Processing math: 95%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
physics_chemistry:point_groups:cs:orientation_z [2018/03/29 21:59] Maurits W. Haverkortphysics_chemistry:point_groups:cs:orientation_z [2018/04/06 09:16] (current) Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation Z ====== ====== Orientation Z ======
  
Line 73: Line 75:
   * [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]]   * [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]]
   * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]]   * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]]
 +  * [[physics_chemistry:point_groups:d5h:orientation_zx|Point Group D5h with orientation Zx]]
 +  * [[physics_chemistry:point_groups:d5h:orientation_zy|Point Group D5h with orientation Zy]]
   * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]]   * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]]
   * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]]   * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]]
Line 263: Line 267:
 ^fx(5x2r2)|0|0|0|0|0|0|0|0|0|54|0|34|0|34|0|54| ^fx(5x2r2)|0|0|0|0|0|0|0|0|0|54|0|34|0|34|0|54|
 ^fy(5y2r2)|0|0|0|0|0|0|0|0|0|i54|0|i34|0|i34|0|i54| ^fy(5y2r2)|0|0|0|0|0|0|0|0|0|i54|0|i34|0|i34|0|i54|
-^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $|+^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $|
 ^fx(y2z2)|0|0|0|0|0|0|0|0|0|34|0|54|0|54|0|34| ^fx(y2z2)|0|0|0|0|0|0|0|0|0|34|0|54|0|54|0|34|
 ^fy(z2x2)|0|0|0|0|0|0|0|0|0|i34|0|i54|0|i54|0|i34| ^fy(z2x2)|0|0|0|0|0|0|0|0|0|i34|0|i54|0|i54|0|i34|
Line 283: Line 287:
 ### ###
  
-  ^  s  ^  px  ^  py  ^  pz  ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^+  ^  s  ^  px  ^  py  ^  pz  ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^
 ^s|Ass(0,0)|23Asp(1,1)|23Bsp(1,1)|0|25Asd(2,2)|Asd(2,0)5|0|0|25Bsd(2,2)|0|1237Asf(3,1)1257Asf(3,3)|1237Bsf(3,1)1257Bsf(3,3)|0|1257Asf(3,1)+1237Asf(3,3)|1257Bsf(3,1)1237Bsf(3,3)|0| ^s|Ass(0,0)|23Asp(1,1)|23Bsp(1,1)|0|25Asd(2,2)|Asd(2,0)5|0|0|25Bsd(2,2)|0|1237Asf(3,1)1257Asf(3,3)|1237Bsf(3,1)1257Bsf(3,3)|0|1257Asf(3,1)+1237Asf(3,3)|1257Bsf(3,1)1237Bsf(3,3)|0|
 ^px|23Asp(1,1)|App(0,0)15App(2,0)+156App(2,2)|156Bpp(2,2)|0|25Apd(1,1)+1735Apd(3,1)37Apd(3,3)|215Apd(1,1)6Apd(3,1)75|0|0|25Bpd(1,1)1735Bpd(3,1)+37Bpd(3,3)|0|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|0|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|0| ^px|23Asp(1,1)|App(0,0)15App(2,0)+156App(2,2)|156Bpp(2,2)|0|25Apd(1,1)+1735Apd(3,1)37Apd(3,3)|215Apd(1,1)6Apd(3,1)75|0|0|25Bpd(1,1)1735Bpd(3,1)+37Bpd(3,3)|0|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|0|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|0|
Line 296: Line 300:
 ^fx(5x2r2)|1237Asf(3,1)1257Asf(3,3)|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)1356Bpf(4,4)|0|3370Adf(1,1)+11Adf(3,1)635Adf(3,3)22153327Adf(5,1)+5Adf(5,3)22352253Adf(5,5)|3Adf(1,1)70+12335Adf(3,1)+5Adf(3,3)67+511314Adf(5,1)533Adf(5,3)|0|0|635Bdf(1,1)Bdf(3,1)635+Bdf(3,3)221+5Bdf(5,1)33145Bdf(5,3)223+52253Bdf(5,5)|0|Aff(0,0)215Aff(2,0)+2523Aff(2,2)+344Aff(4,0)11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)1716+25572353Aff(6,2)2528672Aff(6,4)+2552733Aff(6,6)|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|0| ^fx(5x2r2)|1237Asf(3,1)1257Asf(3,3)|31037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4)|3527Bpf(2,2)+13542Bpf(4,2)1356Bpf(4,4)|0|3370Adf(1,1)+11Adf(3,1)635Adf(3,3)22153327Adf(5,1)+5Adf(5,3)22352253Adf(5,5)|3Adf(1,1)70+12335Adf(3,1)+5Adf(3,3)67+511314Adf(5,1)533Adf(5,3)|0|0|635Bdf(1,1)Bdf(3,1)635+Bdf(3,3)221+5Bdf(5,1)33145Bdf(5,3)223+52253Bdf(5,5)|0|Aff(0,0)215Aff(2,0)+2523Aff(2,2)+344Aff(4,0)11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)1716+25572353Aff(6,2)2528672Aff(6,4)+2552733Aff(6,6)|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|0|
 ^fy(5y2r2)|1237Bsf(3,1)1257Bsf(3,3)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|31037Apf(2,0)9Apf(2,2)514+Apf(4,0)221+131021Apf(4,2)+1356Apf(4,4)|0|3370Bdf(1,1)+11Bdf(3,1)635+Bdf(3,3)22153327Bdf(5,1)5Bdf(5,3)22352253Bdf(5,5)|3Bdf(1,1)7012335Bdf(3,1)+5Bdf(3,3)67511314Bdf(5,1)533Bdf(5,3)|0|0|635Adf(1,1)+Adf(3,1)635+Adf(3,3)2215Adf(5,1)33145Adf(5,3)22352253Adf(5,5)|0|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|Aff(0,0)215Aff(2,0)2523Aff(2,2)+344Aff(4,0)+11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)171625572353Aff(6,2)2528672Aff(6,4)2552733Aff(6,6)|0|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0| ^fy(5y2r2)|1237Bsf(3,1)1257Bsf(3,3)|3527Bpf(2,2)+13542Bpf(4,2)+1356Bpf(4,4)|31037Apf(2,0)9Apf(2,2)514+Apf(4,0)221+131021Apf(4,2)+1356Apf(4,4)|0|3370Bdf(1,1)+11Bdf(3,1)635+Bdf(3,3)22153327Bdf(5,1)5Bdf(5,3)22352253Bdf(5,5)|3Bdf(1,1)7012335Bdf(3,1)+5Bdf(3,3)67511314Bdf(5,1)533Bdf(5,3)|0|0|635Adf(1,1)+Adf(3,1)635+Adf(3,3)2215Adf(5,1)33145Adf(5,3)22352253Adf(5,5)|0|Bff(2,2)5611110Bff(4,2)5572353Bff(6,2)+2552733Bff(6,6)|Aff(0,0)215Aff(2,0)2523Aff(2,2)+344Aff(4,0)+11152Aff(4,2)+122352Aff(4,4)125Aff(6,0)171625572353Aff(6,2)2528672Aff(6,4)2552733Aff(6,6)|0|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0|
-^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }|\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }|\color{darkred}{ 0 }| \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|+^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }|\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }|\color{darkred}{ 0 }| \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|
 ^fx(y2z2)|1257Asf(3,1)+1237Asf(3,3)|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)+Bpf(4,2)14+Bpf(4,4)32|0|Adf(1,1)14+Adf(3,1)2211657Adf(3,3)1111021Adf(5,1)+5665Adf(5,3)+522Adf(5,5)|314Adf(1,1)+Adf(3,1)2712521Adf(3,3)+511514Adf(5,1)+11153Adf(5,3)|0|0|27Bdf(1,1)1237Bdf(3,1)+1657Bdf(3,3)+1111514Bdf(5,1)5665Bdf(5,3)522Bdf(5,5)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+73352Aff(4,2)122352Aff(4,4)544Aff(6,0)+5572105Aff(6,2)+2528672Aff(6,4)+5522111Aff(6,6)|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|0| ^fx(y2z2)|1257Asf(3,1)+1237Asf(3,3)|3Apf(2,0)235370Apf(2,2)+1657Apf(4,0)1327Apf(4,2)Apf(4,4)32|635Bpf(2,2)+Bpf(4,2)14+Bpf(4,4)32|0|Adf(1,1)14+Adf(3,1)2211657Adf(3,3)1111021Adf(5,1)+5665Adf(5,3)+522Adf(5,5)|314Adf(1,1)+Adf(3,1)2712521Adf(3,3)+511514Adf(5,1)+11153Adf(5,3)|0|0|27Bdf(1,1)1237Bdf(3,1)+1657Bdf(3,3)+1111514Bdf(5,1)5665Bdf(5,3)522Bdf(5,5)|0|Aff(2,0)15+1325Aff(2,2)14453Aff(4,0)+Aff(4,2)116+12276Aff(4,4)3557253Aff(6,0)+857Aff(6,2)17165286356Aff(6,4)5523511Aff(6,6)|Bff(2,2)31021123Bff(4,2)+111143Bff(4,4)51327Bff(6,2)5143703Bff(6,4)5523511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+73352Aff(4,2)122352Aff(4,4)544Aff(6,0)+5572105Aff(6,2)+2528672Aff(6,4)+5522111Aff(6,6)|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|0|
 ^fy(z2x2)|1257Bsf(3,1)1237Bsf(3,3)|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|3Apf(2,0)235370Apf(2,2)1657Apf(4,0)1327Apf(4,2)+Apf(4,4)32|0|Bdf(1,1)14Bdf(3,1)2211657Bdf(3,3)+1111021Bdf(5,1)+5665Bdf(5,3)522Bdf(5,5)|314Bdf(1,1)+Bdf(3,1)27+12521Bdf(3,3)+511514Bdf(5,1)11153Bdf(5,3)|0|0|27Adf(1,1)1237Adf(3,1)1657Adf(3,3)+1111514Adf(5,1)+5665Adf(5,3)522Adf(5,5)|0|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|Aff(0,0)+7132Aff(4,0)73352Aff(4,2)122352Aff(4,4)544Aff(6,0)5572105Aff(6,2)+2528672Aff(6,4)5522111Aff(6,6)|0| ^fy(z2x2)|1257Bsf(3,1)1237Bsf(3,3)|635Bpf(2,2)Bpf(4,2)14+Bpf(4,4)32|3Apf(2,0)235370Apf(2,2)1657Apf(4,0)1327Apf(4,2)+Apf(4,4)32|0|Bdf(1,1)14Bdf(3,1)2211657Bdf(3,3)+1111021Bdf(5,1)+5665Bdf(5,3)522Bdf(5,5)|314Bdf(1,1)+Bdf(3,1)27+12521Bdf(3,3)+511514Bdf(5,1)11153Bdf(5,3)|0|0|27Adf(1,1)1237Adf(3,1)1657Adf(3,3)+1111514Adf(5,1)+5665Adf(5,3)522Adf(5,5)|0|Bff(2,2)310+21123Bff(4,2)+111143Bff(4,4)+51327Bff(6,2)5143703Bff(6,4)+5523511Bff(6,6)|Aff(2,0)15+1325Aff(2,2)+14453Aff(4,0)+Aff(4,2)11612276Aff(4,4)+3557253Aff(6,0)+857Aff(6,2)1716+5286356Aff(6,4)5523511Aff(6,6)|0|Bff(2,2)613310Bff(4,2)+35572353Bff(6,2)5522111Bff(6,6)|Aff(0,0)+7132Aff(4,0)73352Aff(4,2)122352Aff(4,4)544Aff(6,0)5572105Aff(6,2)+2528672Aff(6,4)5522111Aff(6,6)|0|
Line 329: Line 333:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- \text{Eag} & k=0\land m=0 \\+ \text{Ap} & k=0\land m=0 \\
  0 & \text{True}  0 & \text{True}
 \end{cases}$$ \end{cases}$$
Line 342: Line 346:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{Eag, k == 0 && m == 0}}, 0]+Akm[k_,m_]:=Piecewise[{{Ap, k == 0 && m == 0}}, 0]
  
 </code> </code>
Line 354: Line 358:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, Eag} }+Akm = {{0, 0, Ap} }
  
 </code> </code>
Line 366: Line 370:
  
   ^  Y(0)0  ^   ^  Y(0)0  ^
-^Y(0)0|$ \text{Eag} $|+^Y(0)0|$ \text{Ap} $|
  
  
Line 377: Line 381:
  
   ^  s  ^   ^  s  ^
-^s|$ \text{Eag} $|+^s|$ \text{Ap} $|
  
  
Line 398: Line 402:
 ### ###
  
- TODO  +^ ^Ap | {{:physics_chemistry:pointgroup:cs_z_orb_0_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |12π | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |12π | ::: | 
  
 ### ###
Line 410: Line 417:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- \frac{1}{3} (\text{Epxpx}+\text{Epypy}+\text{Epzpz}) & k=0\land m=0 \\ + \frac{1}{3} (\text{Eapp}+\text{Eapx}+\text{Eapy}) & k=0\land m=0 \\ 
- \frac{5 (\text{Epxpx}+\text{Epypx}-\text{Epypy})}{2 \sqrt{6}} & k=2\land m=-2 \\ + 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2\\ 
- \frac{5 (\text{Epzpx}+i \text{Epypz})}{\sqrt{6}} & k=2\land m=-\\ + \frac{5 (\text{Eapx}-\text{Eapy}+i \text{Mapxy})}{\sqrt{6}} & k=2\land m=-\\ 
- -\frac{5}{6} (\text{Epxpx}+\text{Epypy}-\text{Epzpz}) & k=2\land m=0 \\ + \frac{5}{6} (\text{Eapp}-\text{Eapx}-\text{Eapy}) & k=2\land m=0 \\ 
- \frac{5 (\text{Epypz}+i \text{Epzpx})}{\sqrt{6}} & k=2\land m=1 \\ + \frac{5 (\text{Eapx}-\text{Eapy}-2 i \text{Mapxy})}{2 \sqrt{6}} & \text{True}
- \frac{5 (\text{Epxpx}-2 i \text{Epypx}-\text{Epypy})}{2 \sqrt{6}} & k=2\land m=2+
 \end{cases}$$ \end{cases}$$
  
Line 427: Line 433:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{(Epxpx Epypy Epzpz)/3, k == 0 && m == 0}, {(5*(Epxpx + (2*I)*Epypx - Epypy))/(2*Sqrt[6]), k == 2 && m == -2}, {(5*(I*Epypz + Epzpx))/Sqrt[6], k == 2 && m == -1}, {(-5*(Epxpx + Epypy - 2*Epzpz))/6, k == 2 && m == 0}, {((5*I)*(Epypz + I*Epzpx))/Sqrt[6], k == 2 && m == 1}, {(5*(Epxpx - (2*I)*Epypx - Epypy))/(2*Sqrt[6]), k == 2 && m == 2}}, 0]+Akm[k_,m_]:=Piecewise[{{(Eapp Eapx Eapy)/3, k == 0 && m == 0}, {0, k !2 || (m !-2 && m !0 && m != 2)}, {(5*(Eapx - Eapy + (2*I)*Mapxy))/(2*Sqrt[6]), k == 2 && m == -2}, {(5*(2*Eapp - Eapx - Eapy))/6, k == 2 && m == 0}}, (5*(Eapx - Eapy - (2*I)*Mapxy))/(2*Sqrt[6])]
  
 </code> </code>
Line 439: Line 445:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, (1/3)*(Epxpx Epypy Epzpz)} ,  +Akm = {{0, 0, (1/3)*(Eapp Eapx Eapy)} ,  
-       {2, 0, (-5/6)*(Epxpx + Epypy + (-2)*(Epzpz))} ,  +       {2, 0, (5/6)*((2)*(Eapp+ (-1)*(Eapx) + (-1)*(Eapy))} ,  
-       {2,-1, (5)*((1/(sqrt(6)))*((I)*(Epypz) + Epzpx))} ,  +       {2, 2, (5/2)*((1/(sqrt(6)))*(Eapx + (-1)*(Eapy) + (-2*I)*(Mapxy)))} ,  
-       {2, 1, (5*I)*((1/(sqrt(6)))*(Epypz + (I)*(Epzpx)))} ,  +       {2,-2, (5/2)*((1/(sqrt(6)))*(Eapx + (-1)*(Eapy) + (2*I)*(Mapxy)))} }
-       {2, 2, (5/2)*((1/(sqrt(6)))*(Epxpx + (-2*I)*(Epypx) + (-1)*(Epypy)))} ,  +
-       {2,-2, (5/2)*((1/(sqrt(6)))*(Epxpx + (2*I)*(Epypx) + (-1)*(Epypy)))} }+
  
 </code> </code>
Line 456: Line 460:
  
   ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^   ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^
-^Y(1)1|$ \frac{\text{Epxpx}+\text{Epypy}}{2} | \frac{\text{Epzpx}+i \text{Epypz}}{\sqrt{2}} | \frac{1}{2} (-\text{Epxpx}-2 i \text{Epypx}+\text{Epypy}) $| +^Y(1)1|$ \frac{\text{Eapx}+\text{Eapy}}{2} | | \frac{1}{2} (-\text{Eapx}+\text{Eapy}-2 i \text{Mapxy}) $| 
-^Y(1)0|$ \frac{\text{Epzpx}-i \text{Epypz}}{\sqrt{2}} | \text{Epzpz} | -\frac{\text{Epzpx}+i \text{Epypz}}{\sqrt{2}} $| +^Y(1)0|$ | \text{Eapp} | $| 
-^Y(1)1|$ \frac{1}{2} (-\text{Epxpx}+2 i \text{Epypx}+\text{Epypy}) | \frac{i (\text{Epypz}+i \text{Epzpx})}{\sqrt{2}} | \frac{\text{Epxpx}+\text{Epypy}}{2} $|+^Y(1)1|$ \frac{1}{2} (-\text{Eapx}+\text{Eapy}+2 i \text{Mapxy}) | | \frac{\text{Eapx}+\text{Eapy}}{2} $|
  
  
Line 469: Line 473:
  
   ^  px  ^  py  ^  pz  ^   ^  px  ^  py  ^  pz  ^
-^px|$ \text{Epxpx} | \text{Epypx} | \text{Epzpx} $| +^px|$ \text{Eapx} | \text{Mapxy} | $| 
-^py|$ \text{Epypx} | \text{Epypy} | \text{Epypz} $| +^py|$ \text{Mapxy} | \text{Eapy} | $| 
-^pz|$ \text{Epzpx} | \text{Epypz} | \text{Epzpz} $|+^pz|$ | | \text{Eapp} $|
  
  
Line 494: Line 498:
 ### ###
  
- TODO  +^ ^Eapx | {{:physics_chemistry:pointgroup:cs_z_orb_1_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |123πsin(θ)cos(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |123πx | ::: | 
 +^ ^Eapy | {{:physics_chemistry:pointgroup:cs_z_orb_1_2.png?150}} | 
 +|ψ(θ,ϕ)=11 |123πsin(θ)sin(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |123πy | ::: | 
 +^ ^Eapp | {{:physics_chemistry:pointgroup:cs_z_orb_1_3.png?150}} | 
 +|ψ(θ,ϕ)=11 |123πcos(θ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |123πz | ::: | 
  
 ### ###
Line 506: Line 519:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- \frac{1}{5} (\text{Edx2y2dx2y2}+\text{Edxydxy}+\text{Edxzdxz}+\text{Edyzdyz}+\text{Edz2dz2}) & k=0\land m=0 \\ + \frac{1}{5} (\text{Eappxz}+\text{Eappyz}+\text{Eapx2y2}+\text{Eapxy}+\text{Eapz2}) & k=0\land m=0 \\ 
- \frac{-\text{Edxydz2}+\sqrt{3} \text{Edxzdxz}+\sqrt{3} \text{Edyzdxz}-\sqrt{3} \text{Edyzdyz}-4 \text{Edz2dx2y2}}{2 \sqrt{2}} & k=2\land m=-2 \\ + 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ 
- \frac{\sqrt{3} \text{Edxydxz}+\sqrt{3} \text{Edxydyz}+\sqrt{3} \text{Edxzdx2y2}-i \sqrt{3} \text{Edyzdx2y2}+i \text{Edyzdz2}+\text{Edz2dxz}}{\sqrt{2}} & k=2\land m=-\\ + \frac{\sqrt{3} \text{Eappxz}-\sqrt{3} \text{Eappyz}+2 i \sqrt{3} \text{Mappyzxz}-\text{Mapx2y2z2}-4 i \text{Mapz2xy}}{\sqrt{2}} & k=2\land m=-\\ 
- -\text{Edx2y2dx2y2}-\text{Edxydxy}+\frac{\text{Edxzdxz}+\text{Edyzdyz}}{2}+\text{Edz2dz2} & k=2\land m=0 \\ + \frac{1}{2} (\text{Eappxz}+\text{Eappyz}-2 (\text{Eapx2y2}+\text{Eapxy}-\text{Eapz2})& k=2\land m=\\ 
- \frac{i \left(\sqrt{3} \text{Edxydxz}+i \sqrt{3} \text{Edxydyz}+i \sqrt{3} \text{Edxzdx2y2}-\sqrt{3} \text{Edyzdx2y2}+\text{Edyzdz2}+i \text{Edz2dxz}\right)}{\sqrt{2}} & k=2\land m=\\ + \frac{\sqrt{3} \text{Eappxz}-\sqrt{3} \text{Eappyz}-2 i \sqrt{3} \text{Mappyzxz}-4 \text{Mapx2y2z2}+4 i \text{Mapz2xy}}{2 \sqrt{2}} & k=2\land m=2 \\ 
- \frac{4 i \text{Edxydz2}+\sqrt{3} \text{Edxzdxz}-2 i \sqrt{3} \text{Edyzdxz}-\sqrt{3} \text{Edyzdyz}-4 \text{Edz2dx2y2}}{2 \sqrt{2}} & k=2\land m=2 \\ + \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Eapx2y2}-\text{Eapxy}+2 i \text{Mapx2y2xy}) & k=4\land m=-\\ 
- \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Edx2y2dx2y2}+2 i \text{Edxydx2y2}-\text{Edxydxy}) & k=4\land m=-4 \\ + \frac{3 \left(\text{Eappxz}-\text{Eappyz}+2 i \text{Mappyzxz}+\sqrt{3} \text{Mapx2y2z2}+i \sqrt{3} \text{Mapz2xy}\right)}{\sqrt{10}} & k=4\land m=-\\ 
- \frac{3}{2} \sqrt{\frac{7}{5}} (i \text{Edxydxz}-\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}) & k=4\land m=-\\ + -\frac{3}{10} (\text{Eappxz}+\text{Eappyz}-\text{Eapx2y2}-\text{Eapxy}-6 \text{Eapz2}) & k=4\land m=0 \\ 
- \frac{3 \left(i \sqrt{3} \text{Edxydz2}+\text{Edxzdxz}+2 i \text{Edyzdxz}-\text{Edyzdyz}+\sqrt{3} \text{Edz2dx2y2}\right)}{\sqrt{10}} & k=4\land m=-2 \\ + \frac{3 \left(\text{Eappxz}-\text{Eappyz}-2 i \text{Mappyzxz}+\sqrt{3} \text{Mapx2y2z2}-i \sqrt{3} \text{Mapz2xy}\right)}{\sqrt{10}} & k=4\land m=2 \\ 
- \frac{3 \left(-i \text{Edxydxz}-\text{Edxydyz}-\text{Edxzdx2y2}+i \text{Edyzdx2y2}+2 i \sqrt{3} \text{Edyzdz2}+2 \sqrt{3} \text{Edz2dxz}\right)}{\sqrt{5}} & k=4\land m=-\\ + \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Eapx2y2}-\text{Eapxy}-i \text{Mapx2y2xy}) & \text{True}
- \frac{3}{10} (\text{Edx2y2dx2y2}+\text{Edxydxy}-4 (\text{Edxzdxz}+\text{Edyzdyz})+6 \text{Edz2dz2}) & k=4\land m=0 \\ +
- \frac{3 \left(-i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}+2 i \sqrt{3} \text{Edyzdz2}-2 \sqrt{3} \text{Edz2dxz}\right)}{2 \sqrt{5}} & k=4\land m=1 \\ +
- \frac{3 \left(-i \sqrt{3} \text{Edxydz2}+\text{Edxzdxz}-2 i \text{Edyzdxz}-\text{Edyzdyz}+\sqrt{3} \text{Edz2dx2y2}\right)}{\sqrt{10}} & k=4\land m=2 \\ +
- \frac{3}{2} \sqrt{\frac{7}{5}} (\text{Edxydxz}+\text{Edxydyz}-\text{Edxzdx2y2}+i \text{Edyzdx2y2}) & k=4\land m=3 \\ +
- \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Edx2y2dx2y2}-2 i \text{Edxydx2y2}-\text{Edxydxy}) & k=4\land m=4+
 \end{cases}$$ \end{cases}$$
  
Line 532: Line 540:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{(Edx2y2dx2y2 Edxydxy Edxzdxz Edyzdyz Edz2dz2)/5, k == 0 && m == 0}, {((-4*I)*Edxydz2 + Sqrt[3]*Edxzdxz + (2*I)*Sqrt[3]*Edyzdxz Sqrt[3]*Edyzdyz - 4*Edz2dx2y2)/(2*Sqrt[2]), k == 2 && m == -2}, {(I*Sqrt[3]*Edxydxz + Sqrt[3]*Edxydyz Sqrt[3]*Edxzdx2y2 - I*Sqrt[3]*Edyzdx2y2 + I*Edyzdz2 + Edz2dxz)/Sqrt[2], k == 2 && m == -1}, {-Edx2y2dx2y2 - Edxydxy + (Edxzdxz Edyzdyz)/2 + Edz2dz2, k == 2 && m == 0}, {(I*(Sqrt[3]*Edxydxz + I*Sqrt[3]*Edxydyz + I*Sqrt[3]*Edxzdx2y2 Sqrt[3]*Edyzdx2y2 + Edyzdz2 + I*Edz2dxz))/Sqrt[2], k == 2 && m == 1}, {((4*I)*Edxydz2 + Sqrt[3]*Edxzdxz - (2*I)*Sqrt[3]*Edyzdxz - Sqrt[3]*Edyzdyz - 4*Edz2dx2y2)/(2*Sqrt[2]), k == 2 && m == 2}, {(3*Sqrt[7/10]*(Edx2y2dx2y2 + (2*I)*Edxydx2y2 - Edxydxy))/2, k == 4 && m == -4}, {(3*Sqrt[7/5]*(I*Edxydxz Edxydyz Edxzdx2y2 + I*Edyzdx2y2))/2, k == 4 && m == -3}, {(3*(I*Sqrt[3]*Edxydz2 Edxzdxz + (2*I)*Edyzdxz - Edyzdyz + Sqrt[3]*Edz2dx2y2))/Sqrt[10], k == 4 && m == -2}, {(3*((-I)*Edxydxz - Edxydyz - Edxzdx2y2 + I*Edyzdx2y2 + (2*I)*Sqrt[3]*Edyzdz2 + 2*Sqrt[3]*Edz2dxz))/(2*Sqrt[5]), k == && m == -1}, {(3*(Edx2y2dx2y2 Edxydxy - 4*(Edxzdxz + Edyzdyz) + 6*Edz2dz2))/10, k == 4 && m == 0}, {(3*((-I)*Edxydxz + Edxydyz + Edxzdx2y2 + I*Edyzdx2y2 + (2*I)*Sqrt[3]*Edyzdz2 2*Sqrt[3]*Edz2dxz))/(2*Sqrt[5]), k == 4 && m == 1}, {(3*((-I)*Sqrt[3]*Edxydz2 + Edxzdxz (2*I)*Edyzdxz - Edyzdyz + Sqrt[3]*Edz2dx2y2))/Sqrt[10], k == 4 && m == 2}, {(3*Sqrt[7/5]*(I*Edxydxz + Edxydyz - Edxzdx2y2 + I*Edyzdx2y2))/2, k == 4 && m == 3}, {(3*Sqrt[7/10]*(Edx2y2dx2y2 - (2*I)*Edxydx2y2 - Edxydxy))/2, k == 4 && m == 4}}, 0]+Akm[k_,m_]:=Piecewise[{{(Eappxz Eappyz Eapx2y2 Eapxy Eapz2)/5, k == 0 && m == 0}, {0, (k != && (k != || (m != -2 && m != 0 && m != 2))) || (m !-4 && m !-2 && m !0 && m != 2 && m != 4)}, {(Sqrt[3]*Eappxz - Sqrt[3]*Eappyz (2*I)*Sqrt[3]*Mappyzxz - 4*Mapx2y2z2 - (4*I)*Mapz2xy)/(2*Sqrt[2]), k == 2 && m == -2}, {(Eappxz Eappyz - 2*(Eapx2y2 Eapxy - Eapz2))/2, k == 2 && m == 0}, {(Sqrt[3]*Eappxz - Sqrt[3]*Eappyz (2*I)*Sqrt[3]*Mappyzxz 4*Mapx2y2z2 + (4*I)*Mapz2xy)/(2*Sqrt[2]), k == 2 && m == 2}, {(3*Sqrt[7/10]*(Eapx2y2 - Eapxy + (2*I)*Mapx2y2xy))/2, k == 4 && m == -4}, {(3*(Eappxz Eappyz (2*I)*Mappyzxz + Sqrt[3]*Mapx2y2z2 + I*Sqrt[3]*Mapz2xy))/Sqrt[10], k == 4 && m == -2}, {(-3*(4*Eappxz + 4*Eappyz - Eapx2y2 - Eapxy - 6*Eapz2))/10, k == 4 && m == 0}, {(3*(Eappxz Eappyz - (2*I)*Mappyzxz + Sqrt[3]*Mapx2y2z2 - I*Sqrt[3]*Mapz2xy))/Sqrt[10], k == 4 && m == 2}}, (3*Sqrt[7/10]*(Eapx2y2 - Eapxy - (2*I)*Mapx2y2xy))/2]
  
 </code> </code>
Line 544: Line 552:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, (1/5)*(Edx2y2dx2y2 Edxydxy Edxzdxz Edyzdyz Edz2dz2)} ,  +Akm = {{0, 0, (1/5)*(Eappxz Eappyz Eapx2y2 Eapxy Eapz2)} ,  
-       {2, 0, (-1)*(Edx2y2dx2y2) + (-1)*(Edxydxy) + (1/2)*(Edxzdxz Edyzdyz) Edz2dz2} ,  +       {2, 0, (1/2)*(Eappxz Eappyz (-2)*(Eapx2y2 Eapxy + (-1)*(Eapz2)))} ,  
-       {2,-1, (1/(sqrt(2)))*((I)*((sqrt(3))*(Edxydxz)) (sqrt(3))*(Edxydyz) + (sqrt(3))*(Edxzdx2y2) + (-I)*((sqrt(3))*(Edyzdx2y2)) + (I)*(Edyzdz2) + Edz2dxz)} ,  +       {2, 2, (1/2)*((1/(sqrt(2)))*((sqrt(3))*(Eappxz) + (-1)*((sqrt(3))*(Eappyz)) + (-2*I)*((sqrt(3))*(Mappyzxz)) + (-4)*(Mapx2y2z2) + (4*I)*(Mapz2xy)))} ,  
-       {2, 1, (I)*((1/(sqrt(2)))*((sqrt(3))*(Edxydxz) + (I)*((sqrt(3))*(Edxydyz)) + (I)*((sqrt(3))*(Edxzdx2y2)) + (-1)*((sqrt(3))*(Edyzdx2y2)+ Edyzdz2 + (I)*(Edz2dxz)))} ,  +       {2,-2, (1/2)*((1/(sqrt(2)))*((sqrt(3))*(Eappxz) + (-1)*((sqrt(3))*(Eappyz)) + (2*I)*((sqrt(3))*(Mappyzxz)) + (-4)*(Mapx2y2z2) + (-4*I)*(Mapz2xy)))} ,  
-       {2,-2, (1/2)*((1/(sqrt(2)))*((-4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} ,  +       {4, 0, (-3/10)*((4)*(Eappxz) + (4)*(Eappyz) + (-1)*(Eapx2y2) + (-1)*(Eapxy) + (-6)*(Eapz2))} ,  
-       {2, 2, (1/2)*((1/(sqrt(2)))*((4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (-2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} ,  +       {4, 2, (3)*((1/(sqrt(10)))*(Eappxz + (-1)*(Eappyz) + (-2*I)*(Mappyzxz) + (sqrt(3))*(Mapx2y2z2) + (-I)*((sqrt(3))*(Mapz2xy))))} ,  
-       {4, 0, (3/10)*(Edx2y2dx2y2 + Edxydxy + (-4)*(Edxzdxz + Edyzdyz) + (6)*(Edz2dz2))} ,  +       {4,-2, (3)*((1/(sqrt(10)))*(Eappxz + (-1)*(Eappyz) + (2*I)*(Mappyzxz) + (sqrt(3))*(Mapx2y2z2(I)*((sqrt(3))*(Mapz2xy))))} ,  
-       {4,-1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz) + (-1)*(Edxydyz) + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (2)*((sqrt(3))*(Edz2dxz))))} ,  +       {4, 4, (3/2)*((sqrt(7/10))*(Eapx2y2 + (-1)*(Eapxy) + (-2*I)*(Mapx2y2xy)))} ,  
-       {4, 1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz+ Edxydyz + Edxzdx2y2 + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (-2)*((sqrt(3))*(Edz2dxz))))} ,  +       {4,-4, (3/2)*((sqrt(7/10))*(Eapx2y2 + (-1)*(Eapxy) + (2*I)*(Mapx2y2xy)))} }
-       {4, 2, (3)*((1/(sqrt(10)))*((-I)*((sqrt(3))*(Edxydz2)+ Edxzdxz + (-2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} ,  +
-       {4,-2, (3)*((1/(sqrt(10)))*((I)*((sqrt(3))*(Edxydz2)) + Edxzdxz + (2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} ,  +
-       {4,-3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + (-1)*(Edxydyz+ Edxzdx2y2 + (I)*(Edyzdx2y2)))} ,  +
-       {4, 3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + Edxydyz + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2)))} ,  +
-       {4, 4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (-2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} ,  +
-       {4,-4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} }+
  
 </code> </code>
Line 570: Line 572:
  
   ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^   ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^
-^Y(2)2|$ \frac{\text{Edx2y2dx2y2}+\text{Edxydxy}}{2} | \frac{1}{2} (i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}-i \text{Edyzdx2y2}) | \frac{\text{Edz2dx2y2}+i \text{Edxydz2}}{\sqrt{2}} | -\frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}-\text{Edxzdx2y2})+\text{Edyzdx2y2}) | \frac{1}{2} (\text{Edx2y2dx2y2}+2 i \text{Edxydx2y2}-\text{Edxydxy}) $| +^Y(2)2|$ \frac{\text{Eapx2y2}+\text{Eapxy}}{2} | | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} | 0 | \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}+2 i \text{Mapx2y2xy}) $| 
-^Y(2)1|$ \frac{1}{2} (-i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}) | \frac{\text{Edxzdxz}+\text{Edyzdyz}}{2} | \frac{\text{Edz2dxz}+i \text{Edyzdz2}}{\sqrt{2}} | \frac{1}{2} (-\text{Edxzdxz}-2 i \text{Edyzdxz}+\text{Edyzdyz}) | \frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}-\text{Edxzdx2y2})+\text{Edyzdx2y2}) $| +^Y(2)1|$ | \frac{\text{Eappxz}+\text{Eappyz}}{2} | | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}-2 i \text{Mappyzxz}) | $| 
-^Y(2)0|$ \frac{\text{Edz2dx2y2}-i \text{Edxydz2}}{\sqrt{2}} | \frac{\text{Edz2dxz}-i \text{Edyzdz2}}{\sqrt{2}} | \text{Edz2dz2} | \frac{-\text{Edz2dxz}-i \text{Edyzdz2}}{\sqrt{2}} | \frac{\text{Edz2dx2y2}+i \text{Edxydz2}}{\sqrt{2}} $| +^Y(2)0|$ \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | | \text{Eapz2} | | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} $| 
-^Y(2)1|$ \frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) | \frac{1}{2} (-\text{Edxzdxz}+2 i \text{Edyzdxz}+\text{Edyzdyz}) | \frac{i (\text{Edyzdz2}+i \text{Edz2dxz})}{\sqrt{2}} | \frac{\text{Edxzdxz}+\text{Edyzdyz}}{2} | -\frac{1}{2} i (\text{Edxydxz}-i (\text{Edxydyz}+\text{Edxzdx2y2})-\text{Edyzdx2y2}) $| +^Y(2)1|$ | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}+2 i \text{Mappyzxz}) | | \frac{\text{Eappxz}+\text{Eappyz}}{2} | $| 
-^Y(2)2|$ \frac{1}{2} (\text{Edx2y2dx2y2}-2 i \text{Edxydx2y2}-\text{Edxydxy}) | -\frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) | \frac{\text{Edz2dx2y2}-i \text{Edxydz2}}{\sqrt{2}} | \frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2})) | \frac{\text{Edx2y2dx2y2}+\text{Edxydxy}}{2} $|+^Y(2)2|$ \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}-2 i \text{Mapx2y2xy}) | | \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | | \frac{\text{Eapx2y2}+\text{Eapxy}}{2} $|
  
  
Line 585: Line 587:
  
   ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^   ^  dx2y2  ^  d3z2r2  ^  dyz  ^  dxz  ^  dxy  ^
-^dx2y2|$ \text{Edx2y2dx2y2} | \text{Edz2dx2y2} | \text{Edyzdx2y2} | \text{Edxzdx2y2} | \text{Edxydx2y2} $| +^dx2y2|$ \text{Eapx2y2} | \text{Mapx2y2z2} | | | \text{Mapx2y2xy} $| 
-^d3z2r2|$ \text{Edz2dx2y2} | \text{Edz2dz2} | \text{Edyzdz2} | \text{Edz2dxz} | \text{Edxydz2} $| +^d3z2r2|$ \text{Mapx2y2z2} | \text{Eapz2} | | | \text{Mapz2xy} $| 
-^dyz|$ \text{Edyzdx2y2} | \text{Edyzdz2} | \text{Edyzdyz} | \text{Edyzdxz} | \text{Edxydyz} $| +^dyz|$ | | \text{Eappyz} | \text{Mappyzxz} | $| 
-^dxz|$ \text{Edxzdx2y2} | \text{Edz2dxz} | \text{Edyzdxz} | \text{Edxzdxz} | \text{Edxydxz} $| +^dxz|$ | | \text{Mappyzxz} | \text{Eappxz} | $| 
-^dxy|$ \text{Edxydx2y2} | \text{Edxydz2} | \text{Edxydyz} | \text{Edxydxz} | \text{Edxydxy} $|+^dxy|$ \text{Mapx2y2xy} | \text{Mapz2xy} | | | \text{Eapxy} $|
  
  
Line 614: Line 616:
 ### ###
  
- TODO  +^ ^Eapx2y2 | {{:physics_chemistry:pointgroup:cs_z_orb_2_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin2(θ)cos(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1415π(x2y2) | ::: | 
 +^ ^Eapz2 | {{:physics_chemistry:pointgroup:cs_z_orb_2_2.png?150}} | 
 +|ψ(θ,ϕ)=11 |185π(3cos(2θ)+1) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |145π(3z21) | ::: | 
 +^ ^Eappyz | {{:physics_chemistry:pointgroup:cs_z_orb_2_3.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin(2θ)sin(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πyz | ::: | 
 +^ ^Eappxz | {{:physics_chemistry:pointgroup:cs_z_orb_2_4.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin(2θ)cos(ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πxz | ::: | 
 +^ ^Eapxy | {{:physics_chemistry:pointgroup:cs_z_orb_2_5.png?150}} | 
 +|ψ(θ,ϕ)=11 |1415πsin2(θ)sin(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πxy | ::: | 
  
 ### ###
Line 626: Line 643:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- A(0,0) & k=0\land m=0 \\ + \frac{1}{7} (\text{Eappx3}+\text{Eappxy2z2}+\text{Eappxyz}+\text{Eappy3}+\text{Eappyz2x2}+\text{Eappz3}+\text{Eappzx2y2}) & k=0\land m=0 \\ 
- -A(1,1)+i B(1,1) & k=1\land m=-\\ + 0 & (k\neq 6\land (((k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2))\land k\neq 4)\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4)))\lor (m\neq -6\land m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4\land m\neq 6) \\ 
- A(1,1)+i B(1,1& k=1\land m=1 \\ + \frac{5 \left(2 \sqrt{3} \text{Eappx3}-\sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}-\sqrt{3} \text{Mappx3y3}-i \sqrt{5} \text{Mappx3yz2x2}-5 i \sqrt{3} \text{Mappxy2z2yz2x2}-4 i \sqrt{5} \text{Mappxyzz3}+i \sqrt{5} \text{Mappy3xy2z2}+\sqrt{5} \text{Mappy3yz2x2}-4 \sqrt{5} \text{Mappz3zx2y2}\right)}{28 \sqrt{2}} & k=2\land m=-2 \\ 
- A(2,2)-i B(2,2) & k=2\land m=-\\ + -\frac{5}{14} \left(\text{Eappx3}+\text{Eappy3}-2 \text{Eappz3}-\sqrt{15} \text{Mappx3xy2z2}+\sqrt{15} \text{Mappy3yz2x2}\right) & k=2\land m=\\ 
- A(2,0) & k=2\land m=0 \\ + \frac{5 \left(2 \sqrt{3} \text{Eappx3}-2 \sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}+i \sqrt{3\text{Mappx3y3}+i \sqrt{5} \text{Mappx3yz2x2}+\sqrt{3} \text{Mappxy2z2yz2x2}+4 i \sqrt{5} \text{Mappxyzz3}-i \sqrt{5} \text{Mappy3xy2z2}+2 \sqrt{5} \text{Mappy3yz2x2}-4 \sqrt{5} \text{Mappz3zx2y2}\right)}{28 \sqrt{2}} & k=2\land m=\\ 
- A(2,2)+i B(2,2) & k=2\land m=2 \\ + \frac{3 \left(3 \sqrt{5} \text{Eappx3}-\sqrt{5} \text{Eappxy2z2}-4 \sqrt{5} \text{Eappxyz}+3 \sqrt{5} \text{Eappy3}-\sqrt{5} \text{Eappyz2x2}+4 \sqrt{5} \text{Eappzx2y2}+2 \sqrt{3\text{Mappx3xy2z2}-8 i \sqrt{3\text{Mappx3yz2x2}+8 i \sqrt{5} \text{Mappxyzzx2y2}-\sqrt{3} \text{Mappy3xy2z2}-2 \sqrt{3} \text{Mappy3yz2x2}\right)}{8 \sqrt{14}} & k=4\land m=-4 \\ 
- -A(3,3)+i B(3,3) & k=3\land m=-3 \\ + \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} \text{Eappxy2z2}+3 \sqrt{10} \text{Eappy3}-7 \sqrt{10} \text{Eappyz2x2}+\sqrt{6} \text{Mappx3xy2z2}+12 i \sqrt{10} \text{Mappx3y3}-\sqrt{6} \text{Mappx3yz2x2}+i \sqrt{10} \text{Mappxy2z2yz2x2}-4 i \sqrt{6} \text{Mappxyzz3}+8 i \sqrt{6} \text{Mappy3xy2z2}+\sqrt{6} \text{Mappy3yz2x2}-4 \sqrt{6} \text{Mappz3zx2y2}\right) & k=4\land m=-2 \\ 
- -A(3,1)+i B(3,1) & k=3\land m=-1 \\ + \frac{3}{56} \left(9 \text{Eappx3}+7 \text{Eappxy2z2}-28 \text{Eappxyz}+9 \text{Eappy3}+7 \text{Eappyz2x2}+24 \text{Eappz3}-28 \text{Eappzx2y2}-2 \sqrt{15} \text{Mappx3xy2z2}+2 \sqrt{15} \text{Mappy3yz2x2}\right) & k=4\land m=0 \\ 
- A(3,1)+i B(3,1) & k=3\land m=\\ + \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} \text{Eappxy2z2}+3 \sqrt{10} \text{Eappy3}-7 \sqrt{10} \text{Eappyz2x2}+\sqrt{6} \text{Mappx3xy2z2}-12 i \sqrt{10} \text{Mappx3y3}+\sqrt{6} \text{Mappx3yz2x2}-i \sqrt{10} \text{Mappxy2z2yz2x2}+\sqrt{6} \text{Mappxyzz3}-8 i \sqrt{6} \text{Mappy3xy2z2}+2 \sqrt{6} \text{Mappy3yz2x2}-\sqrt{6} \text{Mappz3zx2y2}\right) & k=4\land m=\\ 
- A(3,3)+i B(3,3) & k=3\land m=3 \\ + \frac{3 \left(3 \sqrt{5} \text{Eappx3}-3 \sqrt{5} \text{Eappxy2z2}-4 \sqrt{5} \text{Eappxyz}+3 \sqrt{5\text{Eappy3}-3 \sqrt{5\text{Eappyz2x2}+4 \sqrt{5} \text{Eappzx2y2}+2 \sqrt{3} \text{Mappx3xy2z2}+\sqrt{3\text{Mappx3yz2x2}-8 i \sqrt{5} \text{Mappxyzzx2y2}+i \sqrt{3} \text{Mappy3xy2z2}-\sqrt{3} \text{Mappy3yz2x2}\right)}{8 \sqrt{14}} & k=4\land m=\\ 
- A(4,4)-i B(4,4) & k=4\land m=-4 \\ + \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} \text{Eappxy2z2}-\sqrt{3} \text{Eappy3}-3 \sqrt{3} \text{Eappyz2x2}-6 \sqrt{5\text{Mappx3xy2z2}-10 i \sqrt{3\text{Mappx3y3}-6 i \sqrt{5} \text{Mappx3yz2x2}+\sqrt{3} \text{Mappxy2z2yz2x2}+6 i \sqrt{5\text{Mappy3xy2z2}-6 \sqrt{5\text{Mappy3yz2x2}\right) & k=6\land m=-6 \\ 
- A(4,2)-i B(4,2) & k=4\land m=-2 \\ + -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}-8 \sqrt{15} \text{Mappx3yz2x2}-48 i \text{Mappxyzzx2y2}-8 i \sqrt{15} \text{Mappy3xy2z2}-2 \sqrt{15} \text{Mappy3yz2x2}\right)}{80 \sqrt{14}} & k=6\land m=-4 \\ 
- A(4,0) & k=4\land m=0 \\ + \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}+i \sqrt{15} \text{Mappx3y3}-26 \text{Mappx3yz2x2}-14 i \sqrt{15} \text{Mappxy2z2yz2x2}+64 i \text{Mappxyzz3}+26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} & k=6\land m=-2 \\ 
- A(4,2)+i B(4,2) & k=4\land m=2 \\ + -\frac{13}{560} \left(25 \text{Eappx3}+39 \text{Eappxy2z2}-24 \text{Eappxyz}+25 \text{Eappy3}+39 \text{Eappyz2x2}-80 \text{Eappz3}-24 \text{Eappzx2y2}+14 \sqrt{15} \text{Mappx3xy2z2}-14 \sqrt{15} \text{Mappy3yz2x2}\right) & k=6\land m=0 \\ 
- A(4,4)+i B(4,4) & k=4\land m=\\ + \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}-i \sqrt{15} \text{Mappx3y3}+26 \text{Mappx3yz2x2}+14 i \sqrt{15} \text{Mappxy2z2yz2x2}-64 i \text{Mappxyzz3}-26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} & k=6\land m=2 \\ 
- -A(5,5)+i B(5,5) & k=5\land m=-5 \\ + -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}+8 \sqrt{15} \text{Mappx3yz2x2}+48 i \text{Mappxyzzx2y2}+8 i \sqrt{15} \text{Mappy3xy2z2}-2 \sqrt{15} \text{Mappy3yz2x2}\right)}{80 \sqrt{14}} & k=6\land m=4 \\ 
- -A(5,3)+i B(5,3) & k=5\land m=-\\ + \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} \text{Eappxy2z2}-5 \sqrt{3} \text{Eappy3}-3 \sqrt{3} \text{Eappyz2x2}-\sqrt{5} \text{Mappx3xy2z2}+10 \sqrt{3} \text{Mappx3y3}+i \sqrt{5} \text{Mappx3yz2x2}-i \sqrt{3} \text{Mappxy2z2yz2x2}-\sqrt{5} \text{Mappy3xy2z2}-\sqrt{5} \text{Mappy3yz2x2}\right) & \text{True}
- -A(5,1)+i B(5,1) & k=5\land m=-\\ +
- A(5,1)+i B(5,1) & k=5\land m=\\ +
- A(5,3)+i B(5,3) & k=5\land m=3 \\ +
- A(5,5)+i B(5,5) & k=5\land m=5 \\ +
- A(6,6)-i B(6,6) & k=6\land m=-6 \\ +
- A(6,4)-i B(6,4) & k=6\land m=-4 \\ +
- A(6,2)-i B(6,2) & k=6\land m=-2 \\ +
- A(6,0) & k=6\land m=0 \\ +
- A(6,2)+i B(6,2) & k=6\land m=2 \\ +
- A(6,4)+i B(6,4) & k=6\land m=4 \\ +
- A(6,6)+i B(6,6) & k=6\land m=6+
 \end{cases}$$ \end{cases}$$
  
Line 665: Line 671:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == && m == -1}, {A[1, 1] + I*B[1, 1], k == && m == 1}, {A[2, 2] I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[22] + I*B[22], k == 2 && m == 2}, {-A[3, 3+ I*B[3, 3], k == && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == && m == 1}, {A[33] + I*B[3, 3], k == && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[42], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[55] + I*B[5, 5], k == 5 && m == -5}, {-A[53] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1+ I*B[5, 1], k == && m == 1}, {A[53] + I*B[5, 3], k == && m == 3}, {A[5, 5+ I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[66], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[66], k == && m == 6}}, 0]+Akm[k_,m_]:=Piecewise[{{(Eappx3 + Eappxy2z2 + Eappxyz + Eappy3 + Eappyz2x2 + Eappz3 + Eappzx2y2)/7, k == 0 && m == 0}, {0(!6 && (((k !2 || (m != -2 && m !0 && m !2)) && !4) || (m !-4 && m != -2 && m !0 && m != 2 && m !4))) || (m != -6 && m != -4 && m != -2 && m != && m != 2 && m !4 && m !6)}, {(5*(2*Sqrt[3]*Eappx3 - 2*Sqrt[3]*Eappy3 + 2*Sqrt[5]*Mappx3xy2z2 - I*Sqrt[3]*Mappx3y3 - I*Sqrt[5]*Mappx3yz2x2 - (5*I)*Sqrt[3]*Mappxy2z2yz2x2 - (4*I)*Sqrt[5]*Mappxyzz3 + I*Sqrt[5]*Mappy3xy2z2 + 2*Sqrt[5]*Mappy3yz2x2 - 4*Sqrt[5]*Mappz3zx2y2))/(28*Sqrt[2]), k == 2 && m == -2}, {(-5*(Eappx3 + Eappy3 - 2*Eappz3 - Sqrt[15]*Mappx3xy2z2 + Sqrt[15]*Mappy3yz2x2))/14, k == && m == 0}, {(5*(2*Sqrt[3]*Eappx3 2*Sqrt[3]*Eappy3 + 2*Sqrt[5]*Mappx3xy2z2 + I*Sqrt[3]*Mappx3y3 + I*Sqrt[5]*Mappx3yz2x2 (5*I)*Sqrt[3]*Mappxy2z2yz2x2 + (4*I)*Sqrt[5]*Mappxyzz3 - I*Sqrt[5]*Mappy3xy2z2 + 2*Sqrt[5]*Mappy3yz2x2 - 4*Sqrt[5]*Mappz3zx2y2))/(28*Sqrt[2]), k == && m == 2}, {(3*(3*Sqrt[5]*Eappx3 - 3*Sqrt[5]*Eappxy2z2 - 4*Sqrt[5]*Eappxyz + 3*Sqrt[5]*Eappy3 - 3*Sqrt[5]*Eappyz2x2 4*Sqrt[5]*Eappzx2y2 + 2*Sqrt[3]*Mappx3xy2z2 - (8*I)*Sqrt[3]*Mappx3yz2x2 + (8*I)*Sqrt[5]*Mappxyzzx2y2 (8*I)*Sqrt[3]*Mappy3xy2z2 - 2*Sqrt[3]*Mappy3yz2x2))/(8*Sqrt[14]), k == 4 && m == -4}, {(3*(-3*Sqrt[10]*Eappx3 + 7*Sqrt[10]*Eappxy2z2 + 3*Sqrt[10]*Eappy3 - 7*Sqrt[10]*Eappyz2x2 + 2*Sqrt[6]*Mappx3xy2z2 + (12*I)*Sqrt[10]*Mappx3y3 (8*I)*Sqrt[6]*Mappx3yz2x2 + (4*I)*Sqrt[10]*Mappxy2z2yz2x2 - (4*I)*Sqrt[6]*Mappxyzz3 + (8*I)*Sqrt[6]*Mappy3xy2z2 + 2*Sqrt[6]*Mappy3yz2x2 - 4*Sqrt[6]*Mappz3zx2y2))/56, k == 4 && m == -2}, {(3*(9*Eappx3 + 7*Eappxy2z2 - 28*Eappxyz + 9*Eappy3 + 7*Eappyz2x2 + 24*Eappz3 - 28*Eappzx2y2 - 2*Sqrt[15]*Mappx3xy2z2 + 2*Sqrt[15]*Mappy3yz2x2))/56, k == 4 && m == 0}, {(3*(-3*Sqrt[10]*Eappx3 + 7*Sqrt[10]*Eappxy2z2 + 3*Sqrt[10]*Eappy3 - 7*Sqrt[10]*Eappyz2x2 + 2*Sqrt[6]*Mappx3xy2z2 - (12*I)*Sqrt[10]*Mappx3y3 (8*I)*Sqrt[6]*Mappx3yz2x2 - (4*I)*Sqrt[10]*Mappxy2z2yz2x2 (4*I)*Sqrt[6]*Mappxyzz3 - (8*I)*Sqrt[6]*Mappy3xy2z2 + 2*Sqrt[6]*Mappy3yz2x2 - 4*Sqrt[6]*Mappz3zx2y2))/56, k == 4 && m == 2}, {(3*(3*Sqrt[5]*Eappx3 3*Sqrt[5]*Eappxy2z2 - 4*Sqrt[5]*Eappxyz 3*Sqrt[5]*Eappy3 3*Sqrt[5]*Eappyz2x2 + 4*Sqrt[5]*Eappzx2y2 + 2*Sqrt[3]*Mappx3xy2z2 (8*I)*Sqrt[3]*Mappx3yz2x2 (8*I)*Sqrt[5]*Mappxyzzx2y2 (8*I)*Sqrt[3]*Mappy3xy2z2 2*Sqrt[3]*Mappy3yz2x2))/(8*Sqrt[14]), k == && m == 4}, {(13*Sqrt[11/7]*(5*Sqrt[3]*Eappx3 3*Sqrt[3]*Eappxy2z2 - 5*Sqrt[3]*Eappy3 - 3*Sqrt[3]*Eappyz2x2 - 6*Sqrt[5]*Mappx3xy2z2 - (10*I)*Sqrt[3]*Mappx3y3 (6*I)*Sqrt[5]*Mappx3yz2x2 + (6*I)*Sqrt[3]*Mappxy2z2yz2x2 + (6*I)*Sqrt[5]*Mappy3xy2z2 - 6*Sqrt[5]*Mappy3yz2x2))/160, k == 6 && m == -6}, {(-13*(15*Eappx3 - 15*Eappxy2z2 + 24*Eappxyz + 15*Eappy3 - 15*Eappyz2x2 - 24*Eappzx2y2 + 2*Sqrt[15]*Mappx3xy2z2 (8*I)*Sqrt[15]*Mappx3yz2x2 - (48*I)*Mappxyzzx2y2 - (8*I)*Sqrt[15]*Mappy3xy2z2 - 2*Sqrt[15]*Mappy3yz2x2))/(80*Sqrt[14]), k == 6 && m == -4}, {(13*(5*Sqrt[15]*Eappx3 + 3*Sqrt[15]*Eappxy2z2 - 5*Sqrt[15]*Eappy3 - 3*Sqrt[15]*Eappyz2x2 + 34*Mappx3xy2z2 + (2*I)*Sqrt[15]*Mappx3y3 (26*I)*Mappx3yz2x2 - (14*I)*Sqrt[15]*Mappxy2z2yz2x2 + (64*I)*Mappxyzz3 + (26*I)*Mappy3xy2z2 + 34*Mappy3yz2x2 + 64*Mappz3zx2y2))/(160*Sqrt[7]), k == 6 && m == -2}, {(-13*(25*Eappx3 + 39*Eappxy2z2 - 24*Eappxyz + 25*Eappy3 + 39*Eappyz2x2 - 80*Eappz3 - 24*Eappzx2y2 + 14*Sqrt[15]*Mappx3xy2z2 - 14*Sqrt[15]*Mappy3yz2x2))/560, k == 6 && m == 0}, {(13*(5*Sqrt[15]*Eappx3 + 3*Sqrt[15]*Eappxy2z2 - 5*Sqrt[15]*Eappy3 - 3*Sqrt[15]*Eappyz2x2 + 34*Mappx3xy2z2 - (2*I)*Sqrt[15]*Mappx3y3 (26*I)*Mappx3yz2x2 + (14*I)*Sqrt[15]*Mappxy2z2yz2x2 - (64*I)*Mappxyzz3 - (26*I)*Mappy3xy2z2 + 34*Mappy3yz2x2 + 64*Mappz3zx2y2))/(160*Sqrt[7]), k == 6 && m == 2}, {(-13*(15*Eappx3 - 15*Eappxy2z2 + 24*Eappxyz + 15*Eappy3 - 15*Eappyz2x2 - 24*Eappzx2y2 + 2*Sqrt[15]*Mappx3xy2z2 (8*I)*Sqrt[15]*Mappx3yz2x2 + (48*I)*Mappxyzzx2y2 + (8*I)*Sqrt[15]*Mappy3xy2z2 - 2*Sqrt[15]*Mappy3yz2x2))/(80*Sqrt[14]), k == 6 && m == 4}}, (13*Sqrt[11/7]*(5*Sqrt[3]*Eappx3 + 3*Sqrt[3]*Eappxy2z2 - 5*Sqrt[3]*Eappy3 - 3*Sqrt[3]*Eappyz2x2 - 6*Sqrt[5]*Mappx3xy2z2 (10*I)*Sqrt[3]*Mappx3y3 + (6*I)*Sqrt[5]*Mappx3yz2x2 - (6*I)*Sqrt[3]*Mappxy2z2yz2x2 - (6*I)*Sqrt[5]*Mappy3xy2z2 - 6*Sqrt[5]*Mappy3yz2x2))/160]
  
 </code> </code>
Line 677: Line 683:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, A(0,0)} ,  +Akm = {{0, 0, (1/7)*(Eappx3 + Eappxy2z2 + Eappxyz + Eappy3 + Eappyz2x2 + Eappz3 + Eappzx2y2)} ,  
-       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  +       {20, (-5/14)*(Eappx3 + Eappy3 + (-2)*(Eappz3) + (-1)*((sqrt(15))*(Mappx3xy2z2)) + (sqrt(15))*(Mappy3yz2x2))} ,  
-       {1, 1, A(1,1) + (I)*(B(1,1))} ,  +       {2,-2(5/28)*((1/(sqrt(2)))*((2)*((sqrt(3))*(Eappx3)) + (-2)*((sqrt(3))*(Eappy3)) + (2)*((sqrt(5))*(Mappx3xy2z2)) + (-I)*((sqrt(3))*(Mappx3y3)) + (-I)*((sqrt(5))*(Mappx3yz2x2)) + (-5*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (-4*I)*((sqrt(5))*(Mappxyzz3)) + (I)*((sqrt(5))*(Mappy3xy2z2)) + (2)*((sqrt(5))*(Mappy3yz2x2)) + (-4)*((sqrt(5))*(Mappz3zx2y2))))} ,  
-       {2, 0A(2,0)} ,  +       {22, (5/28)*((1/(sqrt(2)))*((2)*((sqrt(3))*(Eappx3)) + (-2)*((sqrt(3))*(Eappy3)) + (2)*((sqrt(5))*(Mappx3xy2z2)) + (I)*((sqrt(3))*(Mappx3y3)) + (I)*((sqrt(5))*(Mappx3yz2x2)) + (5*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (4*I)*((sqrt(5))*(Mappxyzz3)) + (-I)*((sqrt(5))*(Mappy3xy2z2)) + (2)*((sqrt(5))*(Mappy3yz2x2)) + (-4)*((sqrt(5))*(Mappz3zx2y2))))} ,  
-       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  +       {4, 0, (3/56)*((9)*(Eappx3) + (7)*(Eappxy2z2) + (-28)*(Eappxyz) + (9)*(Eappy3) + (7)*(Eappyz2x2) + (24)*(Eappz3) + (-28)*(Eappzx2y2) + (-2)*((sqrt(15))*(Mappx3xy2z2)) + (2)*((sqrt(15))*(Mappy3yz2x2)))} ,  
-       {2, 2, A(2,2) + (I)*(B(2,2))} ,  +       {4, 2, (3/56)*((-3)*((sqrt(10))*(Eappx3)) + (7)*((sqrt(10))*(Eappxy2z2)) + (3)*((sqrt(10))*(Eappy3)) + (-7)*((sqrt(10))*(Eappyz2x2)) + (2)*((sqrt(6))*(Mappx3xy2z2)) + (-12*I)*((sqrt(10))*(Mappx3y3)) + (8*I)*((sqrt(6))*(Mappx3yz2x2)) + (-4*I)*((sqrt(10))*(Mappxy2z2yz2x2)) + (4*I)*((sqrt(6))*(Mappxyzz3)) + (-8*I)*((sqrt(6))*(Mappy3xy2z2)) + (2)*((sqrt(6))*(Mappy3yz2x2)) + (-4)*((sqrt(6))*(Mappz3zx2y2)))} ,  
-       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  +       {4,-2(3/56)*((-3)*((sqrt(10))*(Eappx3)) + (7)*((sqrt(10))*(Eappxy2z2)) + (3)*((sqrt(10))*(Eappy3)) + (-7)*((sqrt(10))*(Eappyz2x2)) + (2)*((sqrt(6))*(Mappx3xy2z2)) + (12*I)*((sqrt(10))*(Mappx3y3)) + (-8*I)*((sqrt(6))*(Mappx3yz2x2)) + (4*I)*((sqrt(10))*(Mappxy2z2yz2x2)) + (-4*I)*((sqrt(6))*(Mappxyzz3)) + (8*I)*((sqrt(6))*(Mappy3xy2z2)) + (2)*((sqrt(6))*(Mappy3yz2x2)) + (-4)*((sqrt(6))*(Mappz3zx2y2)))} ,  
-       {3, 1, A(3,1) + (I)*(B(3,1))} ,  +       {4,-4, (3/8)*((1/(sqrt(14)))*((3)*((sqrt(5))*(Eappx3)) + (-3)*((sqrt(5))*(Eappxy2z2)) + (-4)*((sqrt(5))*(Eappxyz)) + (3)*((sqrt(5))*(Eappy3)) + (-3)*((sqrt(5))*(Eappyz2x2)) + (4)*((sqrt(5))*(Eappzx2y2)) + (2)*((sqrt(3))*(Mappx3xy2z2)) + (-8*I)*((sqrt(3))*(Mappx3yz2x2)) + (8*I)*((sqrt(5))*(Mappxyzzx2y2)) + (-8*I)*((sqrt(3))*(Mappy3xy2z2)) + (-2)*((sqrt(3))*(Mappy3yz2x2))))} ,  
-       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  +       {44, (3/8)*((1/(sqrt(14)))*((3)*((sqrt(5))*(Eappx3)) + (-3)*((sqrt(5))*(Eappxy2z2)) + (-4)*((sqrt(5))*(Eappxyz)) + (3)*((sqrt(5))*(Eappy3)) + (-3)*((sqrt(5))*(Eappyz2x2)) + (4)*((sqrt(5))*(Eappzx2y2)) + (2)*((sqrt(3))*(Mappx3xy2z2)) + (8*I)*((sqrt(3))*(Mappx3yz2x2)) + (-8*I)*((sqrt(5))*(Mappxyzzx2y2)) + (8*I)*((sqrt(3))*(Mappy3xy2z2)) + (-2)*((sqrt(3))*(Mappy3yz2x2))))} ,  
-       {3, 3, A(3,3) + (I)*(B(3,3))} ,  +       {6, 0, (-13/560)*((25)*(Eappx3) + (39)*(Eappxy2z2) + (-24)*(Eappxyz) + (25)*(Eappy3) + (39)*(Eappyz2x2) + (-80)*(Eappz3) + (-24)*(Eappzx2y2) + (14)*((sqrt(15))*(Mappx3xy2z2)) + (-14)*((sqrt(15))*(Mappy3yz2x2)))} ,  
-       {4, 0, A(4,0)} ,  +       {6, 2, (13/160)*((1/(sqrt(7)))*((5)*((sqrt(15))*(Eappx3)) + (3)*((sqrt(15))*(Eappxy2z2)) + (-5)*((sqrt(15))*(Eappy3)) + (-3)*((sqrt(15))*(Eappyz2x2)) + (34)*(Mappx3xy2z2) + (-2*I)*((sqrt(15))*(Mappx3y3)) + (26*I)*(Mappx3yz2x2) + (14*I)*((sqrt(15))*(Mappxy2z2yz2x2)) + (-64*I)*(Mappxyzz3) + (-26*I)*(Mappy3xy2z2) + (34)*(Mappy3yz2x2) + (64)*(Mappz3zx2y2)))} ,  
-       {4,-2A(4,2) + (-I)*(B(4,2))} ,  +       {6,-2, (13/160)*((1/(sqrt(7)))*((5)*((sqrt(15))*(Eappx3)) + (3)*((sqrt(15))*(Eappxy2z2)) + (-5)*((sqrt(15))*(Eappy3)) + (-3)*((sqrt(15))*(Eappyz2x2)) + (34)*(Mappx3xy2z2) + (2*I)*((sqrt(15))*(Mappx3y3)) + (-26*I)*(Mappx3yz2x2) + (-14*I)*((sqrt(15))*(Mappxy2z2yz2x2)) + (64*I)*(Mappxyzz3) + (26*I)*(Mappy3xy2z2) + (34)*(Mappy3yz2x2) + (64)*(Mappz3zx2y2)))} ,  
-       {4, 2, A(4,2) + (I)*(B(4,2))} ,  +       {6,-4, (-13/80)*((1/(sqrt(14)))*((15)*(Eappx3) + (-15)*(Eappxy2z2) + (24)*(Eappxyz) + (15)*(Eappy3) + (-15)*(Eappyz2x2) + (-24)*(Eappzx2y2) + (2)*((sqrt(15))*(Mappx3xy2z2)) + (-8*I)*((sqrt(15))*(Mappx3yz2x2)) + (-48*I)*(Mappxyzzx2y2) + (-8*I)*((sqrt(15))*(Mappy3xy2z2)) + (-2)*((sqrt(15))*(Mappy3yz2x2))))} ,  
-       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  +       {6, 4, (-13/80)*((1/(sqrt(14)))*((15)*(Eappx3) + (-15)*(Eappxy2z2) + (24)*(Eappxyz) + (15)*(Eappy3) + (-15)*(Eappyz2x2) + (-24)*(Eappzx2y2) + (2)*((sqrt(15))*(Mappx3xy2z2)) + (8*I)*((sqrt(15))*(Mappx3yz2x2)) + (48*I)*(Mappxyzzx2y2) + (8*I)*((sqrt(15))*(Mappy3xy2z2)) + (-2)*((sqrt(15))*(Mappy3yz2x2))))} ,  
-       {4, 4A(4,4) + (I)*(B(4,4))} ,  +       {6,-6, (13/160)*((sqrt(11/7))*((5)*((sqrt(3))*(Eappx3)) + (3)*((sqrt(3))*(Eappxy2z2)) + (-5)*((sqrt(3))*(Eappy3)) + (-3)*((sqrt(3))*(Eappyz2x2)) + (-6)*((sqrt(5))*(Mappx3xy2z2)) + (-10*I)*((sqrt(3))*(Mappx3y3)) + (-6*I)*((sqrt(5))*(Mappx3yz2x2)) + (6*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (6*I)*((sqrt(5))*(Mappy3xy2z2)) + (-6)*((sqrt(5))*(Mappy3yz2x2))))} ,  
-       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  +       {6, 6, (13/160)*((sqrt(11/7))*((5)*((sqrt(3))*(Eappx3)) + (3)*((sqrt(3))*(Eappxy2z2)) + (-5)*((sqrt(3))*(Eappy3)) + (-3)*((sqrt(3))*(Eappyz2x2)) + (-6)*((sqrt(5))*(Mappx3xy2z2)) + (10*I)*((sqrt(3))*(Mappx3y3)) + (6*I)*((sqrt(5))*(Mappx3yz2x2)) + (-6*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (-6*I)*((sqrt(5))*(Mappy3xy2z2)) + (-6)*((sqrt(5))*(Mappy3yz2x2))))} }
-       {5, 1, A(5,1) + (I)*(B(5,1))} ,  +
-       {5,-3(-1)*(A(5,3)) + (I)*(B(5,3))} ,  +
-       {53A(5,3) (I)*(B(5,3))} ,  +
-       {5,-5(-1)*(A(5,5)) + (I)*(B(5,5))} ,  +
-       {5, 5, A(5,5) + (I)*(B(5,5))} ,  +
-       {6, 0, A(6,0)} ,  +
-       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  +
-       {6, 2, A(6,2) + (I)*(B(6,2))} ,  +
-       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  +
-       {6, 4, A(6,4) + (I)*(B(6,4))} ,  +
-       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  +
-       {6, 6, A(6,6) + (I)*(B(6,6))} }+
  
 </code> </code>
Line 716: Line 710:
  
   ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^   ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
-^Y(3)3|$ A(0,0)-\frac{1}{3A(2,0)+\frac{1}{11A(4,0)-\frac{5}{429A(6,0) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i B(2,2))+\frac{1}{11} \sqrt{6(A(4,2)-i B(4,2))-\frac{10}{429} \sqrt{7(A(6,2)-B(6,2)) | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i B(4,4))-5 \sqrt{5} (A(6,4)-i B(6,4))\right) | 0 | -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)-i B(6,6)) $| +^Y(3)3|$ \frac{1}{16\left(5 \text{Eappx3}+\text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappy3yz2x2}-\text{Mappx3xy2z2})\right) | 0 | \frac{1}{16\left(-\sqrt{15} \text{Eappx3}+\sqrt{15\text{Eappxy2z2}+\sqrt{15\text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}+2 \left(\sqrt{15\text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15\text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}+\text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16\left(\sqrt{15} \text{Eappx3}-\sqrt{15\text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15\text{Eappyz2x2}+2 (\text{Mappx3xy2z2}-i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16\left(-5 \text{Eappx3}-3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \left(\sqrt{15} \text{Mappx3xy2z2}+5 i \text{Mappx3y3}+i \sqrt{15} \text{Mappx3yz2x2}-3 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}-i \text{Mappy3xy2z2})\right)\right) $| 
-^Y(3)2|0|$ A(0,0)-\frac{7}{33A(4,0)+\frac{10}{143A(6,0) | 0 | -\frac{2 (A(2,2)-i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14(A(6,2)-i B(6,2)) | 0 | \frac{1}{429} \sqrt{14} \left(13 \sqrt{5(A(4,4)-i B(4,4))+30 (A(6,4)-B(6,4))\right) | 0 $| +^Y(3)2|0|$ \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{1}{2(-\text{Eappxyz}+\text{Eappzx2y2}+i \text{Mappxyzzx2y2}) | 0 $| 
-^Y(3)1|$ -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i B(2,2))+\frac{1}{11} \sqrt{6(A(4,2)+B(4,2))-\frac{10}{429} \sqrt{7(A(6,2)+i B(6,2)) | 0 | A(0,0)+\frac{1}{5A(2,0)+\frac{1}{33A(4,0)-\frac{25}{143A(6,0) | 0 | \frac{\left(-143 \sqrt{6(A(2,2)-i B(2,2))-65 \sqrt{10(A(4,2)-B(4,2))-25 \sqrt{105(A(6,2)-i B(6,2))\right)}{2145} | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i B(4,4))-5 \sqrt{5} (A(6,4)-i B(6,4))\right) $| +^Y(3)1|$ \frac{1}{16\left(-\sqrt{15} \text{Eappx3}+\sqrt{15\text{Eappxy2z2}+\sqrt{15\text{Eappy3}-\sqrt{15\text{Eappyz2x2}-2 \text{Mappx3xy2z2}-2 i \left(\sqrt{15\text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}-\text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16\left(3 \text{Eappx3}+\text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappx3xy2z2}-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-\text{Eappx3}-5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}-2 \left(\sqrt{15\text{Mappx3xy2z2}+3 \text{Mappx3y3}-\sqrt{15} \text{Mappx3yz2x2}-\text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}+i \text{Mappy3xy2z2})\right)\right) | 0 | \frac{1}{16\left(\sqrt{15} \text{Eappx3}-\sqrt{15\text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15\text{Eappyz2x2}+2 (\text{Mappx3xy2z2}-i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) $| 
-^Y(3)0|0|$ -\frac{2 (A(2,2)+i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14(A(6,2)+i B(6,2)) | 0 | A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) | 0 | -\frac{2 (A(2,2)-i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14(A(6,2)-i B(6,2)) | 0 $| +^Y(3)0|0|$ \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \text{Eappz3} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 $| 
-^Y(3)1|$ \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i B(4,4))-\sqrt{5} (A(6,4)+i B(6,4))\right) | 0 | \frac{\left(-143 \sqrt{6(A(2,2)+i B(2,2))-65 \sqrt{10(A(4,2)+i B(4,2))-25 \sqrt{105} (A(6,2)+i B(6,2))\right)}{2145} | 0 | A(0,0)+\frac{1}{5A(2,0)+\frac{1}{33A(4,0)-\frac{25}{143A(6,0) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i B(2,2))+\frac{1}{11} \sqrt{6(A(4,2)-i B(4,2))-\frac{10}{429} \sqrt{7(A(6,2)-B(6,2)) $| +^Y(3)1|$ \frac{1}{16\left(\sqrt{15} \text{Eappx3}-\sqrt{15\text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15\text{Eappyz2x2}+2 (\text{Mappx3xy2z2}+i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-\text{Eappx3}-5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}-\sqrt{15} \text{Mappx3xy2z2}+\left(3 \text{Mappx3y3}-\sqrt{15} \text{Mappx3yz2x2}-5 \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3xy2z2}+i \text{Mappy3yz2x2})\right)\right) | 0 | \frac{1}{16\left(3 \text{Eappx3}+\text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappx3xy2z2}-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16\left(-\sqrt{15} \text{Eappx3}+\sqrt{15\text{Eappxy2z2}+\sqrt{15\text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}+2 \left(\sqrt{15\text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15\text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}+\text{Mappy3yz2x2}\right)\right) $| 
-^Y(3)2|0|$ \frac{1}{429} \sqrt{14} \left(13 \sqrt{5(A(4,4)+B(4,4))+30 (A(6,4)+i B(6,4))\right) | 0 | -\frac{2 (A(2,2)+i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14(A(6,2)+i B(6,2)) | 0 | A(0,0)-\frac{7}{33A(4,0)+\frac{10}{143A(6,0) | 0 $| +^Y(3)2|0|$ \frac{1}{2(-\text{Eappxyz}+\text{Eappzx2y2}-2 i \text{Mappxyzzx2y2}) | 0 | \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 $| 
-^Y(3)3|$ -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)+i B(6,6)) | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i B(4,4))-\sqrt{5} (A(6,4)+i B(6,4))\right) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i B(2,2))+\frac{1}{11} \sqrt{6(A(4,2)+B(4,2))-\frac{10}{429} \sqrt{7(A(6,2)+i B(6,2)) | 0 | A(0,0)-\frac{1}{3A(2,0)+\frac{1}{11A(4,0)-\frac{5}{429A(6,0) $|+^Y(3)3|$ \frac{1}{16} \left(-5 \text{Eappx3}-3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \left(\sqrt{15} \text{Mappx3xy2z2}-5 i \text{Mappx3y3}-i \sqrt{15} \text{Mappx3yz2x2}+\text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}+i \text{Mappy3xy2z2})\right)\right) | 0 | \frac{1}{16\left(\sqrt{15} \text{Eappx3}-\sqrt{15\text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15\text{Eappyz2x2}+2 (\text{Mappx3xy2z2}+i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16\left(-\sqrt{15} \text{Eappx3}+\sqrt{15\text{Eappxy2z2}+\sqrt{15\text{Eappy3}-\sqrt{15\text{Eappyz2x2}-2 \text{Mappx3xy2z2}-2 i \left(\sqrt{15\text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}-\text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16\left(5 \text{Eappx3}+\text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappy3yz2x2}-\text{Mappx3xy2z2})\right) $|
  
  
Line 732: Line 726:
 ### ###
  
-  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^ +  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^ 
-^fxyz|$ \frac{1}{429} \left(429 A(0,0)-91 A(4,0)-13 \sqrt{70} A(4,4)+30 A(6,0)-30 \sqrt{14} A(6,4)\right) | 0 | 0 | \frac{286 \sqrt{10} B(2,2)+65 \sqrt{6} B(4,2)-200 \sqrt{7} B(6,2)}{2145} | 0 | 0 | -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} B(4,4)+30 B(6,4)\right) $| +^fxyz|$ \text{Eappxyz} | 0 | 0 | \text{Mappxyzz3} | 0 | 0 | \text{Mappxyzzx2y2} $| 
-^fx(5x2r2)|0|$ \frac{8580 A(0,0)-1144 A(2,0)+1144 \sqrt{6} A(2,2)+585 A(4,0)-390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)+125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)+125 \sqrt{231} A(6,6)}{8580} | \frac{286 \sqrt{6} B(2,2)-780 \sqrt{10} B(4,2)-25 \sqrt{105} B(6,2)+125 \sqrt{231} B(6,6)}{8580} | 0 | \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} | \frac{286 \sqrt{10} B(2,2)+5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(52 \sqrt{6} B(4,4)+65 B(6,2)-20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | 0 $| +^fx(5x2r2)|0|$ \text{Eappx3} | \text{Mappx3y3} | 0 | \text{Mappx3xy2z2} | \text{Mappx3yz2x2} | 0 $| 
-^fy(5y2r2)|0|$ \frac{286 \sqrt{6} B(2,2)-780 \sqrt{10} B(4,2)-25 \sqrt{105} B(6,2)+125 \sqrt{231} B(6,6)}{8580} | \frac{8580 A(0,0)-1144 A(2,0)-1144 \sqrt{6} A(2,2)+585 A(4,0)+390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)-125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)-125 \sqrt{231} A(6,6)}{8580} | 0 | \frac{-286 \sqrt{10} B(2,2)-5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(-52 \sqrt{6} B(4,4)+65 B(6,2)+20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} | 0 $| +^fy(5y2r2)|0|$ \text{Mappx3y3} | \text{Eappy3} | 0 | \text{Mappy3xy2z2} | \text{Mappy3yz2x2} | 0 $| 
-^$ f_{x\left(5z^2-r^2\right)} | \frac{286 \sqrt{10} B(2,2)+65 \sqrt{6} B(4,2)-200 \sqrt{7} B(6,2)}{2145} | 0 | 0 | A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) | 0 | 0 | \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145} $| +^$ f_{z\left(5z^2-r^2\right)} | \text{Mappxyzz3} | 0 | 0 | \text{Eappz3} | 0 | 0 | \text{Mappz3zx2y2} $| 
-^fx(y2z2)|0|$ \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} | \frac{-286 \sqrt{10} B(2,2)-5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(-52 \sqrt{6} B(4,4)+65 B(6,2)+20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | 0 | \frac{1716 A(0,0)+91 A(4,0)+182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)+15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)+15 \sqrt{231} A(6,6)}{1716} | \frac{286 \sqrt{6} B(2,2)-52 \sqrt{10} B(4,2)+35 \sqrt{105} B(6,2)-15 \sqrt{231} B(6,6)}{1716} | 0 $| +^fx(y2z2)|0|$ \text{Mappx3xy2z2} | \text{Mappy3xy2z2} | 0 | \text{Eappxy2z2} | \text{Mappxy2z2yz2x2} | 0 $| 
-^fy(z2x2)|0|$ \frac{286 \sqrt{10} B(2,2)+5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(52 \sqrt{6} B(4,4)+65 B(6,2)-20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} | 0 | \frac{286 \sqrt{6} B(2,2)-52 \sqrt{10} B(4,2)+35 \sqrt{105} B(6,2)-15 \sqrt{231} B(6,6)}{1716} | \frac{1716 A(0,0)+91 A(4,0)-182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)-15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)-15 \sqrt{231} A(6,6)}{1716} | 0 $| +^fy(z2x2)|0|$ \text{Mappx3yz2x2} | \text{Mappy3yz2x2} | 0 | \text{Mappxy2z2yz2x2} | \text{Eappyz2x2} | 0 $| 
-^fz(x2y2)|$ -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} B(4,4)+30 B(6,4)\right) | 0 | 0 | \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145} | 0 | 0 | \frac{1}{429} \left(429 A(0,0)-91 A(4,0)+13 \sqrt{70} A(4,4)+30 A(6,0)+30 \sqrt{14} A(6,4)\right) $|+^fz(x2y2)|$ \text{Mappxyzzx2y2} | 0 | 0 | \text{Mappz3zx2y2} | 0 | 0 | \text{Eappzx2y2} $|
  
  
Line 753: Line 747:
 ^fx(5x2r2)|54|0|34|0|34|0|54| ^fx(5x2r2)|54|0|34|0|34|0|54|
 ^fy(5y2r2)|i54|0|i34|0|i34|0|i54| ^fy(5y2r2)|i54|0|i34|0|i34|0|i54|
-^$ f_{x\left(5z^2-r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 $|+^$ f_{z\left(5z^2-r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 $|
 ^fx(y2z2)|34|0|54|0|54|0|34| ^fx(y2z2)|34|0|54|0|54|0|34|
 ^fy(z2x2)|i34|0|i54|0|i54|0|i34| ^fy(z2x2)|i34|0|i54|0|i54|0|i34|
Line 766: Line 760:
 ### ###
  
- TODO  +^ ^Eappxyz | {{:physics_chemistry:pointgroup:cs_z_orb_3_1.png?150}} | 
 +|ψ(θ,ϕ)=11 |14105πsin2(θ)cos(θ)sin(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |12105πxyz | ::: | 
 +^ ^Eappx3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_2.png?150}} | 
 +|ψ(θ,ϕ)=11 |1167πsin(θ)cos(ϕ)(10sin2(θ)cos(2ϕ)5cos(2θ)7) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1167πx(5x215y215z2+3) | ::: | 
 +^ ^Eappy3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_3.png?150}} | 
 +|ψ(θ,ϕ)=11 |1167πsin(θ)sin(ϕ)(10sin2(θ)cos(2ϕ)+5cos(2θ)+7) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |1167πy(15x2+5y215z2+3) | ::: | 
 +^ ^Eappz3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_4.png?150}} | 
 +|ψ(θ,ϕ)=11 |1167π(3cos(θ)+5cos(3θ)) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |147πz(5z23) | ::: | 
 +^ ^Eappxy2z2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_5.png?150}} | 
 +|ψ(θ,ϕ)=11 |116105πsin(θ)cos(ϕ)(2sin2(θ)cos(2ϕ)+3cos(2θ)+1) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |116105πx(x23y2+5z21) | ::: | 
 +^ ^Eappyz2x2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_6.png?150}} | 
 +|ψ(θ,ϕ)=11 |132105πsin(θ)sin(ϕ)(4sin2(θ)cos(2ϕ)+6cos(2θ)+2) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |116105πy(3x2+y2+5z21) | ::: | 
 +^ ^Eappzx2y2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_7.png?150}} | 
 +|ψ(θ,ϕ)=11 |14105πsin2(θ)cos(θ)cos(2ϕ) | ::: | 
 +|ψ(ˆx,ˆy,ˆz)=11 |14105πz(x2y2) | ::: | 
  
 ### ###
Line 788: Line 803:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- A(0,0) & k=0\land m=0 \\+ 0 & k\neq 1\lor (m\neq -1\land m\neq 1) \\
  -A(1,1)+i B(1,1) & k=1\land m=-1 \\  -A(1,1)+i B(1,1) & k=1\land m=-1 \\
- A(1,1)+i B(1,1) & k=1\land m=1 \\ + A(1,1)+i B(1,1) & \text{True}
- A(2,2)-i B(2,2) & k=2\land m=-2 \\ +
- A(2,0) & k=2\land m=0 \\ +
- A(2,2)+i B(2,2) & k=2\land m=2 \\ +
- -A(3,3)+i B(3,3) & k=3\land m=-3 \\ +
- -A(3,1)+i B(3,1) & k=3\land m=-1 \\ +
- A(3,1)+i B(3,1) & k=3\land m=1 \\ +
- A(3,3)+i B(3,3) & k=3\land m=3 \\ +
- A(4,4)-i B(4,4) & k=4\land m=-4 \\ +
- A(4,2)-i B(4,2) & k=4\land m=-2 \\ +
- A(4,0) & k=4\land m=0 \\ +
- A(4,2)+i B(4,2) & k=4\land m=2 \\ +
- A(4,4)+i B(4,4) & k=4\land m=4 \\ +
- -A(5,5)+i B(5,5) & k=5\land m=-5 \\ +
- -A(5,3)+i B(5,3) & k=5\land m=-3 \\ +
- -A(5,1)+i B(5,1) & k=5\land m=-1 \\ +
- A(5,1)+i B(5,1) & k=5\land m=1 \\ +
- A(5,3)+i B(5,3) & k=5\land m=3 \\ +
- A(5,5)+i B(5,5) & k=5\land m=5 \\ +
- A(6,6)-i B(6,6) & k=6\land m=-6 \\ +
- A(6,4)-i B(6,4) & k=6\land m=-4 \\ +
- A(6,2)-i B(6,2) & k=6\land m=-2 \\ +
- A(6,0) & k=6\land m=0 \\ +
- A(6,2)+i B(6,2) & k=6\land m=2 \\ +
- A(6,4)+i B(6,4) & k=6\land m=4 \\ +
- A(6,6)+i B(6,6) & k=6\land m=6+
 \end{cases}$$ \end{cases}$$
  
Line 827: Line 817:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1]k == 5 && m == 1}, {A[5, 3+ I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]+Akm[k_,m_]:=Piecewise[{{0,!1 || (!= -1 && m != 1)}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}}, A[1, 1] + I*B[1, 1]]
  
 </code> </code>
Line 839: Line 829:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, A(0,0)} ,  +Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  
-       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  +       {1, 1, A(1,1) + (I)*(B(1,1))} }
-       {1, 1, A(1,1) + (I)*(B(1,1))} ,  +
-       {2, 0, A(2,0)} ,  +
-       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  +
-       {2, 2, A(2,2) + (I)*(B(2,2))} ,  +
-       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  +
-       {3, 1, A(3,1) + (I)*(B(3,1))} ,  +
-       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  +
-       {3, 3, A(3,3) + (I)*(B(3,3))} ,  +
-       {4, 0, A(4,0)} ,  +
-       {4,-2, A(4,2) + (-I)*(B(4,2))} ,  +
-       {4, 2, A(4,2) + (I)*(B(4,2))} ,  +
-       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  +
-       {4, 4, A(4,4) + (I)*(B(4,4))} ,  +
-       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  +
-       {5, 1, A(5,1) + (I)*(B(5,1))} ,  +
-       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} ,  +
-       {5, 3, A(5,3) + (I)*(B(5,3))} ,  +
-       {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,  +
-       {5, 5, A(5,5) + (I)*(B(5,5))} ,  +
-       {6, 0, A(6,0)} ,  +
-       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  +
-       {6, 2, A(6,2) + (I)*(B(6,2))} ,  +
-       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  +
-       {6, 4, A(6,4) + (I)*(B(6,4))} ,  +
-       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  +
-       {6, 6, A(6,6) + (I)*(B(6,6))} }+
  
 </code> </code>
Line 902: Line 866:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- A(0,0) & k=0\land m=0 \+ 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\
- -A(1,1)+i B(1,1) & k=1\land m=-1 \+
- A(1,1)+i B(1,1) & k=1\land m=1 \\+
  A(2,2)-i B(2,2) & k=2\land m=-2 \\  A(2,2)-i B(2,2) & k=2\land m=-2 \\
  A(2,0) & k=2\land m=0 \\  A(2,0) & k=2\land m=0 \\
- A(2,2)+i B(2,2) & k=2\land m=2 \\ + A(2,2)+i B(2,2) & \text{True}
- -A(3,3)+i B(3,3) & k=3\land m=-3 \\ +
- -A(3,1)+i B(3,1) & k=3\land m=-1 \\ +
- A(3,1)+i B(3,1) & k=3\land m=1 \\ +
- A(3,3)+i B(3,3) & k=3\land m=3 \\ +
- A(4,4)-i B(4,4) & k=4\land m=-4 \\ +
- A(4,2)-i B(4,2) & k=4\land m=-2 \\ +
- A(4,0) & k=4\land m=0 \\ +
- A(4,2)+i B(4,2) & k=4\land m=2 \\ +
- A(4,4)+i B(4,4) & k=4\land m=4 \\ +
- -A(5,5)+i B(5,5) & k=5\land m=-5 \\ +
- -A(5,3)+i B(5,3) & k=5\land m=-3 \\ +
- -A(5,1)+i B(5,1) & k=5\land m=-1 \\ +
- A(5,1)+i B(5,1) & k=5\land m=1 \\ +
- A(5,3)+i B(5,3) & k=5\land m=3 \\ +
- A(5,5)+i B(5,5) & k=5\land m=5 \\ +
- A(6,6)-i B(6,6) & k=6\land m=-6 \\ +
- A(6,4)-i B(6,4) & k=6\land m=-4 \\ +
- A(6,2)-i B(6,2) & k=6\land m=-2 \\ +
- A(6,0) & k=6\land m=0 \\ +
- A(6,2)+i B(6,2) & k=6\land m=2 \\ +
- A(6,4)+i B(6,4) & k=6\land m=4 \\ +
- A(6,6)+i B(6,6) & k=6\land m=6+
 \end{cases}$$ \end{cases}$$
  
Line 941: Line 881:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2]k == 4 && m == 2}, {A[4, 4+ I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]+Akm[k_,m_]:=Piecewise[{{0,!2 || (!= -&& m !&& m !2)}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}}, A[2, 2] + I*B[2, 2]]
  
 </code> </code>
Line 953: Line 893:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, A(0,0)} ,  +Akm = {{2, 0, A(2,0)} , 
-       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  +
-       {1, 1, A(1,1) + (I)*(B(1,1))} ,  +
-       {2, 0, A(2,0)} , +
        {2,-2, A(2,2) + (-I)*(B(2,2))} ,         {2,-2, A(2,2) + (-I)*(B(2,2))} , 
-       {2, 2, A(2,2) + (I)*(B(2,2))} ,  +       {2, 2, A(2,2) + (I)*(B(2,2))} }
-       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  +
-       {3, 1, A(3,1) + (I)*(B(3,1))} ,  +
-       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  +
-       {3, 3, A(3,3) + (I)*(B(3,3))} ,  +
-       {4, 0, A(4,0)} ,  +
-       {4,-2, A(4,2) + (-I)*(B(4,2))} ,  +
-       {4, 2, A(4,2) + (I)*(B(4,2))} ,  +
-       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  +
-       {4, 4, A(4,4) + (I)*(B(4,4))} ,  +
-       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  +
-       {5, 1, A(5,1) + (I)*(B(5,1))} ,  +
-       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} ,  +
-       {5, 3, A(5,3) + (I)*(B(5,3))} ,  +
-       {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,  +
-       {5, 5, A(5,5) + (I)*(B(5,5))} ,  +
-       {6, 0, A(6,0)} ,  +
-       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  +
-       {6, 2, A(6,2) + (I)*(B(6,2))} ,  +
-       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  +
-       {6, 4, A(6,4) + (I)*(B(6,4))} ,  +
-       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  +
-       {6, 6, A(6,6) + (I)*(B(6,6))} }+
  
 </code> </code>
Line 1016: Line 931:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- A(0,0) & k=0\land m=0 \+ 0 & k\neq 3\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\
- -A(1,1)+i B(1,1) & k=1\land m=-1 \\ +
- A(1,1)+i B(1,1) & k=1\land m=1 \+
- A(2,2)-i B(2,2) & k=2\land m=-2 \+
- A(2,0) & k=2\land m=0 \+
- A(2,2)+i B(2,2) & k=2\land m=2 \\+
  -A(3,3)+i B(3,3) & k=3\land m=-3 \\  -A(3,3)+i B(3,3) & k=3\land m=-3 \\
  -A(3,1)+i B(3,1) & k=3\land m=-1 \\  -A(3,1)+i B(3,1) & k=3\land m=-1 \\
  A(3,1)+i B(3,1) & k=3\land m=1 \\  A(3,1)+i B(3,1) & k=3\land m=1 \\
- A(3,3)+i B(3,3) & k=3\land m=3 \\ + A(3,3)+i B(3,3) & \text{True}
- A(4,4)-i B(4,4) & k=4\land m=-4 \\ +
- A(4,2)-i B(4,2) & k=4\land m=-2 \\ +
- A(4,0) & k=4\land m=0 \\ +
- A(4,2)+i B(4,2) & k=4\land m=2 \\ +
- A(4,4)+i B(4,4) & k=4\land m=4 \\ +
- -A(5,5)+i B(5,5) & k=5\land m=-5 \\ +
- -A(5,3)+i B(5,3) & k=5\land m=-3 \\ +
- -A(5,1)+i B(5,1) & k=5\land m=-1 \\ +
- A(5,1)+i B(5,1) & k=5\land m=1 \\ +
- A(5,3)+i B(5,3) & k=5\land m=3 \\ +
- A(5,5)+i B(5,5) & k=5\land m=5 \\ +
- A(6,6)-i B(6,6) & k=6\land m=-6 \\ +
- A(6,4)-i B(6,4) & k=6\land m=-4 \\ +
- A(6,2)-i B(6,2) & k=6\land m=-2 \\ +
- A(6,0) & k=6\land m=0 \\ +
- A(6,2)+i B(6,2) & k=6\land m=2 \\ +
- A(6,4)+i B(6,4) & k=6\land m=4 \\ +
- A(6,6)+i B(6,6) & k=6\land m=6+
 \end{cases}$$ \end{cases}$$
  
Line 1055: Line 947:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]+Akm[k_,m_]:=Piecewise[{{0,!3 || (!= -&& m != -1 && m != 1 && m !3)}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}}, A[3, 3] + I*B[3, 3]]
  
 </code> </code>
Line 1067: Line 959:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, A(0,0)} ,  +Akm = {{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , 
-       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  +
-       {1, 1, A(1,1) + (I)*(B(1,1))} ,  +
-       {2, 0, A(2,0)} ,  +
-       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  +
-       {2, 2, A(2,2) + (I)*(B(2,2))} ,  +
-       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , +
        {3, 1, A(3,1) + (I)*(B(3,1))} ,         {3, 1, A(3,1) + (I)*(B(3,1))} , 
        {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,         {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , 
-       {3, 3, A(3,3) + (I)*(B(3,3))} ,  +       {3, 3, A(3,3) + (I)*(B(3,3))} }
-       {4, 0, A(4,0)} ,  +
-       {4,-2, A(4,2) + (-I)*(B(4,2))} ,  +
-       {4, 2, A(4,2) + (I)*(B(4,2))} ,  +
-       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  +
-       {4, 4, A(4,4) + (I)*(B(4,4))} ,  +
-       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  +
-       {5, 1, A(5,1) + (I)*(B(5,1))} ,  +
-       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} ,  +
-       {5, 3, A(5,3) + (I)*(B(5,3))} ,  +
-       {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,  +
-       {5, 5, A(5,5) + (I)*(B(5,5))} ,  +
-       {6, 0, A(6,0)} ,  +
-       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  +
-       {6, 2, A(6,2) + (I)*(B(6,2))} ,  +
-       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  +
-       {6, 4, A(6,4) + (I)*(B(6,4))} ,  +
-       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  +
-       {6, 6, A(6,6) + (I)*(B(6,6))} }+
  
 </code> </code>
Line 1116: Line 984:
 ### ###
  
-  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^+  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^
 ^s|0|114(21A(3,1)35A(3,3))|3B(3,1)+5B(3,3)27|0|5A(3,1)+3A(3,3)27|114(35B(3,1)21B(3,3))|0| ^s|0|114(21A(3,1)35A(3,3))|3B(3,1)+5B(3,3)27|0|5A(3,1)+3A(3,3)27|114(35B(3,1)21B(3,3))|0|
  
Line 1130: Line 998:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- A(0,0) & k=0\land m=0 \\+ 0 & (k\neq 3\land (k\neq 1\lor (m\neq -1\land m\neq 1)))\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\
  -A(1,1)+i B(1,1) & k=1\land m=-1 \\  -A(1,1)+i B(1,1) & k=1\land m=-1 \\
  A(1,1)+i B(1,1) & k=1\land m=1 \\  A(1,1)+i B(1,1) & k=1\land m=1 \\
- A(2,2)-i B(2,2) & k=2\land m=-2 \\ 
- A(2,0) & k=2\land m=0 \\ 
- A(2,2)+i B(2,2) & k=2\land m=2 \\ 
  -A(3,3)+i B(3,3) & k=3\land m=-3 \\  -A(3,3)+i B(3,3) & k=3\land m=-3 \\
  -A(3,1)+i B(3,1) & k=3\land m=-1 \\  -A(3,1)+i B(3,1) & k=3\land m=-1 \\
  A(3,1)+i B(3,1) & k=3\land m=1 \\  A(3,1)+i B(3,1) & k=3\land m=1 \\
- A(3,3)+i B(3,3) & k=3\land m=3 \\ + A(3,3)+i B(3,3) & \text{True}
- A(4,4)-i B(4,4) & k=4\land m=-4 \\ +
- A(4,2)-i B(4,2) & k=4\land m=-2 \\ +
- A(4,0) & k=4\land m=0 \\ +
- A(4,2)+i B(4,2) & k=4\land m=2 \\ +
- A(4,4)+i B(4,4) & k=4\land m=4 \\ +
- -A(5,5)+i B(5,5) & k=5\land m=-5 \\ +
- -A(5,3)+i B(5,3) & k=5\land m=-3 \\ +
- -A(5,1)+i B(5,1) & k=5\land m=-1 \\ +
- A(5,1)+i B(5,1) & k=5\land m=1 \\ +
- A(5,3)+i B(5,3) & k=5\land m=3 \\ +
- A(5,5)+i B(5,5) & k=5\land m=5 \\ +
- A(6,6)-i B(6,6) & k=6\land m=-6 \\ +
- A(6,4)-i B(6,4) & k=6\land m=-4 \\ +
- A(6,2)-i B(6,2) & k=6\land m=-2 \\ +
- A(6,0) & k=6\land m=0 \\ +
- A(6,2)+i B(6,2) & k=6\land m=2 \\ +
- A(6,4)+i B(6,4) & k=6\land m=4 \\ +
- A(6,6)+i B(6,6) & k=6\land m=6+
 \end{cases}$$ \end{cases}$$
  
Line 1169: Line 1016:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], == 1 && == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == && m == -1}, {A[3, 1] + I*B[3, 1], k == && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == && m == -1}, {A[5, 1] + I*B[5, 1], k == && m == 1}, {A[5, 3] + I*B[5, 3]k == 5 && m == 3}, {A[5, 5+ I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]+Akm[k_,m_]:=Piecewise[{{0, (!&& (!= 1 || (!= -1 && m != 1))) || (!= -&& m !-1 && m !&& m != 3)}, {-A[1, 1] + I*B[1, 1], k == && m == -1}, {A[1, 1] + I*B[1, 1], k == && m == 1}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == && m == -1}, {A[3, 1] + I*B[3, 1], k == && m == 1}}, A[3, 3] + I*B[3, 3]]
  
 </code> </code>
Line 1181: Line 1028:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, A(0,0)} ,  +Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , 
-       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , +
        {1, 1, A(1,1) + (I)*(B(1,1))} ,         {1, 1, A(1,1) + (I)*(B(1,1))} , 
-       {2, 0, A(2,0)} ,  
-       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  
-       {2, 2, A(2,2) + (I)*(B(2,2))} ,  
        {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,         {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , 
        {3, 1, A(3,1) + (I)*(B(3,1))} ,         {3, 1, A(3,1) + (I)*(B(3,1))} , 
        {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,         {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , 
-       {3, 3, A(3,3) + (I)*(B(3,3))} ,  +       {3, 3, A(3,3) + (I)*(B(3,3))} }
-       {4, 0, A(4,0)} ,  +
-       {4,-2, A(4,2) + (-I)*(B(4,2))} ,  +
-       {4, 2, A(4,2) + (I)*(B(4,2))} ,  +
-       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  +
-       {4, 4, A(4,4) + (I)*(B(4,4))} ,  +
-       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  +
-       {5, 1, A(5,1) + (I)*(B(5,1))} ,  +
-       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} ,  +
-       {5, 3, A(5,3) + (I)*(B(5,3))} ,  +
-       {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,  +
-       {5, 5, A(5,5) + (I)*(B(5,5))} ,  +
-       {6, 0, A(6,0)} ,  +
-       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  +
-       {6, 2, A(6,2) + (I)*(B(6,2))} ,  +
-       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  +
-       {6, 4, A(6,4) + (I)*(B(6,4))} ,  +
-       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  +
-       {6, 6, A(6,6) + (I)*(B(6,6))} }+
  
 </code> </code>
Line 1248: Line 1073:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- A(0,0) & k=0\land m=0 \\ + 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\
- -A(1,1)+i B(1,1& k=1\land m=-\\ +
- A(1,1)+i B(1,1) & k=1\land m=1 \\+
  A(2,2)-i B(2,2) & k=2\land m=-2 \\  A(2,2)-i B(2,2) & k=2\land m=-2 \\
  A(2,0) & k=2\land m=0 \\  A(2,0) & k=2\land m=0 \\
  A(2,2)+i B(2,2) & k=2\land m=2 \\  A(2,2)+i B(2,2) & k=2\land m=2 \\
- -A(3,3)+i B(3,3) & k=3\land m=-3 \\ 
- -A(3,1)+i B(3,1) & k=3\land m=-1 \\ 
- A(3,1)+i B(3,1) & k=3\land m=1 \\ 
- A(3,3)+i B(3,3) & k=3\land m=3 \\ 
  A(4,4)-i B(4,4) & k=4\land m=-4 \\  A(4,4)-i B(4,4) & k=4\land m=-4 \\
  A(4,2)-i B(4,2) & k=4\land m=-2 \\  A(4,2)-i B(4,2) & k=4\land m=-2 \\
  A(4,0) & k=4\land m=0 \\  A(4,0) & k=4\land m=0 \\
  A(4,2)+i B(4,2) & k=4\land m=2 \\  A(4,2)+i B(4,2) & k=4\land m=2 \\
- A(4,4)+i B(4,4) & k=4\land m=4 \\ + A(4,4)+i B(4,4) & \text{True}
- -A(5,5)+i B(5,5) & k=5\land m=-5 \\ +
- -A(5,3)+i B(5,3) & k=5\land m=-3 \\ +
- -A(5,1)+i B(5,1) & k=5\land m=-1 \\ +
- A(5,1)+i B(5,1) & k=5\land m=1 \\ +
- A(5,3)+i B(5,3) & k=5\land m=3 \\ +
- A(5,5)+i B(5,5) & k=5\land m=5 \\ +
- A(6,6)-i B(6,6) & k=6\land m=-6 \\ +
- A(6,4)-i B(6,4) & k=6\land m=-4 \\ +
- A(6,2)-i B(6,2) & k=6\land m=-2 \\ +
- A(6,0) & k=6\land m=0 \\ +
- A(6,2)+i B(6,2) & k=6\land m=2 \\ +
- A(6,4)+i B(6,4) & k=6\land m=4 \\ +
- A(6,6)+i B(6,6) & k=6\land m=6+
 \end{cases}$$ \end{cases}$$
  
Line 1287: Line 1093:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == && m == -2}, {A[4, 0], k == && m == 0}, {A[4, 2] + I*B[4, 2], k == && m == 2}, {A[4, 4] I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == && m == -2}, {A[6, 0], k == && m == 0}, {A[6, 2] + I*B[6, 2], k == && m == 2}, {A[6, 4] + I*B[6, 4]k == 6 && m == 4}, {A[6, 6+ I*B[6, 6], k == 6 && m == 6}}, 0]+Akm[k_,m_]:=Piecewise[{{0, (!&& (!= 2 || (!= -2 && m != 0 && m != 2))) || (!= -&& m != -&& m !&& m !&& m != 4)}, {A[2, 2] - I*B[2, 2], k == && m == -2}, {A[2, 0], k == && m == 0}, {A[2, 2] + I*B[2, 2], k == && m == 2}, {A[4, 4] I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == && m == -2}, {A[4, 0], k == && m == 0}, {A[4, 2] + I*B[4, 2], k == && m == 2}}, A[4, 4] + I*B[4, 4]]
  
 </code> </code>
Line 1299: Line 1105:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, A(0,0)} ,  +Akm = {{2, 0, A(2,0)} , 
-       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} ,  +
-       {1, 1, A(1,1) + (I)*(B(1,1))} ,  +
-       {2, 0, A(2,0)} , +
        {2,-2, A(2,2) + (-I)*(B(2,2))} ,         {2,-2, A(2,2) + (-I)*(B(2,2))} , 
        {2, 2, A(2,2) + (I)*(B(2,2))} ,         {2, 2, A(2,2) + (I)*(B(2,2))} , 
-       {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,  
-       {3, 1, A(3,1) + (I)*(B(3,1))} ,  
-       {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,  
-       {3, 3, A(3,3) + (I)*(B(3,3))} ,  
        {4, 0, A(4,0)} ,         {4, 0, A(4,0)} , 
        {4,-2, A(4,2) + (-I)*(B(4,2))} ,         {4,-2, A(4,2) + (-I)*(B(4,2))} , 
        {4, 2, A(4,2) + (I)*(B(4,2))} ,         {4, 2, A(4,2) + (I)*(B(4,2))} , 
        {4,-4, A(4,4) + (-I)*(B(4,4))} ,         {4,-4, A(4,4) + (-I)*(B(4,4))} , 
-       {4, 4, A(4,4) + (I)*(B(4,4))} ,  +       {4, 4, A(4,4) + (I)*(B(4,4))} }
-       {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,  +
-       {5, 1, A(5,1) + (I)*(B(5,1))} ,  +
-       {5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} ,  +
-       {5, 3, A(5,3) + (I)*(B(5,3))} ,  +
-       {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,  +
-       {5, 5, A(5,5) + (I)*(B(5,5))} ,  +
-       {6, 0, A(6,0)} ,  +
-       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  +
-       {6, 2, A(6,2) + (I)*(B(6,2))} ,  +
-       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  +
-       {6, 4, A(6,4) + (I)*(B(6,4))} ,  +
-       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  +
-       {6, 6, A(6,6) + (I)*(B(6,6))} }+
  
 </code> </code>
Line 1350: Line 1136:
 ### ###
  
-  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^+  ^  fxyz  ^  fx(5x2r2)  ^  fy(5y2r2)  ^  $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $  ^
 ^px|0|1630(2721A(2,0)+8114A(2,2)+5(321A(4,0)2210A(4,2)+730A(4,4)))|1630(5414B(2,2)+530(7B(4,2)+7B(4,4)))|0|1210(935A(2,0)3210A(2,2)+5(35A(4,0)214A(4,2)72A(4,4)))|635B(2,2)B(4,2)14+B(4,4)32|0| ^px|0|1630(2721A(2,0)+8114A(2,2)+5(321A(4,0)2210A(4,2)+730A(4,4)))|1630(5414B(2,2)+530(7B(4,2)+7B(4,4)))|0|1210(935A(2,0)3210A(2,2)+5(35A(4,0)214A(4,2)72A(4,4)))|635B(2,2)B(4,2)14+B(4,4)32|0|
 ^py|0|1630(5414B(2,2)+530(7B(4,2)7B(4,4)))|1630(2721A(2,0)8114A(2,2)+5(321A(4,0)+2210A(4,2)+730A(4,4)))|0|635B(2,2)+B(4,2)14+B(4,4)32| \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0 | ^ p_y | 0 | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)-7 B(4,4)\right)\right) | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)-81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)+2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | 0 | -\sqrt{\frac{6}{35}} B(2,2)+\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0 |
Line 1366: Line 1152:
  
  $$A_{k,m} = \begin{cases}  $$A_{k,m} = \begin{cases}
- A(0,0) & k=0\land m=0 \\+ 0 & (k\neq 5\land (((k\neq 1\lor (m\neq -1\land m\neq 1))\land k\neq 3)\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3)))\lor (m\neq -5\land m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3\land m\neq 5) \\
  -A(1,1)+i B(1,1) & k=1\land m=-1 \\  -A(1,1)+i B(1,1) & k=1\land m=-1 \\
  A(1,1)+i B(1,1) & k=1\land m=1 \\  A(1,1)+i B(1,1) & k=1\land m=1 \\
- A(2,2)-i B(2,2) & k=2\land m=-2 \\ 
- A(2,0) & k=2\land m=0 \\ 
- A(2,2)+i B(2,2) & k=2\land m=2 \\ 
  -A(3,3)+i B(3,3) & k=3\land m=-3 \\  -A(3,3)+i B(3,3) & k=3\land m=-3 \\
  -A(3,1)+i B(3,1) & k=3\land m=-1 \\  -A(3,1)+i B(3,1) & k=3\land m=-1 \\
  A(3,1)+i B(3,1) & k=3\land m=1 \\  A(3,1)+i B(3,1) & k=3\land m=1 \\
  A(3,3)+i B(3,3) & k=3\land m=3 \\  A(3,3)+i B(3,3) & k=3\land m=3 \\
- A(4,4)-i B(4,4) & k=4\land m=-4 \\ 
- A(4,2)-i B(4,2) & k=4\land m=-2 \\ 
- A(4,0) & k=4\land m=0 \\ 
- A(4,2)+i B(4,2) & k=4\land m=2 \\ 
- A(4,4)+i B(4,4) & k=4\land m=4 \\ 
  -A(5,5)+i B(5,5) & k=5\land m=-5 \\  -A(5,5)+i B(5,5) & k=5\land m=-5 \\
  -A(5,3)+i B(5,3) & k=5\land m=-3 \\  -A(5,3)+i B(5,3) & k=5\land m=-3 \\
Line 1386: Line 1164:
  A(5,1)+i B(5,1) & k=5\land m=1 \\  A(5,1)+i B(5,1) & k=5\land m=1 \\
  A(5,3)+i B(5,3) & k=5\land m=3 \\  A(5,3)+i B(5,3) & k=5\land m=3 \\
- A(5,5)+i B(5,5) & k=5\land m=5 \\ + A(5,5)+i B(5,5) & \text{True}
- A(6,6)-i B(6,6) & k=6\land m=-6 \\ +
- A(6,4)-i B(6,4) & k=6\land m=-4 \\ +
- A(6,2)-i B(6,2) & k=6\land m=-2 \\ +
- A(6,0) & k=6\land m=0 \\ +
- A(6,2)+i B(6,2) & k=6\land m=2 \\ +
- A(6,4)+i B(6,4) & k=6\land m=4 \\ +
- A(6,6)+i B(6,6) & k=6\land m=6+
 \end{cases}$$ \end{cases}$$
  
Line 1405: Line 1176:
 <code Quanty Akm_Cs_Z.Quanty.nb> <code Quanty Akm_Cs_Z.Quanty.nb>
  
-Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[11] + I*B[1, 1], k == && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == && m == -1}, {A[3, 1] + I*B[3, 1], k == && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] I*B[4, 4], k == 4 && m == -4}, {A[42I*B[42], k == && m == -2}, {A[40], k == 4 && m == 0}, {A[4, 2] + I*B[42], k == && m == 2}, {A[44] + I*B[44], k == && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]+Akm[k_,m_]:=Piecewise[{{0, (!&& (((k != 1 || (!= -1 && m != 1)) && !3) || (m !-3 && m != -1 && m != 1 && m !3))) || (m != -5 && m !-3 && m != -&& m !&& m != 3 && m !5)}, {-A[1, 1] + I*B[1, 1], k == && m == -1}, {A[1, 1] + I*B[1, 1], k == && m == 1}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[31I*B[31], k == && m == -1}, {A[31] + I*B[31], k == && m == 1}, {A[33] + I*B[33], k == && m == 3}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}}, A[5, 5] + I*B[5, 5]]
  
 </code> </code>
Line 1417: Line 1188:
 <code Quanty Akm_Cs_Z.Quanty> <code Quanty Akm_Cs_Z.Quanty>
  
-Akm = {{0, 0, A(0,0)} ,  +Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , 
-       {1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , +
        {1, 1, A(1,1) + (I)*(B(1,1))} ,         {1, 1, A(1,1) + (I)*(B(1,1))} , 
-       {2, 0, A(2,0)} ,  
-       {2,-2, A(2,2) + (-I)*(B(2,2))} ,  
-       {2, 2, A(2,2) + (I)*(B(2,2))} ,  
        {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} ,         {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , 
        {3, 1, A(3,1) + (I)*(B(3,1))} ,         {3, 1, A(3,1) + (I)*(B(3,1))} , 
        {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} ,         {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , 
        {3, 3, A(3,3) + (I)*(B(3,3))} ,         {3, 3, A(3,3) + (I)*(B(3,3))} , 
-       {4, 0, A(4,0)} ,  
-       {4,-2, A(4,2) + (-I)*(B(4,2))} ,  
-       {4, 2, A(4,2) + (I)*(B(4,2))} ,  
-       {4,-4, A(4,4) + (-I)*(B(4,4))} ,  
-       {4, 4, A(4,4) + (I)*(B(4,4))} ,  
        {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} ,         {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , 
        {5, 1, A(5,1) + (I)*(B(5,1))} ,         {5, 1, A(5,1) + (I)*(B(5,1))} , 
Line 1437: Line 1199:
        {5, 3, A(5,3) + (I)*(B(5,3))} ,         {5, 3, A(5,3) + (I)*(B(5,3))} , 
        {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} ,         {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , 
-       {5, 5, A(5,5) + (I)*(B(5,5))} ,  +       {5, 5, A(5,5) + (I)*(B(5,5))} }
-       {6, 0, A(6,0)} ,  +
-       {6,-2, A(6,2) + (-I)*(B(6,2))} ,  +
-       {6, 2, A(6,2) + (I)*(B(6,2))} ,  +
-       {6,-4, A(6,4) + (-I)*(B(6,4))} ,  +
-       {6, 4, A(6,4) + (I)*(B(6,4))} ,  +
-       {6,-6, A(6,6) + (-I)*(B(6,6))} ,  +
-       {6, 6, A(6,6) + (I)*(B(6,6))} }+
  
 </code> </code>
Line 1470: Line 1225:
 ### ###
  
-    ^  f_{\text{xyz}}   ^  f_{x\left(5x^2-r^2\right)}   ^  f_{y\left(5y^2-r^2\right)}   ^  $ f_{x\left(5z^2-r^2\right)}   ^  f_{x\left(y^2-z^2\right)}   ^  f_{y\left(z^2-x^2\right)}   ^  f_{z\left(x^2-y^2\right)} $  ^+    ^  f_{\text{xyz}}   ^  f_{x\left(5x^2-r^2\right)}   ^  f_{y\left(5y^2-r^2\right)}   ^  $ f_{z\left(5z^2-r^2\right)}   ^  f_{x\left(y^2-z^2\right)}   ^  f_{y\left(z^2-x^2\right)}   ^  f_{z\left(x^2-y^2\right)} $  ^
 ^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} | \frac{-99 \sqrt{210} B(1,1)+121 \sqrt{35} B(3,1)+55 \sqrt{21} B(3,3)-50 \sqrt{14} B(5,1)-175 \sqrt{3} B(5,3)-175 \sqrt{15} B(5,5)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) | \frac{1}{462} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)-11 \sqrt{35} B(3,3)+2 \sqrt{210} B(5,1)+35 \sqrt{5} B(5,3)-105 B(5,5)\right) | 0 | ^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} | \frac{-99 \sqrt{210} B(1,1)+121 \sqrt{35} B(3,1)+55 \sqrt{21} B(3,3)-50 \sqrt{14} B(5,1)-175 \sqrt{3} B(5,3)-175 \sqrt{15} B(5,5)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) | \frac{1}{462} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)-11 \sqrt{35} B(3,3)+2 \sqrt{210} B(5,1)+35 \sqrt{5} B(5,3)-105 B(5,5)\right) | 0 |
 ^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} | \frac{-99 \sqrt{70} B(1,1)-33 \sqrt{105} B(3,1)+275 \sqrt{7} B(3,3)-75 \sqrt{42} B(5,1)-350 B(5,3)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) | \frac{1}{462} \left(33 \sqrt{42} B(1,1)+33 \sqrt{7} B(3,1)+11 \sqrt{105} B(3,3)+15 \sqrt{70} B(5,1)-14 \sqrt{15} B(5,3)\right) | 0 | ^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} | \frac{-99 \sqrt{70} B(1,1)-33 \sqrt{105} B(3,1)+275 \sqrt{7} B(3,3)-75 \sqrt{42} B(5,1)-350 B(5,3)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) | \frac{1}{462} \left(33 \sqrt{42} B(1,1)+33 \sqrt{7} B(3,1)+11 \sqrt{105} B(3,3)+15 \sqrt{70} B(5,1)-14 \sqrt{15} B(5,3)\right) | 0 |
Print/export