Processing math: 22%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

physics_chemistry:point_groups:ih:orientation_xyz [2018/03/21 18:51] – created Stefano Agrestiniphysics_chemistry:point_groups:ih:orientation_xyz [2018/04/05 10:36] (current) Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation xyz ====== ====== Orientation xyz ======
 +
 +===== Symmetry Operations =====
  
 ### ###
-alligned paragraph text+ 
 +In the Ih Point Group, with orientation xyz there are the following symmetry operations 
 ### ###
  
-===== Example =====+### 
 + 
 +{{:physics_chemistry:pointgroup:ih_xyz.png}}
  
 ### ###
-description text+
 ### ###
  
-==== Input ==== +^ Operator ^ Orientation ^ 
-<code Quanty Example.Quanty> +^ E | {0,0,0} , | 
--- some example code+^ C5 | {12(1+5),1,0} , {12(15),1,0} , {12(1+5),1,0} , {12(15),1,0} , {0,12(1+5),1} , {0,12(15),1} , {0,12(1+5),1} , {0,12(15),1} , {1,0,12(1+5)} , {1,0,12(15)} , {1,0,12(1+5)} , {1,0,12(15)} , | 
 +^ C25 | {12(1+5),1,0} , {12(15),1,0} , {12(1+5),1,0} , {12(15),1,0} , {0,12(1+5),1} , {0,12(15),1} , {0,12(1+5),1} , {0,12(15),1} , {1,0,12(1+5)} , {1,0,12(15)} , {1,0,12(1+5)} , {1,0,12(15)} , | 
 +^ C3 | {1,1,1} , {0,1,12(35)} , {0,1,12(3+5)} , {1,1,1} , {12(35),0,1} , {1,12(35),0} , {1,12(3+5),0} , {12(3+5),0,1} , {1,12(3+5),0} , {1,1,1} , {1,1,1} , {1,12(35),0} , {0,1,12(35)} , {0,1,12(3+5)} , {1,1,1} , {1,1,1} , {1,1,1} , {1,1,1} , {12(35),0,1} , {12(3+5),0,1} , | 
 +^ C2 | {0,0,1} , {0,1,0} , {1,0,0} , {12(35),1,12(1+5)} , {12(35),1,12(15)} , {12(3+5),1,12(15)} , {12(3+5),1,12(1+5)} , {1,12(15),12(3+5)} , {1,12(1+5),12(3+5)} , {1,12(1+5),12(35)} , {1,12(15),12(35)} , {12(15),12(3+5),1} , {12(1+5),12(35),1} , {12(1+5),12(3+5),1} , {12(15),12(35),1} , | 
 +^ i | {0,0,0} , | 
 +^ S10 | {12(1+5),1,0} , {12(15),1,0} , {12(1+5),1,0} , {12(15),1,0} , {0,12(1+5),1} , {0,12(15),1} , {0,12(1+5),1} , {0,12(15),1} , {1,0,12(1+5)} , {1,0,12(15)} , {1,0,12(1+5)} , {1,0,12(15)} , | 
 +^ S310 | {12(1+5),1,0} , {12(15),1,0} , {12(1+5),1,0} , {12(15),1,0} , {0,12(1+5),1} , {0,12(15),1} , {0,12(1+5),1} , {0,12(15),1} , {1,0,12(1+5)} , {1,0,12(15)} , {1,0,12(1+5)} , {1,0,12(15)} , | 
 +^ S6 | {1,1,1} , {0,1,12(35)} , {0,1,12(3+5)} , {1,1,1} , {12(35),0,1} , {1,12(35),0} , {1,12(3+5),0} , {12(3+5),0,1} , {1,12(3+5),0} , {1,1,1} , {1,1,1} , {1,12(35),0} , {0,1,12(35)} , {0,1,12(3+5)} , {1,1,1} , {1,1,1} , {1,1,1} , {1,1,1} , {12(35),0,1} , {12(3+5),0,1} , | 
 +^ σh | {0,0,1} , {0,1,0} , {1,0,0} , {12(35),1,12(1+5)} , {12(35),1,12(15)} , {12(3+5),1,12(15)} , {12(3+5),1,12(1+5)} , {1,12(15),12(3+5)} , {1,12(1+5),12(3+5)} , {1,12(1+5),12(35)} , {1,12(15),12(35)} , {12(15),12(3+5),1} , {12(1+5),12(35),1} , {12(1+5),12(3+5),1} , {12(15),12(35),1} , | 
 + 
 +### 
 + 
 +===== Different Settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:ih:orientation_xyz|Point Group Ih with orientation xyz]] 
 + 
 +### 
 + 
 +===== Character Table ===== 
 + 
 +### 
 + 
 +  ^  E(1)  ^  C5(12)  ^  C25(12)  ^  C3(20)  ^  C2(15)  ^  i(1)  ^  S10(12)  ^  S310(12)  ^  S6(20)  ^  σh(15)  ^ 
 +^ Ag1111111111
 +^ T1g312(1+5)12(15)01312(15)12(1+5)01
 +^ T2g312(15)12(1+5)01312(1+5)12(15)01
 +^ Gg4111041110
 +^ Hg5001150011
 +^ Au1111111111
 +^ T1u312(1+5)12(15)01312(1+5)12(15)01
 +^ T2u312(15)12(1+5)01312(15)12(1+5)01
 +^ Gu4111041110
 +^ Hu5001150011
 + 
 +### 
 + 
 +===== Product Table ===== 
 + 
 +### 
 + 
 +  ^  Ag  ^  T1g  ^  T2g  ^  Gg  ^  Hg  ^  Au  ^  T1u  ^  T2u  ^  Gu  ^  Hu  ^ 
 +^ Ag  | Ag  | T1g  | T2g  | Gg  | Hg  | Au  | T1u  | T2u  | Gu  | Hu  | 
 +^ T1g  | T1g  | Ag+Hg+T1g  | Gg+Hg  | Gg+Hg+T2g  | Gg+Hg+T1g+T2g  | T1u  | Au+Hu+T1u  | Gu+Hu  | Gu+Hu+T2u  | Gu+Hu+T1u+T2u  | 
 +^ T2g  | T2g  | Gg+Hg  | Ag+Hg+T2g  | Gg+Hg+T1g  | Gg+Hg+T1g+T2g  | T2u  | Gu+Hu  | Au+Hu+T2u  | Gu+Hu+T1u  | Gu+Hu+T1u+T2u  | 
 +^ Gg  | Gg  | Gg+Hg+T2g  | Gg+Hg+T1g  | Ag+Gg+Hg+T1g+T2g  | Gg+2Hg+T1g+T2g  | Gu  | Gu+Hu+T2u  | Gu+Hu+T1u  | Au+Gu+Hu+T1u+T2u  | Gu+2Hu+T1u+T2u  | 
 +^ Hg  | Hg  | Gg+Hg+T1g+T2g  | Gg+Hg+T1g+T2g  | Gg+2Hg+T1g+T2g  | Ag+2Gg+2Hg+T1g+T2g  | Hu  | Gu+Hu+T1u+T2u  | Gu+Hu+T1u+T2u  | Gu+2Hu+T1u+T2u  | Au+2Gu+2Hu+T1u+T2u  | 
 +^ Au  | Au  | T1u  | T2u  | Gu  | Hu  | Ag  | T1g  | T2g  | Gg  | Hg  | 
 +^ T1u  | T1u  | Au+Hu+T1u  | Gu+Hu  | Gu+Hu+T2u  | Gu+Hu+T1u+T2u  | T1g  | Ag+Hg+T1g  | Gg+Hg  | Gg+Hg+T2g  | Gg+Hg+T1g+T2g  | 
 +^ T2u  | T2u  | Gu+Hu  | Au+Hu+T2u  | Gu+Hu+T1u  | Gu+Hu+T1u+T2u  | T2g  | Gg+Hg  | Ag+Hg+T2g  | Gg+Hg+T1g  | Gg+Hg+T1g+T2g  | 
 +^ Gu  | Gu  | Gu+Hu+T2u  | Gu+Hu+T1u  | Au+Gu+Hu+T1u+T2u  | Gu+2Hu+T1u+T2u  | Gg  | Gg+Hg+T2g  | Gg+Hg+T1g  | Ag+Gg+Hg+T1g+T2g  | Gg+2Hg+T1g+T2g  | 
 +^ Hu  | Hu  | Gu+Hu+T1u+T2u  | Gu+Hu+T1u+T2u  | Gu+2Hu+T1u+T2u  | Au+2Gu+2Hu+T1u+T2u  | Hg  | Gg+Hg+T1g+T2g  | Gg+Hg+T1g+T2g  | Gg+2Hg+T1g+T2g  | Ag+2Gg+2Hg+T1g+T2g  | 
 + 
 +### 
 + 
 +===== Sub Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:oh:orientation_xyz|Point Group Oh with orientation XYZ]] 
 + 
 +### 
 + 
 +===== Super Groups with compatible settings ===== 
 + 
 +### 
 + 
 + 
 +### 
 + 
 +===== Invariant Potential expanded on renormalized spherical Harmonics ===== 
 + 
 +### 
 + 
 +Any potential (function) can be written as a sum over spherical harmonics. 
 +V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) 
 +Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) 
 +The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Ih Point group with orientation xyz the form of the expansion coefficients is: 
 + 
 +### 
 + 
 +==== Expansion ==== 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + A(0,0) & k=0\land m=0 \\ 
 + \frac{1}{2} \sqrt{\frac{105}{11}} A(6,0) & k=6\land (m=-6\lor m=6) \\ 
 + -\sqrt{\frac{7}{2}} A(6,0) & k=6\land (m=-4\lor m=4) \\ 
 + -\frac{1}{2} \sqrt{21} A(6,0) & k=6\land (m=-2\lor m=2) \\ 
 + A(6,0) & k=6\land m=0 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +==== Input format suitable for Mathematica (Quanty.nb) ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_Ih_xyz.Quanty.nb
 + 
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(Sqrt[105/11]*A[6, 0])/2, k == 6 && (m == -6 || m == 6)}, {-(Sqrt[7/2]*A[6, 0]), k == 6 && (m == -4 || m == 4)}, {-(Sqrt[21]*A[6, 0])/2, k == 6 && (m == -2 || m == 2)}, {A[6, 0], k == 6 && m == 0}}, 0] 
 </code> </code>
  
-==== Result ==== +###
-<WRAP center box 100%> +
-text produced as output +
-</WRAP>+
  
-===== Table of contents ===== +==== Input format suitable for Quanty ====
-{{indexmenu>.#1}}+
  
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty>
 +
 +Akm = {{0, 0, A(0,0)} , 
 +       {6, 0, A(6,0)} , 
 +       {6,-2, (-1/2)*((sqrt(21))*(A(6,0)))} , 
 +       {6, 2, (-1/2)*((sqrt(21))*(A(6,0)))} , 
 +       {6,-4, (-1)*((sqrt(7/2))*(A(6,0)))} , 
 +       {6, 4, (-1)*((sqrt(7/2))*(A(6,0)))} , 
 +       {6,-6, (1/2)*((sqrt(105/11))*(A(6,0)))} , 
 +       {6, 6, (1/2)*((sqrt(105/11))*(A(6,0)))} }
 +
 +</code>
 +
 +###
 +
 +==== One particle coupling on a basis of spherical harmonics ====
 +
 +###
 +
 +The operator representing the potential in second quantisation is given as:
 +O=n
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
 + A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle
 +Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +we can express the operator as 
 + O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
 +
 +###
 +
 +
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{0}^{(0)}} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{-1}^{(1)}} |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ {Y_{0}^{(1)}} |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ {Y_{1}^{(1)}} |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ {Y_{-2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{-1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0) | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{0}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Add}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Add}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{-3}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} | 0 | \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | -\frac{35}{143} \sqrt{5} \text{Aff}(6,0) |
 +^ {Y_{-2}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 | -\frac{70}{143} \text{Aff}(6,0) | 0 |
 +^ {Y_{-1}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} | 0 | \text{Aff}(0,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{5} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) |
 +^ {Y_{0}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 | \text{Aff}(0,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 |
 +^ {Y_{1}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{5} \text{Aff}(6,0) | 0 | \text{Aff}(0,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} |
 +^ {Y_{2}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{70}{143} \text{Aff}(6,0) | 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 | \text{Aff}(0,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
 +^ {Y_{3}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{35}{143} \sqrt{5} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} | 0 | \text{Aff}(0,0)-\frac{5}{429} \text{Aff}(6,0) |
 +
 +
 +###
 +
 +==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
 +
 +###
 +
 +
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
 +
 +###
 +
 +
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ \text{s} | 1 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ p_x |\color{darkred}{ 0 }| \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ p_y |\color{darkred}{ 0 }| \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ p_z |\color{darkred}{ 0 }| 0 | 1 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ d_{x^2-y^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 1 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{8} \left(\sqrt{5}-3\right) | 0 | -\frac{1}{8} \sqrt{3} \left(1+\sqrt{5}\right) | 0 | \frac{1}{8} \left(\sqrt{3}+\sqrt{15}\right) | 0 | \frac{1}{8} \left(3-\sqrt{5}\right) |
 +^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{8} i \left(3+\sqrt{5}\right) | 0 | \frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) | 0 | \frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) | 0 | -\frac{1}{8} i \left(3+\sqrt{5}\right) |
 +^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 | \frac{1}{2} | 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 |
 +^ f_{\text{xyz}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
 +^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{8} \left(\sqrt{3}+\sqrt{15}\right) | 0 | \frac{1}{8} \left(\sqrt{5}-3\right) | 0 | \frac{1}{8} \left(3-\sqrt{5}\right) | 0 | -\frac{1}{8} \sqrt{3} \left(1+\sqrt{5}\right) |
 +^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) | 0 | -\frac{1}{8} i \left(3+\sqrt{5}\right) | 0 | -\frac{1}{8} i \left(3+\sqrt{5}\right) | 0 | -\frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) |
 +^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{2 \sqrt{2}} | 0 | \frac{\sqrt{3}}{2} | 0 | -\frac{1}{2 \sqrt{2}} | 0 |
 +
 +
 +###
 +
 +==== One particle coupling on a basis of symmetry adapted functions ====
 +
 +###
 +
 +After rotation we find
 +
 +###
 +
 +
 +
 +###
 +
 +    ^  \text{s}   ^  p_x   ^  p_y   ^  p_z   ^  d_{x^2-y^2}   ^  d_{3z^2-r^2}   ^  d_{\text{yz}}   ^  d_{\text{xz}}   ^  d_{\text{xy}}   ^  f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)}   ^  f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)}   ^  f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)}   ^  f_{\text{xyz}}   ^  f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)}   ^  f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)}   ^  f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)}   ^
 +^ \text{s} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ p_x |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ p_y |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ p_z |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ d_{x^2-y^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0) | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Add}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Add}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)-\frac{320}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{320}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
 +^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)-\frac{320}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
 +^ f_{\text{xyz}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) | 0 | 0 | 0 |
 +^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) | 0 | 0 |
 +^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) | 0 |
 +^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) |
 +
 +
 +###
 +
 +===== Coupling for a single shell =====
 +
 +
 +
 +###
 +
 +Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
 +
 +###
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Eag} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Eag, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty>
 +
 +Akm = {{0, 0, Eag} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ {Y_{0}^{(0)}} | \text{Eag} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  \text{s}   ^
 +^ \text{s} | \text{Eag} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ \text{s} | 1 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Eag} | {{:physics_chemistry:pointgroup:ih_xyz_orb_0_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Et1u} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Et1u, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty>
 +
 +Akm = {{0, 0, Et1u} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ {Y_{-1}^{(1)}} | \text{Et1u} | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | \text{Et1u} | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | \text{Et1u} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  p_x   ^  p_y   ^  p_z   ^
 +^ p_x | \text{Et1u} | 0 | 0 |
 +^ p_y | 0 | \text{Et1u} | 0 |
 +^ p_z | 0 | 0 | \text{Et1u} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |
 +^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |
 +^ p_z | 0 | 1 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:ih_xyz_orb_1_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: |
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:ih_xyz_orb_1_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: |
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:ih_xyz_orb_1_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Ehu} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Ehu, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty>
 +
 +Akm = {{0, 0, Ehu} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-2}^{(2)}} | \text{Ehu} | 0 | 0 | 0 | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | \text{Ehu} | 0 | 0 | 0 |
 +^ {Y_{0}^{(2)}} | 0 | 0 | \text{Ehu} | 0 | 0 |
 +^ {Y_{1}^{(2)}} | 0 | 0 | 0 | \text{Ehu} | 0 |
 +^ {Y_{2}^{(2)}} | 0 | 0 | 0 | 0 | \text{Ehu} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{x^2-y^2}   ^  d_{3z^2-r^2}   ^  d_{\text{yz}}   ^  d_{\text{xz}}   ^  d_{\text{xy}}   ^
 +^ d_{x^2-y^2} | \text{Ehu} | 0 | 0 | 0 | 0 |
 +^ d_{3z^2-r^2} | 0 | \text{Ehu} | 0 | 0 | 0 |
 +^ d_{\text{yz}} | 0 | 0 | \text{Ehu} | 0 | 0 |
 +^ d_{\text{xz}} | 0 | 0 | 0 | \text{Ehu} | 0 |
 +^ d_{\text{xy}} | 0 | 0 | 0 | 0 | \text{Ehu} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |
 +^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 |
 +^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 |
 +^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 |
 +^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ehu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_2_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: |
 +^ ^\text{Ehu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_2_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: |
 +^ ^\text{Ehu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_2_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: |
 +^ ^\text{Ehu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_2_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: |
 +^ ^\text{Ehu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_2_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for f orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{7} (4 \text{Egu}+3 \text{Et2u}) & k=0\land m=0 \\
 + \frac{39}{32} \sqrt{\frac{33}{35}} (\text{Egu}-\text{Et2u}) & k=6\land (m=-6\lor m=6) \\
 + -\frac{429 (\text{Egu}-\text{Et2u})}{80 \sqrt{14}} & k=6\land (m=-4\lor m=4) \\
 + -\frac{429}{160} \sqrt{\frac{3}{7}} (\text{Egu}-\text{Et2u}) & k=6\land (m=-2\lor m=2) \\
 + \frac{429 (\text{Egu}-\text{Et2u})}{560} & k=6\land m=0
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(4*Egu + 3*Et2u)/7, k == 0 && m == 0}, {(39*Sqrt[33/35]*(Egu - Et2u))/32, k == 6 && (m == -6 || m == 6)}, {(-429*(Egu - Et2u))/(80*Sqrt[14]), k == 6 && (m == -4 || m == 4)}, {(-429*Sqrt[3/7]*(Egu - Et2u))/160, k == 6 && (m == -2 || m == 2)}, {(429*(Egu - Et2u))/560, k == 6 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Ih_xyz.Quanty>
 +
 +Akm = {{0, 0, (1/7)*((4)*(Egu) + (3)*(Et2u))} , 
 +       {6, 0, (429/560)*(Egu + (-1)*(Et2u))} , 
 +       {6,-2, (-429/160)*((sqrt(3/7))*(Egu + (-1)*(Et2u)))} , 
 +       {6, 2, (-429/160)*((sqrt(3/7))*(Egu + (-1)*(Et2u)))} , 
 +       {6,-4, (-429/80)*((1/(sqrt(14)))*(Egu + (-1)*(Et2u)))} , 
 +       {6, 4, (-429/80)*((1/(sqrt(14)))*(Egu + (-1)*(Et2u)))} , 
 +       {6,-6, (39/32)*((sqrt(33/35))*(Egu + (-1)*(Et2u)))} , 
 +       {6, 6, (39/32)*((sqrt(33/35))*(Egu + (-1)*(Et2u)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-3}^{(3)}} | \frac{1}{16} (9 \text{Egu}+7 \text{Et2u}) | 0 | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) | 0 | -\frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) |
 +^ {Y_{-2}^{(3)}} | 0 | \frac{1}{8} (5 \text{Egu}+3 \text{Et2u}) | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 | -\frac{3}{8} (\text{Egu}-\text{Et2u}) | 0 |
 +^ {Y_{-1}^{(3)}} | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} (7 \text{Egu}+9 \text{Et2u}) | 0 | \frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) |
 +^ {Y_{0}^{(3)}} | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 | \frac{1}{4} (3 \text{Egu}+\text{Et2u}) | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 |
 +^ {Y_{1}^{(3)}} | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) | 0 | \frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} (7 \text{Egu}+9 \text{Et2u}) | 0 | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) |
 +^ {Y_{2}^{(3)}} | 0 | -\frac{3}{8} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 | \frac{1}{8} (5 \text{Egu}+3 \text{Et2u}) | 0 |
 +^ {Y_{3}^{(3)}} | -\frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} (9 \text{Egu}+7 \text{Et2u}) |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)}   ^  f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)}   ^  f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)}   ^  f_{\text{xyz}}   ^  f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)}   ^  f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)}   ^  f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)}   ^
 +^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} | \text{Et2u} | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} | 0 | \text{Et2u} | 0 | 0 | 0 | 0 | 0 |
 +^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | 0 | \text{Et2u} | 0 | 0 | 0 | 0 |
 +^ f_{\text{xyz}} | 0 | 0 | 0 | \text{Egu} | 0 | 0 | 0 |
 +^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} | 0 | 0 | 0 | 0 | \text{Egu} | 0 | 0 |
 +^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} | 0 | 0 | 0 | 0 | 0 | \text{Egu} | 0 |
 +^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | 0 | 0 | 0 | 0 | 0 | \text{Egu} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} | \frac{\sqrt{5}}{8}-\frac{3}{8} | 0 | -\frac{\sqrt{3}}{8}-\frac{\sqrt{15}}{8} | 0 | \frac{\sqrt{3}}{8}+\frac{\sqrt{15}}{8} | 0 | \frac{3}{8}-\frac{\sqrt{5}}{8} |
 +^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} | 0 | \frac{i \sqrt{15}}{8}-\frac{i \sqrt{3}}{8} | 0 | \frac{i \sqrt{15}}{8}-\frac{i \sqrt{3}}{8} | 0 | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} |
 +^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 | \frac{1}{2} | 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 |
 +^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
 +^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} | \frac{\sqrt{3}}{8}+\frac{\sqrt{15}}{8} | 0 | \frac{\sqrt{5}}{8}-\frac{3}{8} | 0 | \frac{3}{8}-\frac{\sqrt{5}}{8} | 0 | -\frac{\sqrt{3}}{8}-\frac{\sqrt{15}}{8} |
 +^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} | \frac{i \sqrt{3}}{8}-\frac{i \sqrt{15}}{8} | 0 | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} | 0 | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} | 0 | \frac{i \sqrt{3}}{8}-\frac{i \sqrt{15}}{8} |
 +^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | -\frac{1}{2 \sqrt{2}} | 0 | \frac{\sqrt{3}}{2} | 0 | -\frac{1}{2 \sqrt{2}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Et2u} | {{:physics_chemistry:pointgroup:ih_xyz_orb_3_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{64} \sqrt{\frac{7}{\pi }} e^{-3 i \phi } \sin (\theta ) \left(\left(5-3 \sqrt{5}\right) \left(1+e^{6 i \phi }\right) \sin ^2(\theta )-15 \left(1+\sqrt{5}\right) \left(e^{2 i \phi }+e^{4 i \phi }\right) \cos ^2(\theta )+6 \left(1+\sqrt{5}\right) e^{3 i \phi } \cos (\phi )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{7}{\pi }} x \left(\left(5-3 \sqrt{5}\right) x^2+3 \left(\left(3 \sqrt{5}-5\right) y^2-\left(1+\sqrt{5}\right) \left(5 z^2-1\right)\right)\right) | ::: |
 +^ ^\text{Et2u} | {{:physics_chemistry:pointgroup:ih_xyz_orb_3_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{64} \sqrt{\frac{7}{\pi }} e^{-3 i \phi } \sin (\theta ) \left(i \left(5+3 \sqrt{5}\right) \left(-1+e^{6 i \phi }\right) \sin ^2(\theta )+3 \left(\sqrt{5}-1\right) e^{3 i \phi } (5 \cos (2 \theta )+3) \sin (\phi )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{7}{\pi }} y \left(-3 \left(5+3 \sqrt{5}\right) x^2+\left(5+3 \sqrt{5}\right) y^2+3 \left(\sqrt{5}-1\right) \left(5 z^2-1\right)\right) | ::: |
 +^ ^\text{Et2u} | {{:physics_chemistry:pointgroup:ih_xyz_orb_3_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} \cos (\theta ) \left(6 \sqrt{5} \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )-1\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{7}{\pi }} z \left(3 \sqrt{5} x^2-3 \sqrt{5} y^2+5 z^2-3\right) | ::: |
 +^ ^\text{Egu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_3_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: |
 +^ ^\text{Egu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_3_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{21}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \left(5+\sqrt{5}\right) \sin ^2(\theta ) \cos (2 \phi )+\left(3 \sqrt{5}-5\right) \cos (2 \theta )+\sqrt{5}-7\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{21}{\pi }} x \left(\left(5+\sqrt{5}\right) x^2-3 \left(5+\sqrt{5}\right) y^2+\left(\sqrt{5}-3\right) \left(5 z^2-1\right)\right) | ::: |
 +^ ^\text{Egu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_3_6.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{64} \sqrt{\frac{21}{\pi }} e^{-3 i \phi } \sin (\theta ) \left(-i \left(\sqrt{5}-5\right) \left(-1+e^{6 i \phi }\right) \sin ^2(\theta )-\left(3+\sqrt{5}\right) e^{3 i \phi } (5 \cos (2 \theta )+3) \sin (\phi )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{32} \sqrt{\frac{21}{\pi }} y \left(-3 \left(\sqrt{5}-5\right) x^2+\left(\sqrt{5}-5\right) y^2+\left(3+\sqrt{5}\right) \left(5 z^2-1\right)\right) | ::: |
 +^ ^\text{Egu} | {{:physics_chemistry:pointgroup:ih_xyz_orb_3_7.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{21}{\pi }} \left(\cos (\theta ) \left(3-4 \sqrt{5} \sin ^2(\theta ) \cos (2 \phi )\right)+5 \cos (3 \theta )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{21}{\pi }} z \left(-\sqrt{5} x^2+\sqrt{5} y^2+5 z^2-3\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +===== Coupling between two shells =====
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +
 +===== Table of several point groups =====
 +
 +###
 +
 +[[physics_chemistry:point_groups|Return to Main page on Point Groups]]
 +
 +###
 +
 +###
 +
 +^Nonaxial groups      | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | |
 +^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub>
 +^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub>
 +^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub>
 +^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | | 
 +^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub>
 +^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub>
 +^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> |  | 
 +^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub>
 +^Linear groups      | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|\inftyv]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|\inftyh]]</sub> | | | | | |
 +
 +###
Print/export