |$ \text{Mappx3yz2x2} | \text{Mappy3yz2x2} | 0 | \text{Mappxy2z2yz2x2} | \text{Eappyz2x2} | 0 $| |
- | ^ f_{z\left(x^2-y^2\right)} |$ -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} | + | ^ f_{z\left(x^2-y^2\right)} |$ \text{Mappxyzzx2y2} | 0 | 0 | \text{Mappz3zx2y2} | 0 | 0 | \text{Eappzx2y2} $| |
### | ### | ||
- | </ | + | </ |
+ | <hidden **Rotation matrix used** > | ||
### | ### | ||
- | TODO | + | | $ ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} $ ^ |
+ | ^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x\left(5x^2-r^2\right)} | \frac{\sqrt{5}}{4} | 0 | -\frac{\sqrt{3}}{4} | 0 | \frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | | ||
+ | ^ f_{y\left(5y^2-r^2\right)} | -\frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{5}}{4} | | ||
+ | ^ f_{z\left(5z^2-r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(y^2-z^2\right)} | -\frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{3}}{4} | | ||
+ | ^ f_{y\left(z^2-x^2\right)} | -\frac{i \sqrt{3}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} | | ||
+ | ^ f_{z\left(x^2-y^2\right)} | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **Irriducible representations and their onsite energy** > | ||
### | ### | ||
- | | + | ^ ^\text{Eappxyz} | {{: |
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: | | ||
+ | ^ ^\text{Eappx3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )-5 \cos (2 \theta )-7\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} x \left(5 x^2-15 y^2-15 z^2+3\right) | ::: | | ||
+ | ^ ^\text{Eappy3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )+7\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} y \left(-15 x^2+5 y^2-15 z^2+3\right) | ::: | | ||
+ | ^ ^\text{Eappz3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta )) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right) | ::: | | ||
+ | ^ ^\text{Eappxy2z2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{105}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \sin ^2(\theta ) \cos (2 \phi )+3 \cos (2 \theta )+1\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{105}{\pi }} x \left(x^2-3 y^2+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eappyz2x2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{105}{\pi }} \sin (\theta ) \sin (\phi ) \left(-4 \sin ^2(\theta ) \cos (2 \phi )+6 \cos (2 \theta )+2\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{105}{\pi }} y \left(-3 x^2+y^2+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eappzx2y2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right) | ::: | | ||
### | ### | ||
- | </ | + | </ |
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
==== Potential for s-p orbital mixing ==== | ==== Potential for s-p orbital mixing ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | A(0,0) & k=0\land m=0 \\ | + | 0 & k\neq 1\lor (m\neq -1\land m\neq 1) \\ |
- | -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ | + | -A(1,1)+i B(1,1) & k=1\land m=-1 \\ |
- | | + | |
- | A(2,2)-i \text{Ap}(2, | + | |
- | | + | |
- | | + | |
- | -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ | + | |
- | -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ | + | |
- | A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ | + | |
- | A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 706: | Line 829: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, A(0,0)} , | + | Akm = {{1,-1, (-1)*(A(1, |
- | {1,-1, (-1)*(A(1, | + | {1, 1, A(1,1) + (I)*(B(1,1))} } |
- | {1, 1, A(1,1) + (I)*(Ap(1,1))} , | + | |
- | {2, 0, A(2,0)} , | + | |
- | | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2, | + | |
- | | + | |
- | {3, 1, A(3,1) + (I)*(Ap(3, | + | |
- | | + | |
- | {3, 3, A(3,3) + (I)*(Ap(3, | + | |
- | {4, 0, A(4,0)} , | + | |
- | | + | |
- | {4, 2, A(4,2) + (I)*(Ap(4, | + | |
- | | + | |
- | {4, 4, A(4,4) + (I)*(Ap(4, | + | |
- | | + | |
- | {5, 1, A(5,1) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5, | + | |
- | {6, 0, A(6,0)} , | + | |
- | | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | |
</ | </ | ||
Line 739: | Line 836: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
- | ^ {Y_{0}^{(0)}} |$ -\frac{A(1, | + | ^ {Y_{0}^{(0)}} |$ -\frac{A(1, |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
| ^ p_x ^ p_y ^ p_z ^ | | ^ p_x ^ p_y ^ p_z ^ | ||
- | ^ \text{s} | -\sqrt{\frac{2}{3}} A(1,1) |$ \sqrt{\frac{2}{3}} | + | ^ \text{s} | -\sqrt{\frac{2}{3}} A(1,1) |$ \sqrt{\frac{2}{3}} |
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for s-d orbital mixing ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | A(0,0) & k=0\land m=0 \\ | + | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ |
- | -A(1,1)+i \text{Ap}(1, | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 804: | Line 893: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, A(0,0)} , | + | Akm = {{2, 0, A(2,0)} , |
- | | + | |
- | {1, 1, A(1,1) + (I)*(Ap(1, | + | {2, 2, A(2,2) + (I)*(B(2,2))} } |
- | {2, 0, A(2,0)} , | + | |
- | | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2,2))} , | + | |
- | | + | |
- | {3, 1, A(3,1) + (I)*(Ap(3, | + | |
- | | + | |
- | {3, 3, A(3,3) + (I)*(Ap(3, | + | |
- | {4, 0, A(4,0)} , | + | |
- | | + | |
- | {4, 2, A(4,2) + (I)*(Ap(4, | + | |
- | | + | |
- | {4, 4, A(4,4) + (I)*(Ap(4, | + | |
- | | + | |
- | {5, 1, A(5,1) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5, | + | |
- | {6, 0, A(6,0)} , | + | |
- | | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | |
</ | </ | ||
Line 837: | Line 901: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
- | ^ {Y_{0}^{(0)}} |$ \frac{A(2, | + | ^ {Y_{0}^{(0)}} |$ \frac{A(2, |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
| ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
- | ^ \text{s} | \sqrt{\frac{2}{5}} A(2,2) | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 |$ -\sqrt{\frac{2}{5}} | + | ^ \text{s} | \sqrt{\frac{2}{5}} A(2,2) | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 |$ -\sqrt{\frac{2}{5}} |
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for s-f orbital mixing ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | A(0,0) & k=0\land m=0 \\ | + | 0 & k\neq 3\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ |
- | -A(1, | + | |
- | | + | |
- | | + | |
- | | + | |
- | A(2,2)+i \text{Ap}(2, | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 902: | Line 959: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, A(0,0)} , | + | Akm = {{3,-1, (-1)*(A(3, |
- | | + | {3, 1, A(3,1) + (I)*(B(3,1))} , |
- | {1, 1, A(1,1) + (I)*(Ap(1, | + | |
- | {2, 0, A(2,0)} , | + | {3, 3, A(3,3) + (I)*(B(3,3))} } |
- | | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2, | + | |
- | {3,-1, (-1)*(A(3, | + | |
- | {3, 1, A(3,1) + (I)*(Ap(3,1))} , | + | |
- | | + | |
- | {3, 3, A(3,3) + (I)*(Ap(3,3))} , | + | |
- | {4, 0, A(4,0)} , | + | |
- | | + | |
- | {4, 2, A(4,2) + (I)*(Ap(4, | + | |
- | | + | |
- | {4, 4, A(4,4) + (I)*(Ap(4, | + | |
- | | + | |
- | {5, 1, A(5,1) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5, | + | |
- | {6, 0, A(6,0)} , | + | |
- | | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | |
</ | </ | ||
Line 935: | Line 968: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
- | ^ {Y_{0}^{(0)}} |$ -\frac{A(3, | + | ^ {Y_{0}^{(0)}} |$ -\frac{A(3, |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
- | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | + | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
- | ^ \text{s} | 0 | \frac{1}{14} \left(\sqrt{21} A(3,1)-\sqrt{35} A(3,3)\right) |$ -\frac{\sqrt{3} | + | ^ \text{s} | 0 | \frac{1}{14} \left(\sqrt{21} A(3,1)-\sqrt{35} A(3,3)\right) |$ -\frac{\sqrt{3} |
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for p-d orbital mixing ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | A(0,0) & k=0\land m=0 \\ | + | 0 & (k\neq 3\land (k\neq 1\lor (m\neq -1\land m\neq 1)))\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ |
- | -A(1, | + | -A(1,1)+i B(1,1) & k=1\land m=-1 \\ |
- | A(1,1)+i \text{Ap}(1,1) & k=1\land | + | A(1,1)+i B(1,1) & k=1\land m=1 \\ |
- | | + | -A(3, |
- | | + | |
- | | + | A(3,1)+i B(3,1) & k=3\land m=1 \\ |
- | -A(3,3)+i \text{Ap}(3, | + | A(3,3)+i B(3,3) & \text{True} |
- | -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ | + | |
- | A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ | + | |
- | | + | |
- | A(4,4)-i \text{Ap}(4, | + | |
- | A(4,2)-i \text{Ap}(4, | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | -A(5,3)+i \text{Ap}(5, | + | |
- | -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ | + | |
- | A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ | + | |
- | A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 1000: | Line 1028: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, A(0,0)} , | + | Akm = {{1,-1, (-1)*(A(1, |
- | {1,-1, (-1)*(A(1, | + | {1, 1, A(1,1) + (I)*(B(1,1))} , |
- | {1, 1, A(1,1) + (I)*(Ap(1,1))} , | + | |
- | {2, 0, A(2,0)} , | + | {3, 1, A(3,1) + (I)*(B(3,1))} , |
- | | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2,2))} , | + | {3, 3, A(3,3) + (I)*(B(3,3))} } |
- | | + | |
- | {3, 1, A(3,1) + (I)*(Ap(3,1))} , | + | |
- | | + | |
- | {3, 3, A(3,3) + (I)*(Ap(3,3))} , | + | |
- | {4, 0, A(4,0)} , | + | |
- | | + | |
- | {4, 2, A(4,2) + (I)*(Ap(4, | + | |
- | | + | |
- | {4, 4, A(4,4) + (I)*(Ap(4, | + | |
- | | + | |
- | {5, 1, A(5,1) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5, | + | |
- | {6, 0, A(6,0)} , | + | |
- | | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | |
</ | </ | ||
Line 1033: | Line 1039: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
- | ^ {Y_{-1}^{(1)}} |$ \frac{1}{7} \sqrt{\frac{3}{5}} (A(3, | + | ^ {Y_{-1}^{(1)}} |$ \frac{1}{7} \sqrt{\frac{3}{5}} (A(3, |
- | ^ {Y_{0}^{(1)}} | 0 |$ -\frac{A(1, | + | ^ {Y_{0}^{(1)}} | 0 |$ -\frac{A(1, |
- | ^ {Y_{1}^{(1)}} |$ \frac{3}{7} (A(3, | + | ^ {Y_{1}^{(1)}} |$ \frac{3}{7} (A(3, |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
| ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
- | ^ p_x | \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)-15 A(3,3)\right) | \sqrt{\frac{2}{15}} A(1,1)-\frac{6 A(3,1)}{7 \sqrt{5}} | 0 | 0 |$ \sqrt{\frac{2}{5}} | + | ^ p_x | \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)-15 A(3,3)\right) | \sqrt{\frac{2}{15}} A(1,1)-\frac{6 A(3,1)}{7 \sqrt{5}} | 0 | 0 |$ \sqrt{\frac{2}{5}} |
- | ^ p_y |$ \frac{1}{35} \left(-7 \sqrt{10} | + | ^ p_y |$ \frac{1}{35} \left(-7 \sqrt{10} |
- | ^ p_z | 0 | 0 |$ \sqrt{\frac{2}{5}} | + | ^ p_z | 0 | 0 |$ \sqrt{\frac{2}{5}} |
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for p-f orbital mixing ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | A(0,0) & k=0\land m=0 \\ | + | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 1102: | Line 1105: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, A(0,0)} , | + | Akm = {{2, 0, A(2,0)} , |
- | | + | |
- | {1, 1, A(1,1) + (I)*(Ap(1, | + | {2, 2, A(2,2) + (I)*(B(2,2))} , |
- | {2, 0, A(2,0)} , | + | |
- | | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2,2))} , | + | |
- | | + | |
- | {3, 1, A(3,1) + (I)*(Ap(3, | + | |
- | | + | |
- | {3, 3, A(3,3) + (I)*(Ap(3,3))} , | + | |
{4, 0, A(4,0)} , | {4, 0, A(4,0)} , | ||
- | | + | |
- | {4, 2, A(4,2) + (I)*(Ap(4,2))} , | + | {4, 2, A(4,2) + (I)*(B(4,2))} , |
- | | + | |
- | {4, 4, A(4,4) + (I)*(Ap(4,4))} , | + | {4, 4, A(4,4) + (I)*(B(4,4))} } |
- | | + | |
- | {5, 1, A(5,1) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5, | + | |
- | | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5, | + | |
- | {6, 0, A(6,0)} , | + | |
- | | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | |
</ | </ | ||
Line 1135: | Line 1118: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
- | ^ {Y_{-1}^{(1)}} |$ \frac{3 (A(2, | + | ^ {Y_{-1}^{(1)}} |$ \frac{3 (A(2, |
- | ^ {Y_{0}^{(1)}} | 0 |$ \sqrt{\frac{3}{35}} (A(2, | + | ^ {Y_{0}^{(1)}} | 0 |$ \sqrt{\frac{3}{35}} (A(2, |
- | ^ {Y_{1}^{(1)}} |$ -\frac{2 (A(4, | + | ^ {Y_{1}^{(1)}} |$ -\frac{2 (A(4, |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
- | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | + | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
- | ^ p_x | 0 | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)+81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)-2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) |$ \frac{1}{630} \left(54 \sqrt{14} | + | ^ p_x | 0 | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)+81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)-2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) |$ \frac{1}{630} \left(54 \sqrt{14} |
- | ^ p_y | 0 |$ \frac{1}{630} \left(54 \sqrt{14} | + | ^ p_y | 0 |$ \frac{1}{630} \left(54 \sqrt{14} |
- | ^ p_z |$ -\sqrt{\frac{6}{35}} | + | ^ p_z |$ -\sqrt{\frac{6}{35}} |
### | ### | ||
- | </ | + | </ |
+ | ==== Potential for d-f orbital mixing ==== | ||
- | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | + | <hidden **Potential parameterized with onsite energies of irriducible representations** > |
### | ### | ||
| | ||
- | A(0,0) & k=0\land m=0 \\ | + | 0 & (k\neq 5\land (((k\neq 1\lor (m\neq -1\land m\neq 1))\land |
- | -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ | + | -A(1,1)+i B(1,1) & k=1\land m=-1 \\ |
- | A(1,1)+i \text{Ap}(1, | + | A(1,1)+i B(1,1) & k=1\land m=1 \\ |
- | A(2,2)-i \text{Ap}(2, | + | -A(3, |
- | | + | -A(3,1)+i B(3,1) & k=3\land m=-1 \\ |
- | A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ | + | A(3,1)+i B(3,1) & k=3\land m=1 \\ |
- | -A(3,3)+i \text{Ap}(3, | + | A(3,3)+i B(3,3) & k=3\land m=3 \\ |
- | -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ | + | |
- | A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ | + | |
- | | + | |
- | A(4,4)-i \text{Ap}(4, | + | |
- | A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ | + | |
- | A(4,0) & k=4\land m=0 \\ | + | |
- | A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ | + | |
- | A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 1204: | Line 1188: | ||
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> | ||
- | Akm = {{0, 0, A(0,0)} , | + | Akm = {{1,-1, (-1)*(A(1, |
- | {1,-1, (-1)*(A(1, | + | {1, 1, A(1,1) + (I)*(B(1,1))} , |
- | {1, 1, A(1,1) + (I)*(Ap(1,1))} , | + | |
- | {2, 0, A(2,0)} , | + | {3, 1, A(3,1) + (I)*(B(3,1))} , |
- | | + | |
- | {2, 2, A(2,2) + (I)*(Ap(2,2))} , | + | {3, 3, A(3,3) + (I)*(B(3,3))} , |
- | | + | |
- | {3, 1, A(3,1) + (I)*(Ap(3,1))} , | + | {5, 1, A(5,1) + (I)*(B(5,1))} , |
- | | + | |
- | {3, 3, A(3,3) + (I)*(Ap(3,3))} , | + | {5, 3, A(5,3) + (I)*(B(5,3))} , |
- | {4, 0, A(4,0)} , | + | |
- | | + | {5, 5, A(5,5) + (I)*(B(5,5))} } |
- | {4, 2, A(4,2) + (I)*(Ap(4, | + | |
- | | + | |
- | {4, 4, A(4,4) + (I)*(Ap(4,4))} , | + | |
- | | + | |
- | {5, 1, A(5,1) + (I)*(Ap(5,1))} , | + | |
- | | + | |
- | {5, 3, A(5,3) + (I)*(Ap(5,3))} , | + | |
- | | + | |
- | {5, 5, A(5,5) + (I)*(Ap(5,5))} , | + | |
- | {6, 0, A(6,0)} , | + | |
- | | + | |
- | {6, 2, A(6,2) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 4, A(6,4) + (I)*(Ap(6, | + | |
- | | + | |
- | {6, 6, A(6,6) + (I)*(Ap(6,6))} } | + | |
</ | </ | ||
Line 1237: | Line 1205: | ||
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
### | ### | ||
| ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
- | ^ {Y_{-2}^{(2)}} |$ -\sqrt{\frac{3}{7}} (A(1, | + | ^ {Y_{-2}^{(2)}} |$ -\sqrt{\frac{3}{7}} (A(1, |
- | ^ {Y_{-1}^{(2)}} | 0 |$ -\sqrt{\frac{2}{7}} (A(1, | + | ^ {Y_{-1}^{(2)}} | 0 |$ -\sqrt{\frac{2}{7}} (A(1, |
- | ^ {Y_{0}^{(2)}} |$ \frac{1}{3} \sqrt{\frac{5}{7}} (A(3, | + | ^ {Y_{0}^{(2)}} |$ \frac{1}{3} \sqrt{\frac{5}{7}} (A(3, |
- | ^ {Y_{1}^{(2)}} | 0 |$ \frac{1}{3} \sqrt{\frac{5}{7}} (A(3, | + | ^ {Y_{1}^{(2)}} | 0 |$ \frac{1}{3} \sqrt{\frac{5}{7}} (A(3, |
- | ^ {Y_{2}^{(2)}} |$ -\frac{5}{11} \sqrt{\frac{2}{3}} (A(5, | + | ^ {Y_{2}^{(2)}} |$ -\frac{5}{11} \sqrt{\frac{2}{3}} (A(5, |
### | ### | ||
- | </ | + | </ |
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
### | ### | ||
- | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | + | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
- | ^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} |$ \frac{-99 \sqrt{210} | + | ^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} |$ \frac{-99 \sqrt{210} |
- | ^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} |$ \frac{-99 \sqrt{70} | + | ^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} |$ \frac{-99 \sqrt{70} |
- | ^ d_{\text{yz}} | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)+28 A(5,3)\right)\right) | 0 | 0 |$ -\sqrt{\frac{6}{35}} | + | ^ d_{\text{yz}} | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)+28 A(5,3)\right)\right) | 0 | 0 |$ -\sqrt{\frac{6}{35}} |
- | ^ d_{\text{xz}} |$ \frac{1}{231} \left(33 \sqrt{14} | + | ^ d_{\text{xz}} |$ \frac{1}{231} \left(33 \sqrt{14} |
- | ^ d_{\text{xy}} | 0 |$ \frac{-66 \sqrt{210} | + | ^ d_{\text{xy}} | 0 |$ \frac{-66 \sqrt{210} |
Line 1266: | Line 1236: | ||
</ | </ | ||
+ | |||
===== Table of several point groups ===== | ===== Table of several point groups ===== | ||