Both sides previous revisionPrevious revisionNext revision | Previous revision |
physics_chemistry:point_groups:cs:orientation_z [2018/03/29 21:59] – Maurits W. Haverkort | physics_chemistry:point_groups:cs:orientation_z [2018/04/06 09:16] (current) – Maurits W. Haverkort |
---|
| ~~CLOSETOC~~ |
| |
====== Orientation Z ====== | ====== Orientation Z ====== |
| |
* [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]] | * [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]] |
* [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]] | * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]] |
| * [[physics_chemistry:point_groups:d5h:orientation_zx|Point Group D5h with orientation Zx]] |
| * [[physics_chemistry:point_groups:d5h:orientation_zy|Point Group D5h with orientation Zy]] |
* [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]] | * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]] |
* [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]] | * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]] |
^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| | ^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| |
^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| | ^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| |
^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $| | ^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 1 | 0 | 0 | 0 $| |
^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| | ^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| |
^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| | ^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| |
### | ### |
| |
| ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | | ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
^s|Ass(0,0)|−√23Asp(1,1)|√23Bsp(1,1)|0|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|0|12√37Asf(3,1)−12√57Asf(3,3)|−12√37Bsf(3,1)−12√57Bsf(3,3)|0|12√57Asf(3,1)+12√37Asf(3,3)|12√57Bsf(3,1)−12√37Bsf(3,3)|0| | ^s|Ass(0,0)|−√23Asp(1,1)|√23Bsp(1,1)|0|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|0|12√37Asf(3,1)−12√57Asf(3,3)|−12√37Bsf(3,1)−12√57Bsf(3,3)|0|12√57Asf(3,1)+12√37Asf(3,3)|12√57Bsf(3,1)−12√37Bsf(3,3)|0| |
^px|−√23Asp(1,1)|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|√215Apd(1,1)−6Apd(3,1)7√5|0|0|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| | ^px|−√23Asp(1,1)|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|√215Apd(1,1)−6Apd(3,1)7√5|0|0|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| |
^fx(5x2−r2)|12√37Asf(3,1)−12√57Asf(3,3)|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|0|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|0|Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6)|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|0| | ^fx(5x2−r2)|12√37Asf(3,1)−12√57Asf(3,3)|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|0|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|0|Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6)|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|0| |
^fy(5y2−r2)|−12√37Bsf(3,1)−12√57Bsf(3,3)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|0|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6)|0|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0| | ^fy(5y2−r2)|−12√37Bsf(3,1)−12√57Bsf(3,3)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|0|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6)|0|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0| |
^$ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }|\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }|\color{darkred}{ 0 }| \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) $| | ^$ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }|\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }|\color{darkred}{ 0 }| \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) $| |
^fx(y2−z2)|12√57Asf(3,1)+12√37Asf(3,3)|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|−√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2|0|Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5)|√314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3)|0|0|√27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)+5572√105Aff(6,2)+25286√72Aff(6,4)+552√2111Aff(6,6)|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|0| | ^fx(y2−z2)|12√57Asf(3,1)+12√37Asf(3,3)|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|−√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2|0|Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5)|√314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3)|0|0|√27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)+5572√105Aff(6,2)+25286√72Aff(6,4)+552√2111Aff(6,6)|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|0| |
^fy(z2−x2)|12√57Bsf(3,1)−12√37Bsf(3,3)|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2|0|−Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5)|√314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3)|0|0|√27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5)|0|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|Aff(0,0)+7132Aff(4,0)−733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)−5572√105Aff(6,2)+25286√72Aff(6,4)−552√2111Aff(6,6)|0| | ^fy(z2−x2)|12√57Bsf(3,1)−12√37Bsf(3,3)|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2|0|−Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5)|√314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3)|0|0|√27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5)|0|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|Aff(0,0)+7132Aff(4,0)−733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)−5572√105Aff(6,2)+25286√72Aff(6,4)−552√2111Aff(6,6)|0| |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
\text{Eag} & k=0\land m=0 \\ | \text{Ap} & k=0\land m=0 \\ |
0 & \text{True} | 0 & \text{True} |
\end{cases}$$ | \end{cases}$$ |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{Eag, k == 0 && m == 0}}, 0] | Akm[k_,m_]:=Piecewise[{{Ap, k == 0 && m == 0}}, 0] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, Eag} } | Akm = {{0, 0, Ap} } |
| |
</code> | </code> |
| |
| ^ Y(0)0 ^ | | ^ Y(0)0 ^ |
^Y(0)0|$ \text{Eag} $| | ^Y(0)0|$ \text{Ap} $| |
| |
| |
| |
| ^ s ^ | | ^ s ^ |
^s|$ \text{Eag} $| | ^s|$ \text{Ap} $| |
| |
| |
### | ### |
| |
TODO | ^ ^Ap | {{:physics_chemistry:pointgroup:cs_z_orb_0_1.png?150}} | |
| |ψ(θ,ϕ)=√11 |12√π | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√π | ::: | |
| |
### | ### |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
\frac{1}{3} (\text{Epxpx}+\text{Epypy}+\text{Epzpz}) & k=0\land m=0 \\ | \frac{1}{3} (\text{Eapp}+\text{Eapx}+\text{Eapy}) & k=0\land m=0 \\ |
\frac{5 (\text{Epxpx}+2 i \text{Epypx}-\text{Epypy})}{2 \sqrt{6}} & k=2\land m=-2 \\ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ |
\frac{5 (\text{Epzpx}+i \text{Epypz})}{\sqrt{6}} & k=2\land m=-1 \\ | \frac{5 (\text{Eapx}-\text{Eapy}+2 i \text{Mapxy})}{2 \sqrt{6}} & k=2\land m=-2 \\ |
-\frac{5}{6} (\text{Epxpx}+\text{Epypy}-2 \text{Epzpz}) & k=2\land m=0 \\ | \frac{5}{6} (2 \text{Eapp}-\text{Eapx}-\text{Eapy}) & k=2\land m=0 \\ |
\frac{5 i (\text{Epypz}+i \text{Epzpx})}{\sqrt{6}} & k=2\land m=1 \\ | \frac{5 (\text{Eapx}-\text{Eapy}-2 i \text{Mapxy})}{2 \sqrt{6}} & \text{True} |
\frac{5 (\text{Epxpx}-2 i \text{Epypx}-\text{Epypy})}{2 \sqrt{6}} & k=2\land m=2 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{(Epxpx + Epypy + Epzpz)/3, k == 0 && m == 0}, {(5*(Epxpx + (2*I)*Epypx - Epypy))/(2*Sqrt[6]), k == 2 && m == -2}, {(5*(I*Epypz + Epzpx))/Sqrt[6], k == 2 && m == -1}, {(-5*(Epxpx + Epypy - 2*Epzpz))/6, k == 2 && m == 0}, {((5*I)*(Epypz + I*Epzpx))/Sqrt[6], k == 2 && m == 1}, {(5*(Epxpx - (2*I)*Epypx - Epypy))/(2*Sqrt[6]), k == 2 && m == 2}}, 0] | Akm[k_,m_]:=Piecewise[{{(Eapp + Eapx + Eapy)/3, k == 0 && m == 0}, {0, k != 2 || (m != -2 && m != 0 && m != 2)}, {(5*(Eapx - Eapy + (2*I)*Mapxy))/(2*Sqrt[6]), k == 2 && m == -2}, {(5*(2*Eapp - Eapx - Eapy))/6, k == 2 && m == 0}}, (5*(Eapx - Eapy - (2*I)*Mapxy))/(2*Sqrt[6])] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, (1/3)*(Epxpx + Epypy + Epzpz)} , | Akm = {{0, 0, (1/3)*(Eapp + Eapx + Eapy)} , |
{2, 0, (-5/6)*(Epxpx + Epypy + (-2)*(Epzpz))} , | {2, 0, (5/6)*((2)*(Eapp) + (-1)*(Eapx) + (-1)*(Eapy))} , |
{2,-1, (5)*((1/(sqrt(6)))*((I)*(Epypz) + Epzpx))} , | {2, 2, (5/2)*((1/(sqrt(6)))*(Eapx + (-1)*(Eapy) + (-2*I)*(Mapxy)))} , |
{2, 1, (5*I)*((1/(sqrt(6)))*(Epypz + (I)*(Epzpx)))} , | {2,-2, (5/2)*((1/(sqrt(6)))*(Eapx + (-1)*(Eapy) + (2*I)*(Mapxy)))} } |
{2, 2, (5/2)*((1/(sqrt(6)))*(Epxpx + (-2*I)*(Epypx) + (-1)*(Epypy)))} , | |
{2,-2, (5/2)*((1/(sqrt(6)))*(Epxpx + (2*I)*(Epypx) + (-1)*(Epypy)))} } | |
| |
</code> | </code> |
| |
| ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ | | ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ |
^Y(1)−1|$ \frac{\text{Epxpx}+\text{Epypy}}{2} | \frac{\text{Epzpx}+i \text{Epypz}}{\sqrt{2}} | \frac{1}{2} (-\text{Epxpx}-2 i \text{Epypx}+\text{Epypy}) $| | ^Y(1)−1|$ \frac{\text{Eapx}+\text{Eapy}}{2} | 0 | \frac{1}{2} (-\text{Eapx}+\text{Eapy}-2 i \text{Mapxy}) $| |
^Y(1)0|$ \frac{\text{Epzpx}-i \text{Epypz}}{\sqrt{2}} | \text{Epzpz} | -\frac{\text{Epzpx}+i \text{Epypz}}{\sqrt{2}} $| | ^Y(1)0|$ 0 | \text{Eapp} | 0 $| |
^Y(1)1|$ \frac{1}{2} (-\text{Epxpx}+2 i \text{Epypx}+\text{Epypy}) | \frac{i (\text{Epypz}+i \text{Epzpx})}{\sqrt{2}} | \frac{\text{Epxpx}+\text{Epypy}}{2} $| | ^Y(1)1|$ \frac{1}{2} (-\text{Eapx}+\text{Eapy}+2 i \text{Mapxy}) | 0 | \frac{\text{Eapx}+\text{Eapy}}{2} $| |
| |
| |
| |
| ^ px ^ py ^ pz ^ | | ^ px ^ py ^ pz ^ |
^px|$ \text{Epxpx} | \text{Epypx} | \text{Epzpx} $| | ^px|$ \text{Eapx} | \text{Mapxy} | 0 $| |
^py|$ \text{Epypx} | \text{Epypy} | \text{Epypz} $| | ^py|$ \text{Mapxy} | \text{Eapy} | 0 $| |
^pz|$ \text{Epzpx} | \text{Epypz} | \text{Epzpz} $| | ^pz|$ 0 | 0 | \text{Eapp} $| |
| |
| |
### | ### |
| |
TODO | ^ ^Eapx | {{:physics_chemistry:pointgroup:cs_z_orb_1_1.png?150}} | |
| |ψ(θ,ϕ)=√11 |12√3πsin(θ)cos(ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√3πx | ::: | |
| ^ ^Eapy | {{:physics_chemistry:pointgroup:cs_z_orb_1_2.png?150}} | |
| |ψ(θ,ϕ)=√11 |12√3πsin(θ)sin(ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√3πy | ::: | |
| ^ ^Eapp | {{:physics_chemistry:pointgroup:cs_z_orb_1_3.png?150}} | |
| |ψ(θ,ϕ)=√11 |12√3πcos(θ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√3πz | ::: | |
| |
### | ### |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
\frac{1}{5} (\text{Edx2y2dx2y2}+\text{Edxydxy}+\text{Edxzdxz}+\text{Edyzdyz}+\text{Edz2dz2}) & k=0\land m=0 \\ | \frac{1}{5} (\text{Eappxz}+\text{Eappyz}+\text{Eapx2y2}+\text{Eapxy}+\text{Eapz2}) & k=0\land m=0 \\ |
\frac{-4 i \text{Edxydz2}+\sqrt{3} \text{Edxzdxz}+2 i \sqrt{3} \text{Edyzdxz}-\sqrt{3} \text{Edyzdyz}-4 \text{Edz2dx2y2}}{2 \sqrt{2}} & k=2\land m=-2 \\ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ |
\frac{i \sqrt{3} \text{Edxydxz}+\sqrt{3} \text{Edxydyz}+\sqrt{3} \text{Edxzdx2y2}-i \sqrt{3} \text{Edyzdx2y2}+i \text{Edyzdz2}+\text{Edz2dxz}}{\sqrt{2}} & k=2\land m=-1 \\ | \frac{\sqrt{3} \text{Eappxz}-\sqrt{3} \text{Eappyz}+2 i \sqrt{3} \text{Mappyzxz}-4 \text{Mapx2y2z2}-4 i \text{Mapz2xy}}{2 \sqrt{2}} & k=2\land m=-2 \\ |
-\text{Edx2y2dx2y2}-\text{Edxydxy}+\frac{\text{Edxzdxz}+\text{Edyzdyz}}{2}+\text{Edz2dz2} & k=2\land m=0 \\ | \frac{1}{2} (\text{Eappxz}+\text{Eappyz}-2 (\text{Eapx2y2}+\text{Eapxy}-\text{Eapz2})) & k=2\land m=0 \\ |
\frac{i \left(\sqrt{3} \text{Edxydxz}+i \sqrt{3} \text{Edxydyz}+i \sqrt{3} \text{Edxzdx2y2}-\sqrt{3} \text{Edyzdx2y2}+\text{Edyzdz2}+i \text{Edz2dxz}\right)}{\sqrt{2}} & k=2\land m=1 \\ | \frac{\sqrt{3} \text{Eappxz}-\sqrt{3} \text{Eappyz}-2 i \sqrt{3} \text{Mappyzxz}-4 \text{Mapx2y2z2}+4 i \text{Mapz2xy}}{2 \sqrt{2}} & k=2\land m=2 \\ |
\frac{4 i \text{Edxydz2}+\sqrt{3} \text{Edxzdxz}-2 i \sqrt{3} \text{Edyzdxz}-\sqrt{3} \text{Edyzdyz}-4 \text{Edz2dx2y2}}{2 \sqrt{2}} & k=2\land m=2 \\ | \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Eapx2y2}-\text{Eapxy}+2 i \text{Mapx2y2xy}) & k=4\land m=-4 \\ |
\frac{3}{2} \sqrt{\frac{7}{10}} (\text{Edx2y2dx2y2}+2 i \text{Edxydx2y2}-\text{Edxydxy}) & k=4\land m=-4 \\ | \frac{3 \left(\text{Eappxz}-\text{Eappyz}+2 i \text{Mappyzxz}+\sqrt{3} \text{Mapx2y2z2}+i \sqrt{3} \text{Mapz2xy}\right)}{\sqrt{10}} & k=4\land m=-2 \\ |
\frac{3}{2} \sqrt{\frac{7}{5}} (i \text{Edxydxz}-\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}) & k=4\land m=-3 \\ | -\frac{3}{10} (4 \text{Eappxz}+4 \text{Eappyz}-\text{Eapx2y2}-\text{Eapxy}-6 \text{Eapz2}) & k=4\land m=0 \\ |
\frac{3 \left(i \sqrt{3} \text{Edxydz2}+\text{Edxzdxz}+2 i \text{Edyzdxz}-\text{Edyzdyz}+\sqrt{3} \text{Edz2dx2y2}\right)}{\sqrt{10}} & k=4\land m=-2 \\ | \frac{3 \left(\text{Eappxz}-\text{Eappyz}-2 i \text{Mappyzxz}+\sqrt{3} \text{Mapx2y2z2}-i \sqrt{3} \text{Mapz2xy}\right)}{\sqrt{10}} & k=4\land m=2 \\ |
\frac{3 \left(-i \text{Edxydxz}-\text{Edxydyz}-\text{Edxzdx2y2}+i \text{Edyzdx2y2}+2 i \sqrt{3} \text{Edyzdz2}+2 \sqrt{3} \text{Edz2dxz}\right)}{2 \sqrt{5}} & k=4\land m=-1 \\ | \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Eapx2y2}-\text{Eapxy}-2 i \text{Mapx2y2xy}) & \text{True} |
\frac{3}{10} (\text{Edx2y2dx2y2}+\text{Edxydxy}-4 (\text{Edxzdxz}+\text{Edyzdyz})+6 \text{Edz2dz2}) & k=4\land m=0 \\ | |
\frac{3 \left(-i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}+2 i \sqrt{3} \text{Edyzdz2}-2 \sqrt{3} \text{Edz2dxz}\right)}{2 \sqrt{5}} & k=4\land m=1 \\ | |
\frac{3 \left(-i \sqrt{3} \text{Edxydz2}+\text{Edxzdxz}-2 i \text{Edyzdxz}-\text{Edyzdyz}+\sqrt{3} \text{Edz2dx2y2}\right)}{\sqrt{10}} & k=4\land m=2 \\ | |
\frac{3}{2} \sqrt{\frac{7}{5}} (i \text{Edxydxz}+\text{Edxydyz}-\text{Edxzdx2y2}+i \text{Edyzdx2y2}) & k=4\land m=3 \\ | |
\frac{3}{2} \sqrt{\frac{7}{10}} (\text{Edx2y2dx2y2}-2 i \text{Edxydx2y2}-\text{Edxydxy}) & k=4\land m=4 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{(Edx2y2dx2y2 + Edxydxy + Edxzdxz + Edyzdyz + Edz2dz2)/5, k == 0 && m == 0}, {((-4*I)*Edxydz2 + Sqrt[3]*Edxzdxz + (2*I)*Sqrt[3]*Edyzdxz - Sqrt[3]*Edyzdyz - 4*Edz2dx2y2)/(2*Sqrt[2]), k == 2 && m == -2}, {(I*Sqrt[3]*Edxydxz + Sqrt[3]*Edxydyz + Sqrt[3]*Edxzdx2y2 - I*Sqrt[3]*Edyzdx2y2 + I*Edyzdz2 + Edz2dxz)/Sqrt[2], k == 2 && m == -1}, {-Edx2y2dx2y2 - Edxydxy + (Edxzdxz + Edyzdyz)/2 + Edz2dz2, k == 2 && m == 0}, {(I*(Sqrt[3]*Edxydxz + I*Sqrt[3]*Edxydyz + I*Sqrt[3]*Edxzdx2y2 - Sqrt[3]*Edyzdx2y2 + Edyzdz2 + I*Edz2dxz))/Sqrt[2], k == 2 && m == 1}, {((4*I)*Edxydz2 + Sqrt[3]*Edxzdxz - (2*I)*Sqrt[3]*Edyzdxz - Sqrt[3]*Edyzdyz - 4*Edz2dx2y2)/(2*Sqrt[2]), k == 2 && m == 2}, {(3*Sqrt[7/10]*(Edx2y2dx2y2 + (2*I)*Edxydx2y2 - Edxydxy))/2, k == 4 && m == -4}, {(3*Sqrt[7/5]*(I*Edxydxz - Edxydyz + Edxzdx2y2 + I*Edyzdx2y2))/2, k == 4 && m == -3}, {(3*(I*Sqrt[3]*Edxydz2 + Edxzdxz + (2*I)*Edyzdxz - Edyzdyz + Sqrt[3]*Edz2dx2y2))/Sqrt[10], k == 4 && m == -2}, {(3*((-I)*Edxydxz - Edxydyz - Edxzdx2y2 + I*Edyzdx2y2 + (2*I)*Sqrt[3]*Edyzdz2 + 2*Sqrt[3]*Edz2dxz))/(2*Sqrt[5]), k == 4 && m == -1}, {(3*(Edx2y2dx2y2 + Edxydxy - 4*(Edxzdxz + Edyzdyz) + 6*Edz2dz2))/10, k == 4 && m == 0}, {(3*((-I)*Edxydxz + Edxydyz + Edxzdx2y2 + I*Edyzdx2y2 + (2*I)*Sqrt[3]*Edyzdz2 - 2*Sqrt[3]*Edz2dxz))/(2*Sqrt[5]), k == 4 && m == 1}, {(3*((-I)*Sqrt[3]*Edxydz2 + Edxzdxz - (2*I)*Edyzdxz - Edyzdyz + Sqrt[3]*Edz2dx2y2))/Sqrt[10], k == 4 && m == 2}, {(3*Sqrt[7/5]*(I*Edxydxz + Edxydyz - Edxzdx2y2 + I*Edyzdx2y2))/2, k == 4 && m == 3}, {(3*Sqrt[7/10]*(Edx2y2dx2y2 - (2*I)*Edxydx2y2 - Edxydxy))/2, k == 4 && m == 4}}, 0] | Akm[k_,m_]:=Piecewise[{{(Eappxz + Eappyz + Eapx2y2 + Eapxy + Eapz2)/5, k == 0 && m == 0}, {0, (k != 4 && (k != 2 || (m != -2 && m != 0 && m != 2))) || (m != -4 && m != -2 && m != 0 && m != 2 && m != 4)}, {(Sqrt[3]*Eappxz - Sqrt[3]*Eappyz + (2*I)*Sqrt[3]*Mappyzxz - 4*Mapx2y2z2 - (4*I)*Mapz2xy)/(2*Sqrt[2]), k == 2 && m == -2}, {(Eappxz + Eappyz - 2*(Eapx2y2 + Eapxy - Eapz2))/2, k == 2 && m == 0}, {(Sqrt[3]*Eappxz - Sqrt[3]*Eappyz - (2*I)*Sqrt[3]*Mappyzxz - 4*Mapx2y2z2 + (4*I)*Mapz2xy)/(2*Sqrt[2]), k == 2 && m == 2}, {(3*Sqrt[7/10]*(Eapx2y2 - Eapxy + (2*I)*Mapx2y2xy))/2, k == 4 && m == -4}, {(3*(Eappxz - Eappyz + (2*I)*Mappyzxz + Sqrt[3]*Mapx2y2z2 + I*Sqrt[3]*Mapz2xy))/Sqrt[10], k == 4 && m == -2}, {(-3*(4*Eappxz + 4*Eappyz - Eapx2y2 - Eapxy - 6*Eapz2))/10, k == 4 && m == 0}, {(3*(Eappxz - Eappyz - (2*I)*Mappyzxz + Sqrt[3]*Mapx2y2z2 - I*Sqrt[3]*Mapz2xy))/Sqrt[10], k == 4 && m == 2}}, (3*Sqrt[7/10]*(Eapx2y2 - Eapxy - (2*I)*Mapx2y2xy))/2] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, (1/5)*(Edx2y2dx2y2 + Edxydxy + Edxzdxz + Edyzdyz + Edz2dz2)} , | Akm = {{0, 0, (1/5)*(Eappxz + Eappyz + Eapx2y2 + Eapxy + Eapz2)} , |
{2, 0, (-1)*(Edx2y2dx2y2) + (-1)*(Edxydxy) + (1/2)*(Edxzdxz + Edyzdyz) + Edz2dz2} , | {2, 0, (1/2)*(Eappxz + Eappyz + (-2)*(Eapx2y2 + Eapxy + (-1)*(Eapz2)))} , |
{2,-1, (1/(sqrt(2)))*((I)*((sqrt(3))*(Edxydxz)) + (sqrt(3))*(Edxydyz) + (sqrt(3))*(Edxzdx2y2) + (-I)*((sqrt(3))*(Edyzdx2y2)) + (I)*(Edyzdz2) + Edz2dxz)} , | {2, 2, (1/2)*((1/(sqrt(2)))*((sqrt(3))*(Eappxz) + (-1)*((sqrt(3))*(Eappyz)) + (-2*I)*((sqrt(3))*(Mappyzxz)) + (-4)*(Mapx2y2z2) + (4*I)*(Mapz2xy)))} , |
{2, 1, (I)*((1/(sqrt(2)))*((sqrt(3))*(Edxydxz) + (I)*((sqrt(3))*(Edxydyz)) + (I)*((sqrt(3))*(Edxzdx2y2)) + (-1)*((sqrt(3))*(Edyzdx2y2)) + Edyzdz2 + (I)*(Edz2dxz)))} , | {2,-2, (1/2)*((1/(sqrt(2)))*((sqrt(3))*(Eappxz) + (-1)*((sqrt(3))*(Eappyz)) + (2*I)*((sqrt(3))*(Mappyzxz)) + (-4)*(Mapx2y2z2) + (-4*I)*(Mapz2xy)))} , |
{2,-2, (1/2)*((1/(sqrt(2)))*((-4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} , | {4, 0, (-3/10)*((4)*(Eappxz) + (4)*(Eappyz) + (-1)*(Eapx2y2) + (-1)*(Eapxy) + (-6)*(Eapz2))} , |
{2, 2, (1/2)*((1/(sqrt(2)))*((4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (-2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} , | {4, 2, (3)*((1/(sqrt(10)))*(Eappxz + (-1)*(Eappyz) + (-2*I)*(Mappyzxz) + (sqrt(3))*(Mapx2y2z2) + (-I)*((sqrt(3))*(Mapz2xy))))} , |
{4, 0, (3/10)*(Edx2y2dx2y2 + Edxydxy + (-4)*(Edxzdxz + Edyzdyz) + (6)*(Edz2dz2))} , | {4,-2, (3)*((1/(sqrt(10)))*(Eappxz + (-1)*(Eappyz) + (2*I)*(Mappyzxz) + (sqrt(3))*(Mapx2y2z2) + (I)*((sqrt(3))*(Mapz2xy))))} , |
{4,-1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz) + (-1)*(Edxydyz) + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (2)*((sqrt(3))*(Edz2dxz))))} , | {4, 4, (3/2)*((sqrt(7/10))*(Eapx2y2 + (-1)*(Eapxy) + (-2*I)*(Mapx2y2xy)))} , |
{4, 1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz) + Edxydyz + Edxzdx2y2 + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (-2)*((sqrt(3))*(Edz2dxz))))} , | {4,-4, (3/2)*((sqrt(7/10))*(Eapx2y2 + (-1)*(Eapxy) + (2*I)*(Mapx2y2xy)))} } |
{4, 2, (3)*((1/(sqrt(10)))*((-I)*((sqrt(3))*(Edxydz2)) + Edxzdxz + (-2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} , | |
{4,-2, (3)*((1/(sqrt(10)))*((I)*((sqrt(3))*(Edxydz2)) + Edxzdxz + (2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} , | |
{4,-3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + (-1)*(Edxydyz) + Edxzdx2y2 + (I)*(Edyzdx2y2)))} , | |
{4, 3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + Edxydyz + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2)))} , | |
{4, 4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (-2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} , | |
{4,-4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} } | |
| |
</code> | </code> |
| |
| ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ | | ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ |
^Y(2)−2|$ \frac{\text{Edx2y2dx2y2}+\text{Edxydxy}}{2} | \frac{1}{2} (i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}-i \text{Edyzdx2y2}) | \frac{\text{Edz2dx2y2}+i \text{Edxydz2}}{\sqrt{2}} | -\frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}-\text{Edxzdx2y2})+\text{Edyzdx2y2}) | \frac{1}{2} (\text{Edx2y2dx2y2}+2 i \text{Edxydx2y2}-\text{Edxydxy}) $| | ^Y(2)−2|$ \frac{\text{Eapx2y2}+\text{Eapxy}}{2} | 0 | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} | 0 | \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}+2 i \text{Mapx2y2xy}) $| |
^Y(2)−1|$ \frac{1}{2} (-i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}) | \frac{\text{Edxzdxz}+\text{Edyzdyz}}{2} | \frac{\text{Edz2dxz}+i \text{Edyzdz2}}{\sqrt{2}} | \frac{1}{2} (-\text{Edxzdxz}-2 i \text{Edyzdxz}+\text{Edyzdyz}) | \frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}-\text{Edxzdx2y2})+\text{Edyzdx2y2}) $| | ^Y(2)−1|$ 0 | \frac{\text{Eappxz}+\text{Eappyz}}{2} | 0 | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}-2 i \text{Mappyzxz}) | 0 $| |
^Y(2)0|$ \frac{\text{Edz2dx2y2}-i \text{Edxydz2}}{\sqrt{2}} | \frac{\text{Edz2dxz}-i \text{Edyzdz2}}{\sqrt{2}} | \text{Edz2dz2} | \frac{-\text{Edz2dxz}-i \text{Edyzdz2}}{\sqrt{2}} | \frac{\text{Edz2dx2y2}+i \text{Edxydz2}}{\sqrt{2}} $| | ^Y(2)0|$ \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | 0 | \text{Eapz2} | 0 | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} $| |
^Y(2)1|$ \frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) | \frac{1}{2} (-\text{Edxzdxz}+2 i \text{Edyzdxz}+\text{Edyzdyz}) | \frac{i (\text{Edyzdz2}+i \text{Edz2dxz})}{\sqrt{2}} | \frac{\text{Edxzdxz}+\text{Edyzdyz}}{2} | -\frac{1}{2} i (\text{Edxydxz}-i (\text{Edxydyz}+\text{Edxzdx2y2})-\text{Edyzdx2y2}) $| | ^Y(2)1|$ 0 | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}+2 i \text{Mappyzxz}) | 0 | \frac{\text{Eappxz}+\text{Eappyz}}{2} | 0 $| |
^Y(2)2|$ \frac{1}{2} (\text{Edx2y2dx2y2}-2 i \text{Edxydx2y2}-\text{Edxydxy}) | -\frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) | \frac{\text{Edz2dx2y2}-i \text{Edxydz2}}{\sqrt{2}} | \frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2})) | \frac{\text{Edx2y2dx2y2}+\text{Edxydxy}}{2} $| | ^Y(2)2|$ \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}-2 i \text{Mapx2y2xy}) | 0 | \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | 0 | \frac{\text{Eapx2y2}+\text{Eapxy}}{2} $| |
| |
| |
| |
| ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ | | ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ |
^dx2−y2|$ \text{Edx2y2dx2y2} | \text{Edz2dx2y2} | \text{Edyzdx2y2} | \text{Edxzdx2y2} | \text{Edxydx2y2} $| | ^dx2−y2|$ \text{Eapx2y2} | \text{Mapx2y2z2} | 0 | 0 | \text{Mapx2y2xy} $| |
^d3z2−r2|$ \text{Edz2dx2y2} | \text{Edz2dz2} | \text{Edyzdz2} | \text{Edz2dxz} | \text{Edxydz2} $| | ^d3z2−r2|$ \text{Mapx2y2z2} | \text{Eapz2} | 0 | 0 | \text{Mapz2xy} $| |
^dyz|$ \text{Edyzdx2y2} | \text{Edyzdz2} | \text{Edyzdyz} | \text{Edyzdxz} | \text{Edxydyz} $| | ^dyz|$ 0 | 0 | \text{Eappyz} | \text{Mappyzxz} | 0 $| |
^dxz|$ \text{Edxzdx2y2} | \text{Edz2dxz} | \text{Edyzdxz} | \text{Edxzdxz} | \text{Edxydxz} $| | ^dxz|$ 0 | 0 | \text{Mappyzxz} | \text{Eappxz} | 0 $| |
^dxy|$ \text{Edxydx2y2} | \text{Edxydz2} | \text{Edxydyz} | \text{Edxydxz} | \text{Edxydxy} $| | ^dxy|$ \text{Mapx2y2xy} | \text{Mapz2xy} | 0 | 0 | \text{Eapxy} $| |
| |
| |
### | ### |
| |
TODO | ^ ^Eapx2y2 | {{:physics_chemistry:pointgroup:cs_z_orb_2_1.png?150}} | |
| |ψ(θ,ϕ)=√11 |14√15πsin2(θ)cos(2ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |14√15π(x2−y2) | ::: | |
| ^ ^Eapz2 | {{:physics_chemistry:pointgroup:cs_z_orb_2_2.png?150}} | |
| |ψ(θ,ϕ)=√11 |18√5π(3cos(2θ)+1) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |14√5π(3z2−1) | ::: | |
| ^ ^Eappyz | {{:physics_chemistry:pointgroup:cs_z_orb_2_3.png?150}} | |
| |ψ(θ,ϕ)=√11 |14√15πsin(2θ)sin(ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√15πyz | ::: | |
| ^ ^Eappxz | {{:physics_chemistry:pointgroup:cs_z_orb_2_4.png?150}} | |
| |ψ(θ,ϕ)=√11 |14√15πsin(2θ)cos(ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√15πxz | ::: | |
| ^ ^Eapxy | {{:physics_chemistry:pointgroup:cs_z_orb_2_5.png?150}} | |
| |ψ(θ,ϕ)=√11 |14√15πsin2(θ)sin(2ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√15πxy | ::: | |
| |
### | ### |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
A(0,0) & k=0\land m=0 \\ | \frac{1}{7} (\text{Eappx3}+\text{Eappxy2z2}+\text{Eappxyz}+\text{Eappy3}+\text{Eappyz2x2}+\text{Eappz3}+\text{Eappzx2y2}) & k=0\land m=0 \\ |
-A(1,1)+i B(1,1) & k=1\land m=-1 \\ | 0 & (k\neq 6\land (((k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2))\land k\neq 4)\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4)))\lor (m\neq -6\land m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4\land m\neq 6) \\ |
A(1,1)+i B(1,1) & k=1\land m=1 \\ | \frac{5 \left(2 \sqrt{3} \text{Eappx3}-2 \sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}-i \sqrt{3} \text{Mappx3y3}-i \sqrt{5} \text{Mappx3yz2x2}-5 i \sqrt{3} \text{Mappxy2z2yz2x2}-4 i \sqrt{5} \text{Mappxyzz3}+i \sqrt{5} \text{Mappy3xy2z2}+2 \sqrt{5} \text{Mappy3yz2x2}-4 \sqrt{5} \text{Mappz3zx2y2}\right)}{28 \sqrt{2}} & k=2\land m=-2 \\ |
A(2,2)-i B(2,2) & k=2\land m=-2 \\ | -\frac{5}{14} \left(\text{Eappx3}+\text{Eappy3}-2 \text{Eappz3}-\sqrt{15} \text{Mappx3xy2z2}+\sqrt{15} \text{Mappy3yz2x2}\right) & k=2\land m=0 \\ |
A(2,0) & k=2\land m=0 \\ | \frac{5 \left(2 \sqrt{3} \text{Eappx3}-2 \sqrt{3} \text{Eappy3}+2 \sqrt{5} \text{Mappx3xy2z2}+i \sqrt{3} \text{Mappx3y3}+i \sqrt{5} \text{Mappx3yz2x2}+5 i \sqrt{3} \text{Mappxy2z2yz2x2}+4 i \sqrt{5} \text{Mappxyzz3}-i \sqrt{5} \text{Mappy3xy2z2}+2 \sqrt{5} \text{Mappy3yz2x2}-4 \sqrt{5} \text{Mappz3zx2y2}\right)}{28 \sqrt{2}} & k=2\land m=2 \\ |
A(2,2)+i B(2,2) & k=2\land m=2 \\ | \frac{3 \left(3 \sqrt{5} \text{Eappx3}-3 \sqrt{5} \text{Eappxy2z2}-4 \sqrt{5} \text{Eappxyz}+3 \sqrt{5} \text{Eappy3}-3 \sqrt{5} \text{Eappyz2x2}+4 \sqrt{5} \text{Eappzx2y2}+2 \sqrt{3} \text{Mappx3xy2z2}-8 i \sqrt{3} \text{Mappx3yz2x2}+8 i \sqrt{5} \text{Mappxyzzx2y2}-8 i \sqrt{3} \text{Mappy3xy2z2}-2 \sqrt{3} \text{Mappy3yz2x2}\right)}{8 \sqrt{14}} & k=4\land m=-4 \\ |
-A(3,3)+i B(3,3) & k=3\land m=-3 \\ | \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} \text{Eappxy2z2}+3 \sqrt{10} \text{Eappy3}-7 \sqrt{10} \text{Eappyz2x2}+2 \sqrt{6} \text{Mappx3xy2z2}+12 i \sqrt{10} \text{Mappx3y3}-8 i \sqrt{6} \text{Mappx3yz2x2}+4 i \sqrt{10} \text{Mappxy2z2yz2x2}-4 i \sqrt{6} \text{Mappxyzz3}+8 i \sqrt{6} \text{Mappy3xy2z2}+2 \sqrt{6} \text{Mappy3yz2x2}-4 \sqrt{6} \text{Mappz3zx2y2}\right) & k=4\land m=-2 \\ |
-A(3,1)+i B(3,1) & k=3\land m=-1 \\ | \frac{3}{56} \left(9 \text{Eappx3}+7 \text{Eappxy2z2}-28 \text{Eappxyz}+9 \text{Eappy3}+7 \text{Eappyz2x2}+24 \text{Eappz3}-28 \text{Eappzx2y2}-2 \sqrt{15} \text{Mappx3xy2z2}+2 \sqrt{15} \text{Mappy3yz2x2}\right) & k=4\land m=0 \\ |
A(3,1)+i B(3,1) & k=3\land m=1 \\ | \frac{3}{56} \left(-3 \sqrt{10} \text{Eappx3}+7 \sqrt{10} \text{Eappxy2z2}+3 \sqrt{10} \text{Eappy3}-7 \sqrt{10} \text{Eappyz2x2}+2 \sqrt{6} \text{Mappx3xy2z2}-12 i \sqrt{10} \text{Mappx3y3}+8 i \sqrt{6} \text{Mappx3yz2x2}-4 i \sqrt{10} \text{Mappxy2z2yz2x2}+4 i \sqrt{6} \text{Mappxyzz3}-8 i \sqrt{6} \text{Mappy3xy2z2}+2 \sqrt{6} \text{Mappy3yz2x2}-4 \sqrt{6} \text{Mappz3zx2y2}\right) & k=4\land m=2 \\ |
A(3,3)+i B(3,3) & k=3\land m=3 \\ | \frac{3 \left(3 \sqrt{5} \text{Eappx3}-3 \sqrt{5} \text{Eappxy2z2}-4 \sqrt{5} \text{Eappxyz}+3 \sqrt{5} \text{Eappy3}-3 \sqrt{5} \text{Eappyz2x2}+4 \sqrt{5} \text{Eappzx2y2}+2 \sqrt{3} \text{Mappx3xy2z2}+8 i \sqrt{3} \text{Mappx3yz2x2}-8 i \sqrt{5} \text{Mappxyzzx2y2}+8 i \sqrt{3} \text{Mappy3xy2z2}-2 \sqrt{3} \text{Mappy3yz2x2}\right)}{8 \sqrt{14}} & k=4\land m=4 \\ |
A(4,4)-i B(4,4) & k=4\land m=-4 \\ | \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} \text{Eappxy2z2}-5 \sqrt{3} \text{Eappy3}-3 \sqrt{3} \text{Eappyz2x2}-6 \sqrt{5} \text{Mappx3xy2z2}-10 i \sqrt{3} \text{Mappx3y3}-6 i \sqrt{5} \text{Mappx3yz2x2}+6 i \sqrt{3} \text{Mappxy2z2yz2x2}+6 i \sqrt{5} \text{Mappy3xy2z2}-6 \sqrt{5} \text{Mappy3yz2x2}\right) & k=6\land m=-6 \\ |
A(4,2)-i B(4,2) & k=4\land m=-2 \\ | -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}-8 i \sqrt{15} \text{Mappx3yz2x2}-48 i \text{Mappxyzzx2y2}-8 i \sqrt{15} \text{Mappy3xy2z2}-2 \sqrt{15} \text{Mappy3yz2x2}\right)}{80 \sqrt{14}} & k=6\land m=-4 \\ |
A(4,0) & k=4\land m=0 \\ | \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}+2 i \sqrt{15} \text{Mappx3y3}-26 i \text{Mappx3yz2x2}-14 i \sqrt{15} \text{Mappxy2z2yz2x2}+64 i \text{Mappxyzz3}+26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} & k=6\land m=-2 \\ |
A(4,2)+i B(4,2) & k=4\land m=2 \\ | -\frac{13}{560} \left(25 \text{Eappx3}+39 \text{Eappxy2z2}-24 \text{Eappxyz}+25 \text{Eappy3}+39 \text{Eappyz2x2}-80 \text{Eappz3}-24 \text{Eappzx2y2}+14 \sqrt{15} \text{Mappx3xy2z2}-14 \sqrt{15} \text{Mappy3yz2x2}\right) & k=6\land m=0 \\ |
A(4,4)+i B(4,4) & k=4\land m=4 \\ | \frac{13 \left(5 \sqrt{15} \text{Eappx3}+3 \sqrt{15} \text{Eappxy2z2}-5 \sqrt{15} \text{Eappy3}-3 \sqrt{15} \text{Eappyz2x2}+34 \text{Mappx3xy2z2}-2 i \sqrt{15} \text{Mappx3y3}+26 i \text{Mappx3yz2x2}+14 i \sqrt{15} \text{Mappxy2z2yz2x2}-64 i \text{Mappxyzz3}-26 i \text{Mappy3xy2z2}+34 \text{Mappy3yz2x2}+64 \text{Mappz3zx2y2}\right)}{160 \sqrt{7}} & k=6\land m=2 \\ |
-A(5,5)+i B(5,5) & k=5\land m=-5 \\ | -\frac{13 \left(15 \text{Eappx3}-15 \text{Eappxy2z2}+24 \text{Eappxyz}+15 \text{Eappy3}-15 \text{Eappyz2x2}-24 \text{Eappzx2y2}+2 \sqrt{15} \text{Mappx3xy2z2}+8 i \sqrt{15} \text{Mappx3yz2x2}+48 i \text{Mappxyzzx2y2}+8 i \sqrt{15} \text{Mappy3xy2z2}-2 \sqrt{15} \text{Mappy3yz2x2}\right)}{80 \sqrt{14}} & k=6\land m=4 \\ |
-A(5,3)+i B(5,3) & k=5\land m=-3 \\ | \frac{13}{160} \sqrt{\frac{11}{7}} \left(5 \sqrt{3} \text{Eappx3}+3 \sqrt{3} \text{Eappxy2z2}-5 \sqrt{3} \text{Eappy3}-3 \sqrt{3} \text{Eappyz2x2}-6 \sqrt{5} \text{Mappx3xy2z2}+10 i \sqrt{3} \text{Mappx3y3}+6 i \sqrt{5} \text{Mappx3yz2x2}-6 i \sqrt{3} \text{Mappxy2z2yz2x2}-6 i \sqrt{5} \text{Mappy3xy2z2}-6 \sqrt{5} \text{Mappy3yz2x2}\right) & \text{True} |
-A(5,1)+i B(5,1) & k=5\land m=-1 \\ | |
A(5,1)+i B(5,1) & k=5\land m=1 \\ | |
A(5,3)+i B(5,3) & k=5\land m=3 \\ | |
A(5,5)+i B(5,5) & k=5\land m=5 \\ | |
A(6,6)-i B(6,6) & k=6\land m=-6 \\ | |
A(6,4)-i B(6,4) & k=6\land m=-4 \\ | |
A(6,2)-i B(6,2) & k=6\land m=-2 \\ | |
A(6,0) & k=6\land m=0 \\ | |
A(6,2)+i B(6,2) & k=6\land m=2 \\ | |
A(6,4)+i B(6,4) & k=6\land m=4 \\ | |
A(6,6)+i B(6,6) & k=6\land m=6 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] | Akm[k_,m_]:=Piecewise[{{(Eappx3 + Eappxy2z2 + Eappxyz + Eappy3 + Eappyz2x2 + Eappz3 + Eappzx2y2)/7, k == 0 && m == 0}, {0, (k != 6 && (((k != 2 || (m != -2 && m != 0 && m != 2)) && k != 4) || (m != -4 && m != -2 && m != 0 && m != 2 && m != 4))) || (m != -6 && m != -4 && m != -2 && m != 0 && m != 2 && m != 4 && m != 6)}, {(5*(2*Sqrt[3]*Eappx3 - 2*Sqrt[3]*Eappy3 + 2*Sqrt[5]*Mappx3xy2z2 - I*Sqrt[3]*Mappx3y3 - I*Sqrt[5]*Mappx3yz2x2 - (5*I)*Sqrt[3]*Mappxy2z2yz2x2 - (4*I)*Sqrt[5]*Mappxyzz3 + I*Sqrt[5]*Mappy3xy2z2 + 2*Sqrt[5]*Mappy3yz2x2 - 4*Sqrt[5]*Mappz3zx2y2))/(28*Sqrt[2]), k == 2 && m == -2}, {(-5*(Eappx3 + Eappy3 - 2*Eappz3 - Sqrt[15]*Mappx3xy2z2 + Sqrt[15]*Mappy3yz2x2))/14, k == 2 && m == 0}, {(5*(2*Sqrt[3]*Eappx3 - 2*Sqrt[3]*Eappy3 + 2*Sqrt[5]*Mappx3xy2z2 + I*Sqrt[3]*Mappx3y3 + I*Sqrt[5]*Mappx3yz2x2 + (5*I)*Sqrt[3]*Mappxy2z2yz2x2 + (4*I)*Sqrt[5]*Mappxyzz3 - I*Sqrt[5]*Mappy3xy2z2 + 2*Sqrt[5]*Mappy3yz2x2 - 4*Sqrt[5]*Mappz3zx2y2))/(28*Sqrt[2]), k == 2 && m == 2}, {(3*(3*Sqrt[5]*Eappx3 - 3*Sqrt[5]*Eappxy2z2 - 4*Sqrt[5]*Eappxyz + 3*Sqrt[5]*Eappy3 - 3*Sqrt[5]*Eappyz2x2 + 4*Sqrt[5]*Eappzx2y2 + 2*Sqrt[3]*Mappx3xy2z2 - (8*I)*Sqrt[3]*Mappx3yz2x2 + (8*I)*Sqrt[5]*Mappxyzzx2y2 - (8*I)*Sqrt[3]*Mappy3xy2z2 - 2*Sqrt[3]*Mappy3yz2x2))/(8*Sqrt[14]), k == 4 && m == -4}, {(3*(-3*Sqrt[10]*Eappx3 + 7*Sqrt[10]*Eappxy2z2 + 3*Sqrt[10]*Eappy3 - 7*Sqrt[10]*Eappyz2x2 + 2*Sqrt[6]*Mappx3xy2z2 + (12*I)*Sqrt[10]*Mappx3y3 - (8*I)*Sqrt[6]*Mappx3yz2x2 + (4*I)*Sqrt[10]*Mappxy2z2yz2x2 - (4*I)*Sqrt[6]*Mappxyzz3 + (8*I)*Sqrt[6]*Mappy3xy2z2 + 2*Sqrt[6]*Mappy3yz2x2 - 4*Sqrt[6]*Mappz3zx2y2))/56, k == 4 && m == -2}, {(3*(9*Eappx3 + 7*Eappxy2z2 - 28*Eappxyz + 9*Eappy3 + 7*Eappyz2x2 + 24*Eappz3 - 28*Eappzx2y2 - 2*Sqrt[15]*Mappx3xy2z2 + 2*Sqrt[15]*Mappy3yz2x2))/56, k == 4 && m == 0}, {(3*(-3*Sqrt[10]*Eappx3 + 7*Sqrt[10]*Eappxy2z2 + 3*Sqrt[10]*Eappy3 - 7*Sqrt[10]*Eappyz2x2 + 2*Sqrt[6]*Mappx3xy2z2 - (12*I)*Sqrt[10]*Mappx3y3 + (8*I)*Sqrt[6]*Mappx3yz2x2 - (4*I)*Sqrt[10]*Mappxy2z2yz2x2 + (4*I)*Sqrt[6]*Mappxyzz3 - (8*I)*Sqrt[6]*Mappy3xy2z2 + 2*Sqrt[6]*Mappy3yz2x2 - 4*Sqrt[6]*Mappz3zx2y2))/56, k == 4 && m == 2}, {(3*(3*Sqrt[5]*Eappx3 - 3*Sqrt[5]*Eappxy2z2 - 4*Sqrt[5]*Eappxyz + 3*Sqrt[5]*Eappy3 - 3*Sqrt[5]*Eappyz2x2 + 4*Sqrt[5]*Eappzx2y2 + 2*Sqrt[3]*Mappx3xy2z2 + (8*I)*Sqrt[3]*Mappx3yz2x2 - (8*I)*Sqrt[5]*Mappxyzzx2y2 + (8*I)*Sqrt[3]*Mappy3xy2z2 - 2*Sqrt[3]*Mappy3yz2x2))/(8*Sqrt[14]), k == 4 && m == 4}, {(13*Sqrt[11/7]*(5*Sqrt[3]*Eappx3 + 3*Sqrt[3]*Eappxy2z2 - 5*Sqrt[3]*Eappy3 - 3*Sqrt[3]*Eappyz2x2 - 6*Sqrt[5]*Mappx3xy2z2 - (10*I)*Sqrt[3]*Mappx3y3 - (6*I)*Sqrt[5]*Mappx3yz2x2 + (6*I)*Sqrt[3]*Mappxy2z2yz2x2 + (6*I)*Sqrt[5]*Mappy3xy2z2 - 6*Sqrt[5]*Mappy3yz2x2))/160, k == 6 && m == -6}, {(-13*(15*Eappx3 - 15*Eappxy2z2 + 24*Eappxyz + 15*Eappy3 - 15*Eappyz2x2 - 24*Eappzx2y2 + 2*Sqrt[15]*Mappx3xy2z2 - (8*I)*Sqrt[15]*Mappx3yz2x2 - (48*I)*Mappxyzzx2y2 - (8*I)*Sqrt[15]*Mappy3xy2z2 - 2*Sqrt[15]*Mappy3yz2x2))/(80*Sqrt[14]), k == 6 && m == -4}, {(13*(5*Sqrt[15]*Eappx3 + 3*Sqrt[15]*Eappxy2z2 - 5*Sqrt[15]*Eappy3 - 3*Sqrt[15]*Eappyz2x2 + 34*Mappx3xy2z2 + (2*I)*Sqrt[15]*Mappx3y3 - (26*I)*Mappx3yz2x2 - (14*I)*Sqrt[15]*Mappxy2z2yz2x2 + (64*I)*Mappxyzz3 + (26*I)*Mappy3xy2z2 + 34*Mappy3yz2x2 + 64*Mappz3zx2y2))/(160*Sqrt[7]), k == 6 && m == -2}, {(-13*(25*Eappx3 + 39*Eappxy2z2 - 24*Eappxyz + 25*Eappy3 + 39*Eappyz2x2 - 80*Eappz3 - 24*Eappzx2y2 + 14*Sqrt[15]*Mappx3xy2z2 - 14*Sqrt[15]*Mappy3yz2x2))/560, k == 6 && m == 0}, {(13*(5*Sqrt[15]*Eappx3 + 3*Sqrt[15]*Eappxy2z2 - 5*Sqrt[15]*Eappy3 - 3*Sqrt[15]*Eappyz2x2 + 34*Mappx3xy2z2 - (2*I)*Sqrt[15]*Mappx3y3 + (26*I)*Mappx3yz2x2 + (14*I)*Sqrt[15]*Mappxy2z2yz2x2 - (64*I)*Mappxyzz3 - (26*I)*Mappy3xy2z2 + 34*Mappy3yz2x2 + 64*Mappz3zx2y2))/(160*Sqrt[7]), k == 6 && m == 2}, {(-13*(15*Eappx3 - 15*Eappxy2z2 + 24*Eappxyz + 15*Eappy3 - 15*Eappyz2x2 - 24*Eappzx2y2 + 2*Sqrt[15]*Mappx3xy2z2 + (8*I)*Sqrt[15]*Mappx3yz2x2 + (48*I)*Mappxyzzx2y2 + (8*I)*Sqrt[15]*Mappy3xy2z2 - 2*Sqrt[15]*Mappy3yz2x2))/(80*Sqrt[14]), k == 6 && m == 4}}, (13*Sqrt[11/7]*(5*Sqrt[3]*Eappx3 + 3*Sqrt[3]*Eappxy2z2 - 5*Sqrt[3]*Eappy3 - 3*Sqrt[3]*Eappyz2x2 - 6*Sqrt[5]*Mappx3xy2z2 + (10*I)*Sqrt[3]*Mappx3y3 + (6*I)*Sqrt[5]*Mappx3yz2x2 - (6*I)*Sqrt[3]*Mappxy2z2yz2x2 - (6*I)*Sqrt[5]*Mappy3xy2z2 - 6*Sqrt[5]*Mappy3yz2x2))/160] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, A(0,0)} , | Akm = {{0, 0, (1/7)*(Eappx3 + Eappxy2z2 + Eappxyz + Eappy3 + Eappyz2x2 + Eappz3 + Eappzx2y2)} , |
{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , | {2, 0, (-5/14)*(Eappx3 + Eappy3 + (-2)*(Eappz3) + (-1)*((sqrt(15))*(Mappx3xy2z2)) + (sqrt(15))*(Mappy3yz2x2))} , |
{1, 1, A(1,1) + (I)*(B(1,1))} , | {2,-2, (5/28)*((1/(sqrt(2)))*((2)*((sqrt(3))*(Eappx3)) + (-2)*((sqrt(3))*(Eappy3)) + (2)*((sqrt(5))*(Mappx3xy2z2)) + (-I)*((sqrt(3))*(Mappx3y3)) + (-I)*((sqrt(5))*(Mappx3yz2x2)) + (-5*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (-4*I)*((sqrt(5))*(Mappxyzz3)) + (I)*((sqrt(5))*(Mappy3xy2z2)) + (2)*((sqrt(5))*(Mappy3yz2x2)) + (-4)*((sqrt(5))*(Mappz3zx2y2))))} , |
{2, 0, A(2,0)} , | {2, 2, (5/28)*((1/(sqrt(2)))*((2)*((sqrt(3))*(Eappx3)) + (-2)*((sqrt(3))*(Eappy3)) + (2)*((sqrt(5))*(Mappx3xy2z2)) + (I)*((sqrt(3))*(Mappx3y3)) + (I)*((sqrt(5))*(Mappx3yz2x2)) + (5*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (4*I)*((sqrt(5))*(Mappxyzz3)) + (-I)*((sqrt(5))*(Mappy3xy2z2)) + (2)*((sqrt(5))*(Mappy3yz2x2)) + (-4)*((sqrt(5))*(Mappz3zx2y2))))} , |
{2,-2, A(2,2) + (-I)*(B(2,2))} , | {4, 0, (3/56)*((9)*(Eappx3) + (7)*(Eappxy2z2) + (-28)*(Eappxyz) + (9)*(Eappy3) + (7)*(Eappyz2x2) + (24)*(Eappz3) + (-28)*(Eappzx2y2) + (-2)*((sqrt(15))*(Mappx3xy2z2)) + (2)*((sqrt(15))*(Mappy3yz2x2)))} , |
{2, 2, A(2,2) + (I)*(B(2,2))} , | {4, 2, (3/56)*((-3)*((sqrt(10))*(Eappx3)) + (7)*((sqrt(10))*(Eappxy2z2)) + (3)*((sqrt(10))*(Eappy3)) + (-7)*((sqrt(10))*(Eappyz2x2)) + (2)*((sqrt(6))*(Mappx3xy2z2)) + (-12*I)*((sqrt(10))*(Mappx3y3)) + (8*I)*((sqrt(6))*(Mappx3yz2x2)) + (-4*I)*((sqrt(10))*(Mappxy2z2yz2x2)) + (4*I)*((sqrt(6))*(Mappxyzz3)) + (-8*I)*((sqrt(6))*(Mappy3xy2z2)) + (2)*((sqrt(6))*(Mappy3yz2x2)) + (-4)*((sqrt(6))*(Mappz3zx2y2)))} , |
{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , | {4,-2, (3/56)*((-3)*((sqrt(10))*(Eappx3)) + (7)*((sqrt(10))*(Eappxy2z2)) + (3)*((sqrt(10))*(Eappy3)) + (-7)*((sqrt(10))*(Eappyz2x2)) + (2)*((sqrt(6))*(Mappx3xy2z2)) + (12*I)*((sqrt(10))*(Mappx3y3)) + (-8*I)*((sqrt(6))*(Mappx3yz2x2)) + (4*I)*((sqrt(10))*(Mappxy2z2yz2x2)) + (-4*I)*((sqrt(6))*(Mappxyzz3)) + (8*I)*((sqrt(6))*(Mappy3xy2z2)) + (2)*((sqrt(6))*(Mappy3yz2x2)) + (-4)*((sqrt(6))*(Mappz3zx2y2)))} , |
{3, 1, A(3,1) + (I)*(B(3,1))} , | {4,-4, (3/8)*((1/(sqrt(14)))*((3)*((sqrt(5))*(Eappx3)) + (-3)*((sqrt(5))*(Eappxy2z2)) + (-4)*((sqrt(5))*(Eappxyz)) + (3)*((sqrt(5))*(Eappy3)) + (-3)*((sqrt(5))*(Eappyz2x2)) + (4)*((sqrt(5))*(Eappzx2y2)) + (2)*((sqrt(3))*(Mappx3xy2z2)) + (-8*I)*((sqrt(3))*(Mappx3yz2x2)) + (8*I)*((sqrt(5))*(Mappxyzzx2y2)) + (-8*I)*((sqrt(3))*(Mappy3xy2z2)) + (-2)*((sqrt(3))*(Mappy3yz2x2))))} , |
{3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , | {4, 4, (3/8)*((1/(sqrt(14)))*((3)*((sqrt(5))*(Eappx3)) + (-3)*((sqrt(5))*(Eappxy2z2)) + (-4)*((sqrt(5))*(Eappxyz)) + (3)*((sqrt(5))*(Eappy3)) + (-3)*((sqrt(5))*(Eappyz2x2)) + (4)*((sqrt(5))*(Eappzx2y2)) + (2)*((sqrt(3))*(Mappx3xy2z2)) + (8*I)*((sqrt(3))*(Mappx3yz2x2)) + (-8*I)*((sqrt(5))*(Mappxyzzx2y2)) + (8*I)*((sqrt(3))*(Mappy3xy2z2)) + (-2)*((sqrt(3))*(Mappy3yz2x2))))} , |
{3, 3, A(3,3) + (I)*(B(3,3))} , | {6, 0, (-13/560)*((25)*(Eappx3) + (39)*(Eappxy2z2) + (-24)*(Eappxyz) + (25)*(Eappy3) + (39)*(Eappyz2x2) + (-80)*(Eappz3) + (-24)*(Eappzx2y2) + (14)*((sqrt(15))*(Mappx3xy2z2)) + (-14)*((sqrt(15))*(Mappy3yz2x2)))} , |
{4, 0, A(4,0)} , | {6, 2, (13/160)*((1/(sqrt(7)))*((5)*((sqrt(15))*(Eappx3)) + (3)*((sqrt(15))*(Eappxy2z2)) + (-5)*((sqrt(15))*(Eappy3)) + (-3)*((sqrt(15))*(Eappyz2x2)) + (34)*(Mappx3xy2z2) + (-2*I)*((sqrt(15))*(Mappx3y3)) + (26*I)*(Mappx3yz2x2) + (14*I)*((sqrt(15))*(Mappxy2z2yz2x2)) + (-64*I)*(Mappxyzz3) + (-26*I)*(Mappy3xy2z2) + (34)*(Mappy3yz2x2) + (64)*(Mappz3zx2y2)))} , |
{4,-2, A(4,2) + (-I)*(B(4,2))} , | {6,-2, (13/160)*((1/(sqrt(7)))*((5)*((sqrt(15))*(Eappx3)) + (3)*((sqrt(15))*(Eappxy2z2)) + (-5)*((sqrt(15))*(Eappy3)) + (-3)*((sqrt(15))*(Eappyz2x2)) + (34)*(Mappx3xy2z2) + (2*I)*((sqrt(15))*(Mappx3y3)) + (-26*I)*(Mappx3yz2x2) + (-14*I)*((sqrt(15))*(Mappxy2z2yz2x2)) + (64*I)*(Mappxyzz3) + (26*I)*(Mappy3xy2z2) + (34)*(Mappy3yz2x2) + (64)*(Mappz3zx2y2)))} , |
{4, 2, A(4,2) + (I)*(B(4,2))} , | {6,-4, (-13/80)*((1/(sqrt(14)))*((15)*(Eappx3) + (-15)*(Eappxy2z2) + (24)*(Eappxyz) + (15)*(Eappy3) + (-15)*(Eappyz2x2) + (-24)*(Eappzx2y2) + (2)*((sqrt(15))*(Mappx3xy2z2)) + (-8*I)*((sqrt(15))*(Mappx3yz2x2)) + (-48*I)*(Mappxyzzx2y2) + (-8*I)*((sqrt(15))*(Mappy3xy2z2)) + (-2)*((sqrt(15))*(Mappy3yz2x2))))} , |
{4,-4, A(4,4) + (-I)*(B(4,4))} , | {6, 4, (-13/80)*((1/(sqrt(14)))*((15)*(Eappx3) + (-15)*(Eappxy2z2) + (24)*(Eappxyz) + (15)*(Eappy3) + (-15)*(Eappyz2x2) + (-24)*(Eappzx2y2) + (2)*((sqrt(15))*(Mappx3xy2z2)) + (8*I)*((sqrt(15))*(Mappx3yz2x2)) + (48*I)*(Mappxyzzx2y2) + (8*I)*((sqrt(15))*(Mappy3xy2z2)) + (-2)*((sqrt(15))*(Mappy3yz2x2))))} , |
{4, 4, A(4,4) + (I)*(B(4,4))} , | {6,-6, (13/160)*((sqrt(11/7))*((5)*((sqrt(3))*(Eappx3)) + (3)*((sqrt(3))*(Eappxy2z2)) + (-5)*((sqrt(3))*(Eappy3)) + (-3)*((sqrt(3))*(Eappyz2x2)) + (-6)*((sqrt(5))*(Mappx3xy2z2)) + (-10*I)*((sqrt(3))*(Mappx3y3)) + (-6*I)*((sqrt(5))*(Mappx3yz2x2)) + (6*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (6*I)*((sqrt(5))*(Mappy3xy2z2)) + (-6)*((sqrt(5))*(Mappy3yz2x2))))} , |
{5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , | {6, 6, (13/160)*((sqrt(11/7))*((5)*((sqrt(3))*(Eappx3)) + (3)*((sqrt(3))*(Eappxy2z2)) + (-5)*((sqrt(3))*(Eappy3)) + (-3)*((sqrt(3))*(Eappyz2x2)) + (-6)*((sqrt(5))*(Mappx3xy2z2)) + (10*I)*((sqrt(3))*(Mappx3y3)) + (6*I)*((sqrt(5))*(Mappx3yz2x2)) + (-6*I)*((sqrt(3))*(Mappxy2z2yz2x2)) + (-6*I)*((sqrt(5))*(Mappy3xy2z2)) + (-6)*((sqrt(5))*(Mappy3yz2x2))))} } |
{5, 1, A(5,1) + (I)*(B(5,1))} , | |
{5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , | |
{5, 3, A(5,3) + (I)*(B(5,3))} , | |
{5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , | |
{5, 5, A(5,5) + (I)*(B(5,5))} , | |
{6, 0, A(6,0)} , | |
{6,-2, A(6,2) + (-I)*(B(6,2))} , | |
{6, 2, A(6,2) + (I)*(B(6,2))} , | |
{6,-4, A(6,4) + (-I)*(B(6,4))} , | |
{6, 4, A(6,4) + (I)*(B(6,4))} , | |
{6,-6, A(6,6) + (-I)*(B(6,6))} , | |
{6, 6, A(6,6) + (I)*(B(6,6))} } | |
| |
</code> | </code> |
| |
| ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | | ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ |
^Y(3)−3|$ A(0,0)-\frac{1}{3} A(2,0)+\frac{1}{11} A(4,0)-\frac{5}{429} A(6,0) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i B(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)-i B(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)-i B(6,2)) | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i B(4,4))-5 \sqrt{5} (A(6,4)-i B(6,4))\right) | 0 | -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)-i B(6,6)) $| | ^Y(3)−3|$ \frac{1}{16} \left(5 \text{Eappx3}+3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappy3yz2x2}-\text{Mappx3xy2z2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}+2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}+i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}-4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-5 \text{Eappx3}-3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \left(\sqrt{15} \text{Mappx3xy2z2}+5 i \text{Mappx3y3}+i \sqrt{15} \text{Mappx3yz2x2}-3 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}-i \text{Mappy3xy2z2})\right)\right) $| |
^Y(3)−2|0|$ A(0,0)-\frac{7}{33} A(4,0)+\frac{10}{143} A(6,0) | 0 | -\frac{2 (A(2,2)-i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-i B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)-i B(6,2)) | 0 | \frac{1}{429} \sqrt{14} \left(13 \sqrt{5} (A(4,4)-i B(4,4))+30 (A(6,4)-i B(6,4))\right) | 0 $| | ^Y(3)−2|0|$ \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{1}{2} (-\text{Eappxyz}+\text{Eappzx2y2}+2 i \text{Mappxyzzx2y2}) | 0 $| |
^Y(3)−1|$ -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i B(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)+i B(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)+i B(6,2)) | 0 | A(0,0)+\frac{1}{5} A(2,0)+\frac{1}{33} A(4,0)-\frac{25}{143} A(6,0) | 0 | \frac{2 \left(-143 \sqrt{6} (A(2,2)-i B(2,2))-65 \sqrt{10} (A(4,2)-i B(4,2))-25 \sqrt{105} (A(6,2)-i B(6,2))\right)}{2145} | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i B(4,4))-5 \sqrt{5} (A(6,4)-i B(6,4))\right) $| | ^Y(3)−1|$ \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}-2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}-i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(3 \text{Eappx3}+5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappx3xy2z2}-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-3 \text{Eappx3}-5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}-2 \left(\sqrt{15} \text{Mappx3xy2z2}+3 i \text{Mappx3y3}-i \sqrt{15} \text{Mappx3yz2x2}-5 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}+i \text{Mappy3xy2z2})\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}-4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) $| |
^Y(3)0|0|$ -\frac{2 (A(2,2)+i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+i B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)+i B(6,2)) | 0 | A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) | 0 | -\frac{2 (A(2,2)-i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-i B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)-i B(6,2)) | 0 $| | ^Y(3)0|0|$ \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \text{Eappz3} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 $| |
^Y(3)1|$ \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i B(4,4))-5 \sqrt{5} (A(6,4)+i B(6,4))\right) | 0 | \frac{2 \left(-143 \sqrt{6} (A(2,2)+i B(2,2))-65 \sqrt{10} (A(4,2)+i B(4,2))-25 \sqrt{105} (A(6,2)+i B(6,2))\right)}{2145} | 0 | A(0,0)+\frac{1}{5} A(2,0)+\frac{1}{33} A(4,0)-\frac{25}{143} A(6,0) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i B(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)-i B(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)-i B(6,2)) $| | ^Y(3)1|$ \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}+4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-3 \text{Eappx3}-5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}-2 \sqrt{15} \text{Mappx3xy2z2}+2 i \left(3 \text{Mappx3y3}-\sqrt{15} \text{Mappx3yz2x2}-5 \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3xy2z2}+i \text{Mappy3yz2x2})\right)\right) | 0 | \frac{1}{16} \left(3 \text{Eappx3}+5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappx3xy2z2}-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}+2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}+i \text{Mappy3yz2x2}\right)\right) $| |
^Y(3)2|0|$ \frac{1}{429} \sqrt{14} \left(13 \sqrt{5} (A(4,4)+i B(4,4))+30 (A(6,4)+i B(6,4))\right) | 0 | -\frac{2 (A(2,2)+i B(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+i B(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)+i B(6,2)) | 0 | A(0,0)-\frac{7}{33} A(4,0)+\frac{10}{143} A(6,0) | 0 $| | ^Y(3)2|0|$ \frac{1}{2} (-\text{Eappxyz}+\text{Eappzx2y2}-2 i \text{Mappxyzzx2y2}) | 0 | \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 $| |
^Y(3)3|$ -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)+i B(6,6)) | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i B(4,4))-5 \sqrt{5} (A(6,4)+i B(6,4))\right) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i B(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)+i B(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)+i B(6,2)) | 0 | A(0,0)-\frac{1}{3} A(2,0)+\frac{1}{11} A(4,0)-\frac{5}{429} A(6,0) $| | ^Y(3)3|$ \frac{1}{16} \left(-5 \text{Eappx3}-3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \left(\sqrt{15} \text{Mappx3xy2z2}-5 i \text{Mappx3y3}-i \sqrt{15} \text{Mappx3yz2x2}+3 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}+i \text{Mappy3xy2z2})\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}+4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}-2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}-i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(5 \text{Eappx3}+3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappy3yz2x2}-\text{Mappx3xy2z2})\right) $| |
| |
| |
### | ### |
| |
| ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | | ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
^fxyz|$ \frac{1}{429} \left(429 A(0,0)-91 A(4,0)-13 \sqrt{70} A(4,4)+30 A(6,0)-30 \sqrt{14} A(6,4)\right) | 0 | 0 | \frac{286 \sqrt{10} B(2,2)+65 \sqrt{6} B(4,2)-200 \sqrt{7} B(6,2)}{2145} | 0 | 0 | -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} B(4,4)+30 B(6,4)\right) $| | ^fxyz|$ \text{Eappxyz} | 0 | 0 | \text{Mappxyzz3} | 0 | 0 | \text{Mappxyzzx2y2} $| |
^fx(5x2−r2)|0|$ \frac{8580 A(0,0)-1144 A(2,0)+1144 \sqrt{6} A(2,2)+585 A(4,0)-390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)+125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)+125 \sqrt{231} A(6,6)}{8580} | \frac{286 \sqrt{6} B(2,2)-780 \sqrt{10} B(4,2)-25 \sqrt{105} B(6,2)+125 \sqrt{231} B(6,6)}{8580} | 0 | \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} | \frac{286 \sqrt{10} B(2,2)+5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(52 \sqrt{6} B(4,4)+65 B(6,2)-20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | 0 $| | ^fx(5x2−r2)|0|$ \text{Eappx3} | \text{Mappx3y3} | 0 | \text{Mappx3xy2z2} | \text{Mappx3yz2x2} | 0 $| |
^fy(5y2−r2)|0|$ \frac{286 \sqrt{6} B(2,2)-780 \sqrt{10} B(4,2)-25 \sqrt{105} B(6,2)+125 \sqrt{231} B(6,6)}{8580} | \frac{8580 A(0,0)-1144 A(2,0)-1144 \sqrt{6} A(2,2)+585 A(4,0)+390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)-125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)-125 \sqrt{231} A(6,6)}{8580} | 0 | \frac{-286 \sqrt{10} B(2,2)-5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(-52 \sqrt{6} B(4,4)+65 B(6,2)+20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} | 0 $| | ^fy(5y2−r2)|0|$ \text{Mappx3y3} | \text{Eappy3} | 0 | \text{Mappy3xy2z2} | \text{Mappy3yz2x2} | 0 $| |
^$ f_{x\left(5z^2-r^2\right)} | \frac{286 \sqrt{10} B(2,2)+65 \sqrt{6} B(4,2)-200 \sqrt{7} B(6,2)}{2145} | 0 | 0 | A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) | 0 | 0 | \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145} $| | ^$ f_{z\left(5z^2-r^2\right)} | \text{Mappxyzz3} | 0 | 0 | \text{Eappz3} | 0 | 0 | \text{Mappz3zx2y2} $| |
^fx(y2−z2)|0|$ \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} | \frac{-286 \sqrt{10} B(2,2)-5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(-52 \sqrt{6} B(4,4)+65 B(6,2)+20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | 0 | \frac{1716 A(0,0)+91 A(4,0)+182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)+15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)+15 \sqrt{231} A(6,6)}{1716} | \frac{286 \sqrt{6} B(2,2)-52 \sqrt{10} B(4,2)+35 \sqrt{105} B(6,2)-15 \sqrt{231} B(6,6)}{1716} | 0 $| | ^fx(y2−z2)|0|$ \text{Mappx3xy2z2} | \text{Mappy3xy2z2} | 0 | \text{Eappxy2z2} | \text{Mappxy2z2yz2x2} | 0 $| |
^fy(z2−x2)|0|$ \frac{286 \sqrt{10} B(2,2)+5 \left(104 \sqrt{6} B(4,2)+\sqrt{7} \left(52 \sqrt{6} B(4,4)+65 B(6,2)-20 \sqrt{30} B(6,4)+15 \sqrt{55} B(6,6)\right)\right)}{8580} | \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} | 0 | \frac{286 \sqrt{6} B(2,2)-52 \sqrt{10} B(4,2)+35 \sqrt{105} B(6,2)-15 \sqrt{231} B(6,6)}{1716} | \frac{1716 A(0,0)+91 A(4,0)-182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)-15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)-15 \sqrt{231} A(6,6)}{1716} | 0 $| | ^fy(z2−x2)|0|$ \text{Mappx3yz2x2} | \text{Mappy3yz2x2} | 0 | \text{Mappxy2z2yz2x2} | \text{Eappyz2x2} | 0 $| |
^fz(x2−y2)|$ -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} B(4,4)+30 B(6,4)\right) | 0 | 0 | \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145} | 0 | 0 | \frac{1}{429} \left(429 A(0,0)-91 A(4,0)+13 \sqrt{70} A(4,4)+30 A(6,0)+30 \sqrt{14} A(6,4)\right) $| | ^fz(x2−y2)|$ \text{Mappxyzzx2y2} | 0 | 0 | \text{Mappz3zx2y2} | 0 | 0 | \text{Eappzx2y2} $| |
| |
| |
^fx(5x2−r2)|√54|0|−√34|0|√34|0|−√54| | ^fx(5x2−r2)|√54|0|−√34|0|√34|0|−√54| |
^fy(5y2−r2)|−i√54|0|−i√34|0|−i√34|0|−i√54| | ^fy(5y2−r2)|−i√54|0|−i√34|0|−i√34|0|−i√54| |
^$ f_{x\left(5z^2-r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 $| | ^$ f_{z\left(5z^2-r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 $| |
^fx(y2−z2)|−√34|0|−√54|0|√54|0|√34| | ^fx(y2−z2)|−√34|0|−√54|0|√54|0|√34| |
^fy(z2−x2)|−i√34|0|i√54|0|i√54|0|−i√34| | ^fy(z2−x2)|−i√34|0|i√54|0|i√54|0|−i√34| |
### | ### |
| |
TODO | ^ ^Eappxyz | {{:physics_chemistry:pointgroup:cs_z_orb_3_1.png?150}} | |
| |ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)sin(2ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |12√105πxyz | ::: | |
| ^ ^Eappx3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_2.png?150}} | |
| |ψ(θ,ϕ)=√11 |116√7πsin(θ)cos(ϕ)(10sin2(θ)cos(2ϕ)−5cos(2θ)−7) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |116√7πx(5x2−15y2−15z2+3) | ::: | |
| ^ ^Eappy3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_3.png?150}} | |
| |ψ(θ,ϕ)=√11 |−116√7πsin(θ)sin(ϕ)(10sin2(θ)cos(2ϕ)+5cos(2θ)+7) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |116√7πy(−15x2+5y2−15z2+3) | ::: | |
| ^ ^Eappz3 | {{:physics_chemistry:pointgroup:cs_z_orb_3_4.png?150}} | |
| |ψ(θ,ϕ)=√11 |116√7π(3cos(θ)+5cos(3θ)) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |14√7πz(5z2−3) | ::: | |
| ^ ^Eappxy2z2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_5.png?150}} | |
| |ψ(θ,ϕ)=√11 |−116√105πsin(θ)cos(ϕ)(2sin2(θ)cos(2ϕ)+3cos(2θ)+1) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |−116√105πx(x2−3y2+5z2−1) | ::: | |
| ^ ^Eappyz2x2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_6.png?150}} | |
| |ψ(θ,ϕ)=√11 |132√105πsin(θ)sin(ϕ)(−4sin2(θ)cos(2ϕ)+6cos(2θ)+2) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |116√105πy(−3x2+y2+5z2−1) | ::: | |
| ^ ^Eappzx2y2 | {{:physics_chemistry:pointgroup:cs_z_orb_3_7.png?150}} | |
| |ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)cos(2ϕ) | ::: | |
| |ψ(ˆx,ˆy,ˆz)=√11 |14√105πz(x2−y2) | ::: | |
| |
### | ### |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
A(0,0) & k=0\land m=0 \\ | 0 & k\neq 1\lor (m\neq -1\land m\neq 1) \\ |
-A(1,1)+i B(1,1) & k=1\land m=-1 \\ | -A(1,1)+i B(1,1) & k=1\land m=-1 \\ |
A(1,1)+i B(1,1) & k=1\land m=1 \\ | A(1,1)+i B(1,1) & \text{True} |
A(2,2)-i B(2,2) & k=2\land m=-2 \\ | |
A(2,0) & k=2\land m=0 \\ | |
A(2,2)+i B(2,2) & k=2\land m=2 \\ | |
-A(3,3)+i B(3,3) & k=3\land m=-3 \\ | |
-A(3,1)+i B(3,1) & k=3\land m=-1 \\ | |
A(3,1)+i B(3,1) & k=3\land m=1 \\ | |
A(3,3)+i B(3,3) & k=3\land m=3 \\ | |
A(4,4)-i B(4,4) & k=4\land m=-4 \\ | |
A(4,2)-i B(4,2) & k=4\land m=-2 \\ | |
A(4,0) & k=4\land m=0 \\ | |
A(4,2)+i B(4,2) & k=4\land m=2 \\ | |
A(4,4)+i B(4,4) & k=4\land m=4 \\ | |
-A(5,5)+i B(5,5) & k=5\land m=-5 \\ | |
-A(5,3)+i B(5,3) & k=5\land m=-3 \\ | |
-A(5,1)+i B(5,1) & k=5\land m=-1 \\ | |
A(5,1)+i B(5,1) & k=5\land m=1 \\ | |
A(5,3)+i B(5,3) & k=5\land m=3 \\ | |
A(5,5)+i B(5,5) & k=5\land m=5 \\ | |
A(6,6)-i B(6,6) & k=6\land m=-6 \\ | |
A(6,4)-i B(6,4) & k=6\land m=-4 \\ | |
A(6,2)-i B(6,2) & k=6\land m=-2 \\ | |
A(6,0) & k=6\land m=0 \\ | |
A(6,2)+i B(6,2) & k=6\land m=2 \\ | |
A(6,4)+i B(6,4) & k=6\land m=4 \\ | |
A(6,6)+i B(6,6) & k=6\land m=6 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] | Akm[k_,m_]:=Piecewise[{{0, k != 1 || (m != -1 && m != 1)}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}}, A[1, 1] + I*B[1, 1]] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, A(0,0)} , | Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , |
{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , | {1, 1, A(1,1) + (I)*(B(1,1))} } |
{1, 1, A(1,1) + (I)*(B(1,1))} , | |
{2, 0, A(2,0)} , | |
{2,-2, A(2,2) + (-I)*(B(2,2))} , | |
{2, 2, A(2,2) + (I)*(B(2,2))} , | |
{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , | |
{3, 1, A(3,1) + (I)*(B(3,1))} , | |
{3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , | |
{3, 3, A(3,3) + (I)*(B(3,3))} , | |
{4, 0, A(4,0)} , | |
{4,-2, A(4,2) + (-I)*(B(4,2))} , | |
{4, 2, A(4,2) + (I)*(B(4,2))} , | |
{4,-4, A(4,4) + (-I)*(B(4,4))} , | |
{4, 4, A(4,4) + (I)*(B(4,4))} , | |
{5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , | |
{5, 1, A(5,1) + (I)*(B(5,1))} , | |
{5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , | |
{5, 3, A(5,3) + (I)*(B(5,3))} , | |
{5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , | |
{5, 5, A(5,5) + (I)*(B(5,5))} , | |
{6, 0, A(6,0)} , | |
{6,-2, A(6,2) + (-I)*(B(6,2))} , | |
{6, 2, A(6,2) + (I)*(B(6,2))} , | |
{6,-4, A(6,4) + (-I)*(B(6,4))} , | |
{6, 4, A(6,4) + (I)*(B(6,4))} , | |
{6,-6, A(6,6) + (-I)*(B(6,6))} , | |
{6, 6, A(6,6) + (I)*(B(6,6))} } | |
| |
</code> | </code> |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
A(0,0) & k=0\land m=0 \\ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ |
-A(1,1)+i B(1,1) & k=1\land m=-1 \\ | |
A(1,1)+i B(1,1) & k=1\land m=1 \\ | |
A(2,2)-i B(2,2) & k=2\land m=-2 \\ | A(2,2)-i B(2,2) & k=2\land m=-2 \\ |
A(2,0) & k=2\land m=0 \\ | A(2,0) & k=2\land m=0 \\ |
A(2,2)+i B(2,2) & k=2\land m=2 \\ | A(2,2)+i B(2,2) & \text{True} |
-A(3,3)+i B(3,3) & k=3\land m=-3 \\ | |
-A(3,1)+i B(3,1) & k=3\land m=-1 \\ | |
A(3,1)+i B(3,1) & k=3\land m=1 \\ | |
A(3,3)+i B(3,3) & k=3\land m=3 \\ | |
A(4,4)-i B(4,4) & k=4\land m=-4 \\ | |
A(4,2)-i B(4,2) & k=4\land m=-2 \\ | |
A(4,0) & k=4\land m=0 \\ | |
A(4,2)+i B(4,2) & k=4\land m=2 \\ | |
A(4,4)+i B(4,4) & k=4\land m=4 \\ | |
-A(5,5)+i B(5,5) & k=5\land m=-5 \\ | |
-A(5,3)+i B(5,3) & k=5\land m=-3 \\ | |
-A(5,1)+i B(5,1) & k=5\land m=-1 \\ | |
A(5,1)+i B(5,1) & k=5\land m=1 \\ | |
A(5,3)+i B(5,3) & k=5\land m=3 \\ | |
A(5,5)+i B(5,5) & k=5\land m=5 \\ | |
A(6,6)-i B(6,6) & k=6\land m=-6 \\ | |
A(6,4)-i B(6,4) & k=6\land m=-4 \\ | |
A(6,2)-i B(6,2) & k=6\land m=-2 \\ | |
A(6,0) & k=6\land m=0 \\ | |
A(6,2)+i B(6,2) & k=6\land m=2 \\ | |
A(6,4)+i B(6,4) & k=6\land m=4 \\ | |
A(6,6)+i B(6,6) & k=6\land m=6 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] | Akm[k_,m_]:=Piecewise[{{0, k != 2 || (m != -2 && m != 0 && m != 2)}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}}, A[2, 2] + I*B[2, 2]] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, A(0,0)} , | Akm = {{2, 0, A(2,0)} , |
{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , | |
{1, 1, A(1,1) + (I)*(B(1,1))} , | |
{2, 0, A(2,0)} , | |
{2,-2, A(2,2) + (-I)*(B(2,2))} , | {2,-2, A(2,2) + (-I)*(B(2,2))} , |
{2, 2, A(2,2) + (I)*(B(2,2))} , | {2, 2, A(2,2) + (I)*(B(2,2))} } |
{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , | |
{3, 1, A(3,1) + (I)*(B(3,1))} , | |
{3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , | |
{3, 3, A(3,3) + (I)*(B(3,3))} , | |
{4, 0, A(4,0)} , | |
{4,-2, A(4,2) + (-I)*(B(4,2))} , | |
{4, 2, A(4,2) + (I)*(B(4,2))} , | |
{4,-4, A(4,4) + (-I)*(B(4,4))} , | |
{4, 4, A(4,4) + (I)*(B(4,4))} , | |
{5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , | |
{5, 1, A(5,1) + (I)*(B(5,1))} , | |
{5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , | |
{5, 3, A(5,3) + (I)*(B(5,3))} , | |
{5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , | |
{5, 5, A(5,5) + (I)*(B(5,5))} , | |
{6, 0, A(6,0)} , | |
{6,-2, A(6,2) + (-I)*(B(6,2))} , | |
{6, 2, A(6,2) + (I)*(B(6,2))} , | |
{6,-4, A(6,4) + (-I)*(B(6,4))} , | |
{6, 4, A(6,4) + (I)*(B(6,4))} , | |
{6,-6, A(6,6) + (-I)*(B(6,6))} , | |
{6, 6, A(6,6) + (I)*(B(6,6))} } | |
| |
</code> | </code> |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
A(0,0) & k=0\land m=0 \\ | 0 & k\neq 3\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ |
-A(1,1)+i B(1,1) & k=1\land m=-1 \\ | |
A(1,1)+i B(1,1) & k=1\land m=1 \\ | |
A(2,2)-i B(2,2) & k=2\land m=-2 \\ | |
A(2,0) & k=2\land m=0 \\ | |
A(2,2)+i B(2,2) & k=2\land m=2 \\ | |
-A(3,3)+i B(3,3) & k=3\land m=-3 \\ | -A(3,3)+i B(3,3) & k=3\land m=-3 \\ |
-A(3,1)+i B(3,1) & k=3\land m=-1 \\ | -A(3,1)+i B(3,1) & k=3\land m=-1 \\ |
A(3,1)+i B(3,1) & k=3\land m=1 \\ | A(3,1)+i B(3,1) & k=3\land m=1 \\ |
A(3,3)+i B(3,3) & k=3\land m=3 \\ | A(3,3)+i B(3,3) & \text{True} |
A(4,4)-i B(4,4) & k=4\land m=-4 \\ | |
A(4,2)-i B(4,2) & k=4\land m=-2 \\ | |
A(4,0) & k=4\land m=0 \\ | |
A(4,2)+i B(4,2) & k=4\land m=2 \\ | |
A(4,4)+i B(4,4) & k=4\land m=4 \\ | |
-A(5,5)+i B(5,5) & k=5\land m=-5 \\ | |
-A(5,3)+i B(5,3) & k=5\land m=-3 \\ | |
-A(5,1)+i B(5,1) & k=5\land m=-1 \\ | |
A(5,1)+i B(5,1) & k=5\land m=1 \\ | |
A(5,3)+i B(5,3) & k=5\land m=3 \\ | |
A(5,5)+i B(5,5) & k=5\land m=5 \\ | |
A(6,6)-i B(6,6) & k=6\land m=-6 \\ | |
A(6,4)-i B(6,4) & k=6\land m=-4 \\ | |
A(6,2)-i B(6,2) & k=6\land m=-2 \\ | |
A(6,0) & k=6\land m=0 \\ | |
A(6,2)+i B(6,2) & k=6\land m=2 \\ | |
A(6,4)+i B(6,4) & k=6\land m=4 \\ | |
A(6,6)+i B(6,6) & k=6\land m=6 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] | Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -3 && m != -1 && m != 1 && m != 3)}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}}, A[3, 3] + I*B[3, 3]] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, A(0,0)} , | Akm = {{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , |
{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , | |
{1, 1, A(1,1) + (I)*(B(1,1))} , | |
{2, 0, A(2,0)} , | |
{2,-2, A(2,2) + (-I)*(B(2,2))} , | |
{2, 2, A(2,2) + (I)*(B(2,2))} , | |
{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , | |
{3, 1, A(3,1) + (I)*(B(3,1))} , | {3, 1, A(3,1) + (I)*(B(3,1))} , |
{3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , | {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , |
{3, 3, A(3,3) + (I)*(B(3,3))} , | {3, 3, A(3,3) + (I)*(B(3,3))} } |
{4, 0, A(4,0)} , | |
{4,-2, A(4,2) + (-I)*(B(4,2))} , | |
{4, 2, A(4,2) + (I)*(B(4,2))} , | |
{4,-4, A(4,4) + (-I)*(B(4,4))} , | |
{4, 4, A(4,4) + (I)*(B(4,4))} , | |
{5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , | |
{5, 1, A(5,1) + (I)*(B(5,1))} , | |
{5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , | |
{5, 3, A(5,3) + (I)*(B(5,3))} , | |
{5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , | |
{5, 5, A(5,5) + (I)*(B(5,5))} , | |
{6, 0, A(6,0)} , | |
{6,-2, A(6,2) + (-I)*(B(6,2))} , | |
{6, 2, A(6,2) + (I)*(B(6,2))} , | |
{6,-4, A(6,4) + (-I)*(B(6,4))} , | |
{6, 4, A(6,4) + (I)*(B(6,4))} , | |
{6,-6, A(6,6) + (-I)*(B(6,6))} , | |
{6, 6, A(6,6) + (I)*(B(6,6))} } | |
| |
</code> | </code> |
### | ### |
| |
| ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | | ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
^s|0|114(√21A(3,1)−√35A(3,3))|−√3B(3,1)+√5B(3,3)2√7|0|√5A(3,1)+√3A(3,3)2√7|114(√35B(3,1)−√21B(3,3))|0| | ^s|0|114(√21A(3,1)−√35A(3,3))|−√3B(3,1)+√5B(3,3)2√7|0|√5A(3,1)+√3A(3,3)2√7|114(√35B(3,1)−√21B(3,3))|0| |
| |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
A(0,0) & k=0\land m=0 \\ | 0 & (k\neq 3\land (k\neq 1\lor (m\neq -1\land m\neq 1)))\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ |
-A(1,1)+i B(1,1) & k=1\land m=-1 \\ | -A(1,1)+i B(1,1) & k=1\land m=-1 \\ |
A(1,1)+i B(1,1) & k=1\land m=1 \\ | A(1,1)+i B(1,1) & k=1\land m=1 \\ |
A(2,2)-i B(2,2) & k=2\land m=-2 \\ | |
A(2,0) & k=2\land m=0 \\ | |
A(2,2)+i B(2,2) & k=2\land m=2 \\ | |
-A(3,3)+i B(3,3) & k=3\land m=-3 \\ | -A(3,3)+i B(3,3) & k=3\land m=-3 \\ |
-A(3,1)+i B(3,1) & k=3\land m=-1 \\ | -A(3,1)+i B(3,1) & k=3\land m=-1 \\ |
A(3,1)+i B(3,1) & k=3\land m=1 \\ | A(3,1)+i B(3,1) & k=3\land m=1 \\ |
A(3,3)+i B(3,3) & k=3\land m=3 \\ | A(3,3)+i B(3,3) & \text{True} |
A(4,4)-i B(4,4) & k=4\land m=-4 \\ | |
A(4,2)-i B(4,2) & k=4\land m=-2 \\ | |
A(4,0) & k=4\land m=0 \\ | |
A(4,2)+i B(4,2) & k=4\land m=2 \\ | |
A(4,4)+i B(4,4) & k=4\land m=4 \\ | |
-A(5,5)+i B(5,5) & k=5\land m=-5 \\ | |
-A(5,3)+i B(5,3) & k=5\land m=-3 \\ | |
-A(5,1)+i B(5,1) & k=5\land m=-1 \\ | |
A(5,1)+i B(5,1) & k=5\land m=1 \\ | |
A(5,3)+i B(5,3) & k=5\land m=3 \\ | |
A(5,5)+i B(5,5) & k=5\land m=5 \\ | |
A(6,6)-i B(6,6) & k=6\land m=-6 \\ | |
A(6,4)-i B(6,4) & k=6\land m=-4 \\ | |
A(6,2)-i B(6,2) & k=6\land m=-2 \\ | |
A(6,0) & k=6\land m=0 \\ | |
A(6,2)+i B(6,2) & k=6\land m=2 \\ | |
A(6,4)+i B(6,4) & k=6\land m=4 \\ | |
A(6,6)+i B(6,6) & k=6\land m=6 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] | Akm[k_,m_]:=Piecewise[{{0, (k != 3 && (k != 1 || (m != -1 && m != 1))) || (m != -3 && m != -1 && m != 1 && m != 3)}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}}, A[3, 3] + I*B[3, 3]] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, A(0,0)} , | Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , |
{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , | |
{1, 1, A(1,1) + (I)*(B(1,1))} , | {1, 1, A(1,1) + (I)*(B(1,1))} , |
{2, 0, A(2,0)} , | |
{2,-2, A(2,2) + (-I)*(B(2,2))} , | |
{2, 2, A(2,2) + (I)*(B(2,2))} , | |
{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , | {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , |
{3, 1, A(3,1) + (I)*(B(3,1))} , | {3, 1, A(3,1) + (I)*(B(3,1))} , |
{3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , | {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , |
{3, 3, A(3,3) + (I)*(B(3,3))} , | {3, 3, A(3,3) + (I)*(B(3,3))} } |
{4, 0, A(4,0)} , | |
{4,-2, A(4,2) + (-I)*(B(4,2))} , | |
{4, 2, A(4,2) + (I)*(B(4,2))} , | |
{4,-4, A(4,4) + (-I)*(B(4,4))} , | |
{4, 4, A(4,4) + (I)*(B(4,4))} , | |
{5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , | |
{5, 1, A(5,1) + (I)*(B(5,1))} , | |
{5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , | |
{5, 3, A(5,3) + (I)*(B(5,3))} , | |
{5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , | |
{5, 5, A(5,5) + (I)*(B(5,5))} , | |
{6, 0, A(6,0)} , | |
{6,-2, A(6,2) + (-I)*(B(6,2))} , | |
{6, 2, A(6,2) + (I)*(B(6,2))} , | |
{6,-4, A(6,4) + (-I)*(B(6,4))} , | |
{6, 4, A(6,4) + (I)*(B(6,4))} , | |
{6,-6, A(6,6) + (-I)*(B(6,6))} , | |
{6, 6, A(6,6) + (I)*(B(6,6))} } | |
| |
</code> | </code> |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
A(0,0) & k=0\land m=0 \\ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ |
-A(1,1)+i B(1,1) & k=1\land m=-1 \\ | |
A(1,1)+i B(1,1) & k=1\land m=1 \\ | |
A(2,2)-i B(2,2) & k=2\land m=-2 \\ | A(2,2)-i B(2,2) & k=2\land m=-2 \\ |
A(2,0) & k=2\land m=0 \\ | A(2,0) & k=2\land m=0 \\ |
A(2,2)+i B(2,2) & k=2\land m=2 \\ | A(2,2)+i B(2,2) & k=2\land m=2 \\ |
-A(3,3)+i B(3,3) & k=3\land m=-3 \\ | |
-A(3,1)+i B(3,1) & k=3\land m=-1 \\ | |
A(3,1)+i B(3,1) & k=3\land m=1 \\ | |
A(3,3)+i B(3,3) & k=3\land m=3 \\ | |
A(4,4)-i B(4,4) & k=4\land m=-4 \\ | A(4,4)-i B(4,4) & k=4\land m=-4 \\ |
A(4,2)-i B(4,2) & k=4\land m=-2 \\ | A(4,2)-i B(4,2) & k=4\land m=-2 \\ |
A(4,0) & k=4\land m=0 \\ | A(4,0) & k=4\land m=0 \\ |
A(4,2)+i B(4,2) & k=4\land m=2 \\ | A(4,2)+i B(4,2) & k=4\land m=2 \\ |
A(4,4)+i B(4,4) & k=4\land m=4 \\ | A(4,4)+i B(4,4) & \text{True} |
-A(5,5)+i B(5,5) & k=5\land m=-5 \\ | |
-A(5,3)+i B(5,3) & k=5\land m=-3 \\ | |
-A(5,1)+i B(5,1) & k=5\land m=-1 \\ | |
A(5,1)+i B(5,1) & k=5\land m=1 \\ | |
A(5,3)+i B(5,3) & k=5\land m=3 \\ | |
A(5,5)+i B(5,5) & k=5\land m=5 \\ | |
A(6,6)-i B(6,6) & k=6\land m=-6 \\ | |
A(6,4)-i B(6,4) & k=6\land m=-4 \\ | |
A(6,2)-i B(6,2) & k=6\land m=-2 \\ | |
A(6,0) & k=6\land m=0 \\ | |
A(6,2)+i B(6,2) & k=6\land m=2 \\ | |
A(6,4)+i B(6,4) & k=6\land m=4 \\ | |
A(6,6)+i B(6,6) & k=6\land m=6 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] | Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || (m != -2 && m != 0 && m != 2))) || (m != -4 && m != -2 && m != 0 && m != 2 && m != 4)}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}}, A[4, 4] + I*B[4, 4]] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, A(0,0)} , | Akm = {{2, 0, A(2,0)} , |
{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , | |
{1, 1, A(1,1) + (I)*(B(1,1))} , | |
{2, 0, A(2,0)} , | |
{2,-2, A(2,2) + (-I)*(B(2,2))} , | {2,-2, A(2,2) + (-I)*(B(2,2))} , |
{2, 2, A(2,2) + (I)*(B(2,2))} , | {2, 2, A(2,2) + (I)*(B(2,2))} , |
{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , | |
{3, 1, A(3,1) + (I)*(B(3,1))} , | |
{3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , | |
{3, 3, A(3,3) + (I)*(B(3,3))} , | |
{4, 0, A(4,0)} , | {4, 0, A(4,0)} , |
{4,-2, A(4,2) + (-I)*(B(4,2))} , | {4,-2, A(4,2) + (-I)*(B(4,2))} , |
{4, 2, A(4,2) + (I)*(B(4,2))} , | {4, 2, A(4,2) + (I)*(B(4,2))} , |
{4,-4, A(4,4) + (-I)*(B(4,4))} , | {4,-4, A(4,4) + (-I)*(B(4,4))} , |
{4, 4, A(4,4) + (I)*(B(4,4))} , | {4, 4, A(4,4) + (I)*(B(4,4))} } |
{5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , | |
{5, 1, A(5,1) + (I)*(B(5,1))} , | |
{5,-3, (-1)*(A(5,3)) + (I)*(B(5,3))} , | |
{5, 3, A(5,3) + (I)*(B(5,3))} , | |
{5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , | |
{5, 5, A(5,5) + (I)*(B(5,5))} , | |
{6, 0, A(6,0)} , | |
{6,-2, A(6,2) + (-I)*(B(6,2))} , | |
{6, 2, A(6,2) + (I)*(B(6,2))} , | |
{6,-4, A(6,4) + (-I)*(B(6,4))} , | |
{6, 4, A(6,4) + (I)*(B(6,4))} , | |
{6,-6, A(6,6) + (-I)*(B(6,6))} , | |
{6, 6, A(6,6) + (I)*(B(6,6))} } | |
| |
</code> | </code> |
### | ### |
| |
| ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | | ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
^px|0|1630(−27√21A(2,0)+81√14A(2,2)+5(3√21A(4,0)−2√210A(4,2)+7√30A(4,4)))|1630(54√14B(2,2)+5√30(√7B(4,2)+7B(4,4)))|0|1210(−9√35A(2,0)−3√210A(2,2)+5(√35A(4,0)−2√14A(4,2)−7√2A(4,4)))|√635B(2,2)−B(4,2)√14+B(4,4)3√2|0| | ^px|0|1630(−27√21A(2,0)+81√14A(2,2)+5(3√21A(4,0)−2√210A(4,2)+7√30A(4,4)))|1630(54√14B(2,2)+5√30(√7B(4,2)+7B(4,4)))|0|1210(−9√35A(2,0)−3√210A(2,2)+5(√35A(4,0)−2√14A(4,2)−7√2A(4,4)))|√635B(2,2)−B(4,2)√14+B(4,4)3√2|0| |
^py|0|1630(54√14B(2,2)+5√30(√7B(4,2)−7B(4,4)))|1630(−27√21A(2,0)−81√14A(2,2)+5(3√21A(4,0)+2√210A(4,2)+7√30A(4,4)))|0|−√635B(2,2)+B(4,2)√14+B(4,4)3√2| \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0 | | ^ p_y | 0 | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)-7 B(4,4)\right)\right) | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)-81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)+2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | 0 | -\sqrt{\frac{6}{35}} B(2,2)+\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0 | |
| |
$$A_{k,m} = \begin{cases} | $$A_{k,m} = \begin{cases} |
A(0,0) & k=0\land m=0 \\ | 0 & (k\neq 5\land (((k\neq 1\lor (m\neq -1\land m\neq 1))\land k\neq 3)\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3)))\lor (m\neq -5\land m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3\land m\neq 5) \\ |
-A(1,1)+i B(1,1) & k=1\land m=-1 \\ | -A(1,1)+i B(1,1) & k=1\land m=-1 \\ |
A(1,1)+i B(1,1) & k=1\land m=1 \\ | A(1,1)+i B(1,1) & k=1\land m=1 \\ |
A(2,2)-i B(2,2) & k=2\land m=-2 \\ | |
A(2,0) & k=2\land m=0 \\ | |
A(2,2)+i B(2,2) & k=2\land m=2 \\ | |
-A(3,3)+i B(3,3) & k=3\land m=-3 \\ | -A(3,3)+i B(3,3) & k=3\land m=-3 \\ |
-A(3,1)+i B(3,1) & k=3\land m=-1 \\ | -A(3,1)+i B(3,1) & k=3\land m=-1 \\ |
A(3,1)+i B(3,1) & k=3\land m=1 \\ | A(3,1)+i B(3,1) & k=3\land m=1 \\ |
A(3,3)+i B(3,3) & k=3\land m=3 \\ | A(3,3)+i B(3,3) & k=3\land m=3 \\ |
A(4,4)-i B(4,4) & k=4\land m=-4 \\ | |
A(4,2)-i B(4,2) & k=4\land m=-2 \\ | |
A(4,0) & k=4\land m=0 \\ | |
A(4,2)+i B(4,2) & k=4\land m=2 \\ | |
A(4,4)+i B(4,4) & k=4\land m=4 \\ | |
-A(5,5)+i B(5,5) & k=5\land m=-5 \\ | -A(5,5)+i B(5,5) & k=5\land m=-5 \\ |
-A(5,3)+i B(5,3) & k=5\land m=-3 \\ | -A(5,3)+i B(5,3) & k=5\land m=-3 \\ |
A(5,1)+i B(5,1) & k=5\land m=1 \\ | A(5,1)+i B(5,1) & k=5\land m=1 \\ |
A(5,3)+i B(5,3) & k=5\land m=3 \\ | A(5,3)+i B(5,3) & k=5\land m=3 \\ |
A(5,5)+i B(5,5) & k=5\land m=5 \\ | A(5,5)+i B(5,5) & \text{True} |
A(6,6)-i B(6,6) & k=6\land m=-6 \\ | |
A(6,4)-i B(6,4) & k=6\land m=-4 \\ | |
A(6,2)-i B(6,2) & k=6\land m=-2 \\ | |
A(6,0) & k=6\land m=0 \\ | |
A(6,2)+i B(6,2) & k=6\land m=2 \\ | |
A(6,4)+i B(6,4) & k=6\land m=4 \\ | |
A(6,6)+i B(6,6) & k=6\land m=6 | |
\end{cases}$$ | \end{cases}$$ |
| |
<code Quanty Akm_Cs_Z.Quanty.nb> | <code Quanty Akm_Cs_Z.Quanty.nb> |
| |
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {A[2, 0], k == 2 && m == 0}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {A[4, 0], k == 4 && m == 0}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}, {A[5, 5] + I*B[5, 5], k == 5 && m == 5}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {A[6, 0], k == 6 && m == 0}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] | Akm[k_,m_]:=Piecewise[{{0, (k != 5 && (((k != 1 || (m != -1 && m != 1)) && k != 3) || (m != -3 && m != -1 && m != 1 && m != 3))) || (m != -5 && m != -3 && m != -1 && m != 1 && m != 3 && m != 5)}, {-A[1, 1] + I*B[1, 1], k == 1 && m == -1}, {A[1, 1] + I*B[1, 1], k == 1 && m == 1}, {-A[3, 3] + I*B[3, 3], k == 3 && m == -3}, {-A[3, 1] + I*B[3, 1], k == 3 && m == -1}, {A[3, 1] + I*B[3, 1], k == 3 && m == 1}, {A[3, 3] + I*B[3, 3], k == 3 && m == 3}, {-A[5, 5] + I*B[5, 5], k == 5 && m == -5}, {-A[5, 3] + I*B[5, 3], k == 5 && m == -3}, {-A[5, 1] + I*B[5, 1], k == 5 && m == -1}, {A[5, 1] + I*B[5, 1], k == 5 && m == 1}, {A[5, 3] + I*B[5, 3], k == 5 && m == 3}}, A[5, 5] + I*B[5, 5]] |
| |
</code> | </code> |
<code Quanty Akm_Cs_Z.Quanty> | <code Quanty Akm_Cs_Z.Quanty> |
| |
Akm = {{0, 0, A(0,0)} , | Akm = {{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , |
{1,-1, (-1)*(A(1,1)) + (I)*(B(1,1))} , | |
{1, 1, A(1,1) + (I)*(B(1,1))} , | {1, 1, A(1,1) + (I)*(B(1,1))} , |
{2, 0, A(2,0)} , | |
{2,-2, A(2,2) + (-I)*(B(2,2))} , | |
{2, 2, A(2,2) + (I)*(B(2,2))} , | |
{3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , | {3,-1, (-1)*(A(3,1)) + (I)*(B(3,1))} , |
{3, 1, A(3,1) + (I)*(B(3,1))} , | {3, 1, A(3,1) + (I)*(B(3,1))} , |
{3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , | {3,-3, (-1)*(A(3,3)) + (I)*(B(3,3))} , |
{3, 3, A(3,3) + (I)*(B(3,3))} , | {3, 3, A(3,3) + (I)*(B(3,3))} , |
{4, 0, A(4,0)} , | |
{4,-2, A(4,2) + (-I)*(B(4,2))} , | |
{4, 2, A(4,2) + (I)*(B(4,2))} , | |
{4,-4, A(4,4) + (-I)*(B(4,4))} , | |
{4, 4, A(4,4) + (I)*(B(4,4))} , | |
{5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , | {5,-1, (-1)*(A(5,1)) + (I)*(B(5,1))} , |
{5, 1, A(5,1) + (I)*(B(5,1))} , | {5, 1, A(5,1) + (I)*(B(5,1))} , |
{5, 3, A(5,3) + (I)*(B(5,3))} , | {5, 3, A(5,3) + (I)*(B(5,3))} , |
{5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , | {5,-5, (-1)*(A(5,5)) + (I)*(B(5,5))} , |
{5, 5, A(5,5) + (I)*(B(5,5))} , | {5, 5, A(5,5) + (I)*(B(5,5))} } |
{6, 0, A(6,0)} , | |
{6,-2, A(6,2) + (-I)*(B(6,2))} , | |
{6, 2, A(6,2) + (I)*(B(6,2))} , | |
{6,-4, A(6,4) + (-I)*(B(6,4))} , | |
{6, 4, A(6,4) + (I)*(B(6,4))} , | |
{6,-6, A(6,6) + (-I)*(B(6,6))} , | |
{6, 6, A(6,6) + (I)*(B(6,6))} } | |
| |
</code> | </code> |
### | ### |
| |
| ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{x\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ $ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} $ ^ |
^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} | \frac{-99 \sqrt{210} B(1,1)+121 \sqrt{35} B(3,1)+55 \sqrt{21} B(3,3)-50 \sqrt{14} B(5,1)-175 \sqrt{3} B(5,3)-175 \sqrt{15} B(5,5)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) | \frac{1}{462} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)-11 \sqrt{35} B(3,3)+2 \sqrt{210} B(5,1)+35 \sqrt{5} B(5,3)-105 B(5,5)\right) | 0 | | ^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} | \frac{-99 \sqrt{210} B(1,1)+121 \sqrt{35} B(3,1)+55 \sqrt{21} B(3,3)-50 \sqrt{14} B(5,1)-175 \sqrt{3} B(5,3)-175 \sqrt{15} B(5,5)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) | \frac{1}{462} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)-11 \sqrt{35} B(3,3)+2 \sqrt{210} B(5,1)+35 \sqrt{5} B(5,3)-105 B(5,5)\right) | 0 | |
^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} | \frac{-99 \sqrt{70} B(1,1)-33 \sqrt{105} B(3,1)+275 \sqrt{7} B(3,3)-75 \sqrt{42} B(5,1)-350 B(5,3)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) | \frac{1}{462} \left(33 \sqrt{42} B(1,1)+33 \sqrt{7} B(3,1)+11 \sqrt{105} B(3,3)+15 \sqrt{70} B(5,1)-14 \sqrt{15} B(5,3)\right) | 0 | | ^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} | \frac{-99 \sqrt{70} B(1,1)-33 \sqrt{105} B(3,1)+275 \sqrt{7} B(3,3)-75 \sqrt{42} B(5,1)-350 B(5,3)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) | \frac{1}{462} \left(33 \sqrt{42} B(1,1)+33 \sqrt{7} B(3,1)+11 \sqrt{105} B(3,3)+15 \sqrt{70} B(5,1)-14 \sqrt{15} B(5,3)\right) | 0 | |