Differences
This shows you the differences between two versions of the page.
physics_chemistry:point_groups:ih:orientation_xyz [2018/03/21 18:51] – created Stefano Agrestini | physics_chemistry:point_groups:ih:orientation_xyz [2018/04/05 10:36] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation xyz ====== | ====== Orientation xyz ====== | ||
+ | |||
+ | ===== Symmetry Operations ===== | ||
### | ### | ||
- | alligned paragraph text | + | |
+ | In the Ih Point Group, with orientation xyz there are the following symmetry operations | ||
### | ### | ||
- | ===== Example ===== | + | ### |
+ | |||
+ | {{: | ||
### | ### | ||
- | description text | + | |
### | ### | ||
- | ==== Input ==== | + | ^ Operator ^ Orientation ^ |
- | <code Quanty | + | ^ E | {0,0,0} , | |
- | -- some example code | + | ^ C5 | {12(1+√5),1,0} , {12(−1−√5),−1,0} , {12(1+√5),−1,0} , {12(−1−√5),1,0} , {0,12(1+√5),1} , {0,12(−1−√5),−1} , {0,12(1+√5),−1} , {0,12(−1−√5),1} , {1,0,12(1+√5)} , {−1,0,12(−1−√5)} , {−1,0,12(1+√5)} , {1,0,12(−1−√5)} , | |
+ | ^ C25 | {12(1+√5),1,0} , {12(−1−√5),−1,0} , {12(1+√5),−1,0} , {12(−1−√5),1,0} , {0,12(1+√5),1} , {0,12(−1−√5),−1} , {0,12(1+√5),−1} , {0,12(−1−√5),1} , {1,0,12(1+√5)} , {−1,0,12(−1−√5)} , {−1,0,12(1+√5)} , {1,0,12(−1−√5)} , | | ||
+ | ^ C3 | {−1,−1,−1} , {0,−1,12(−3−√5)} , {0,1,12(3+√5)} , {1,1,1} , {12(−3−√5),0,−1} , {−1,12(−3−√5),0} , {1,12(3+√5),0} , {12(3+√5),0,1} , {−1,12(3+√5),0} , {−1,1,1} , {1,−1,−1} , {1,12(−3−√5),0} , {0,1,12(−3−√5)} , {0,−1,12(3+√5)} , {−1,1,−1} , {1,−1,1} , {−1,−1,1} , {1,1,−1} , {12(−3−√5),0,1} , {12(3+√5),0,−1} , | | ||
+ | ^ C2 | {0,0,1} , {0,1,0} , {1,0,0} , {12(−3−√5),1,12(1+√5)} , {12(−3−√5),1,12(−1−√5)} , {12(3+√5),1,12(−1−√5)} , {12(3+√5),1,12(1+√5)} , {1,12(−1−√5),12(3+√5)} , {1,12(1+√5),12(3+√5)} , {1,12(1+√5),12(−3−√5)} , {1,12(−1−√5),12(−3−√5)} , {12(−1−√5),12(3+√5),1} , {12(1+√5),12(−3−√5),1} , {12(1+√5),12(3+√5),1} , {12(−1−√5),12(−3−√5),1} , | | ||
+ | ^ i | {0,0,0} , | | ||
+ | ^ S10 | {12(1+√5),1,0} , {12(−1−√5),−1,0} , {12(1+√5),−1,0} , {12(−1−√5),1,0} , {0,12(1+√5),1} , {0,12(−1−√5),−1} , {0,12(1+√5),−1} , {0,12(−1−√5),1} , {1,0,12(1+√5)} , {−1,0,12(−1−√5)} , {−1,0,12(1+√5)} , {1,0,12(−1−√5)} , | | ||
+ | ^ S310 | {12(1+√5),1,0} , {12(−1−√5),−1,0} , {12(1+√5),−1,0} , {12(−1−√5),1,0} , {0,12(1+√5),1} , {0,12(−1−√5),−1} , {0,12(1+√5),−1} , {0,12(−1−√5),1} , {1,0,12(1+√5)} , {−1,0,12(−1−√5)} , {−1,0,12(1+√5)} , {1,0,12(−1−√5)} , | | ||
+ | ^ S6 | {−1,−1,−1} , {0,−1,12(−3−√5)} , {0,1,12(3+√5)} , {1,1,1} , {12(−3−√5),0,−1} , {−1,12(−3−√5),0} , {1,12(3+√5),0} , {12(3+√5),0,1} , {−1,12(3+√5),0} , {−1,1,1} , {1,−1,−1} , {1,12(−3−√5),0} , {0,1,12(−3−√5)} , {0,−1,12(3+√5)} , {−1,1,−1} , {1,−1,1} , {−1,−1,1} , {1,1,−1} , {12(−3−√5),0,1} , {12(3+√5),0,−1} , | | ||
+ | ^ σh | {0,0,1} , {0,1,0} , {1,0,0} , {12(−3−√5),1,12(1+√5)} , {12(−3−√5),1,12(−1−√5)} , {12(3+√5),1,12(−1−√5)} , {12(3+√5),1,12(1+√5)} , {1,12(−1−√5),12(3+√5)} , {1,12(1+√5),12(3+√5)} , {1,12(1+√5),12(−3−√5)} , {1,12(−1−√5),12(−3−√5)} , {12(−1−√5),12(3+√5),1} , {12(1+√5),12(−3−√5),1} , {12(1+√5),12(3+√5),1} , {12(−1−√5),12(−3−√5),1} , | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Different Settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Character Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ E(1) ^ C5(12) ^ C25(12) ^ C3(20) ^ C2(15) ^ i(1) ^ S10(12) ^ S310(12) ^ S6(20) ^ σh(15) ^ | ||
+ | ^ Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ||
+ | ^ T1g | 3 | 12(1+√5) | 12(1−√5) | 0 | −1 | 3 | 12(1−√5) | 12(1+√5) | 0 | −1 | | ||
+ | ^ T2g | 3 | 12(1−√5) | 12(1+√5) | 0 | −1 | 3 | 12(1+√5) | 12(1−√5) | 0 | −1 | | ||
+ | ^ Gg | 4 | −1 | −1 | 1 | 0 | 4 | −1 | −1 | 1 | 0 | | ||
+ | ^ Hg | 5 | 0 | 0 | −1 | 1 | 5 | 0 | 0 | −1 | 1 | | ||
+ | ^ Au | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | | ||
+ | ^ T1u | 3 | 12(1+√5) | 12(1−√5) | 0 | −1 | −3 | 12(−1+√5) | 12(−1−√5) | 0 | 1 | | ||
+ | ^ T2u | 3 | 12(1−√5) | 12(1+√5) | 0 | −1 | −3 | 12(−1−√5) | 12(−1+√5) | 0 | 1 | | ||
+ | ^ Gu | 4 | −1 | −1 | 1 | 0 | −4 | 1 | 1 | −1 | 0 | | ||
+ | ^ Hu | 5 | 0 | 0 | −1 | 1 | −5 | 0 | 0 | 1 | −1 | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Product Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Ag ^ T1g ^ T2g ^ Gg ^ Hg ^ Au ^ T1u ^ T2u ^ Gu ^ Hu ^ | ||
+ | ^ Ag | Ag | T1g | T2g | Gg | Hg | Au | T1u | T2u | Gu | Hu | | ||
+ | ^ T1g | T1g | Ag+Hg+T1g | Gg+Hg | Gg+Hg+T2g | Gg+Hg+T1g+T2g | T1u | Au+Hu+T1u | Gu+Hu | Gu+Hu+T2u | Gu+Hu+T1u+T2u | | ||
+ | ^ T2g | T2g | Gg+Hg | Ag+Hg+T2g | Gg+Hg+T1g | Gg+Hg+T1g+T2g | T2u | Gu+Hu | Au+Hu+T2u | Gu+Hu+T1u | Gu+Hu+T1u+T2u | | ||
+ | ^ Gg | Gg | Gg+Hg+T2g | Gg+Hg+T1g | Ag+Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | Gu | Gu+Hu+T2u | Gu+Hu+T1u | Au+Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | | ||
+ | ^ Hg | Hg | Gg+Hg+T1g+T2g | Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | Ag+2Gg+2Hg+T1g+T2g | Hu | Gu+Hu+T1u+T2u | Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | Au+2Gu+2Hu+T1u+T2u | | ||
+ | ^ Au | Au | T1u | T2u | Gu | Hu | Ag | T1g | T2g | Gg | Hg | | ||
+ | ^ T1u | T1u | Au+Hu+T1u | Gu+Hu | Gu+Hu+T2u | Gu+Hu+T1u+T2u | T1g | Ag+Hg+T1g | Gg+Hg | Gg+Hg+T2g | Gg+Hg+T1g+T2g | | ||
+ | ^ T2u | T2u | Gu+Hu | Au+Hu+T2u | Gu+Hu+T1u | Gu+Hu+T1u+T2u | T2g | Gg+Hg | Ag+Hg+T2g | Gg+Hg+T1g | Gg+Hg+T1g+T2g | | ||
+ | ^ Gu | Gu | Gu+Hu+T2u | Gu+Hu+T1u | Au+Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | Gg | Gg+Hg+T2g | Gg+Hg+T1g | Ag+Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | | ||
+ | ^ Hu | Hu | Gu+Hu+T1u+T2u | Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | Au+2Gu+2Hu+T1u+T2u | Hg | Gg+Hg+T1g+T2g | Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | Ag+2Gg+2Hg+T1g+T2g | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Sub Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Super Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Invariant Potential expanded on renormalized spherical Harmonics ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | Any potential (function) can be written as a sum over spherical harmonics. | ||
+ | V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) | ||
+ | Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) | ||
+ | The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Ih Point group with orientation xyz the form of the expansion coefficients is: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Expansion ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty | ||
+ | |||
+ | Akm[k_, | ||
</ | </ | ||
- | ==== Result ==== | + | ### |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Input format suitable for Quanty |
- | {{indexmenu> | + | |
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, A(0,0)} , | ||
+ | {6, 0, A(6,0)} , | ||
+ | | ||
+ | {6, 2, (-1/ | ||
+ | | ||
+ | {6, 4, (-1)*((sqrt(7/ | ||
+ | | ||
+ | {6, 6, (1/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | O=∑n″ | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. | ||
+ | A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle | ||
+ | Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m) | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'} | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-1}^{(1)}} |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{0}^{(1)}} |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{1}^{(1)}} |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{-2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0) | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{0}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Add}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Add}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-3}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} | 0 | \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | -\frac{35}{143} \sqrt{5} \text{Aff}(6,0) | | ||
+ | ^ {Y_{-2}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 | -\frac{70}{143} \text{Aff}(6,0) | 0 | | ||
+ | ^ {Y_{-1}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} | 0 | \text{Aff}(0,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{5} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | | ||
+ | ^ {Y_{0}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 | \text{Aff}(0,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 | | ||
+ | ^ {Y_{1}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{5} \text{Aff}(6,0) | 0 | \text{Aff}(0,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} | | ||
+ | ^ {Y_{2}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{70}{143} \text{Aff}(6,0) | 0 | -\frac{70}{143} \sqrt{\frac{2}{3}} \text{Aff}(6,0) | 0 | \text{Aff}(0,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | | ||
+ | ^ {Y_{3}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{35}{143} \sqrt{5} \text{Aff}(6,0) | 0 | \frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | \frac{35 \text{Aff}(6,0)}{143 \sqrt{3}} | 0 | \text{Aff}(0,0)-\frac{5}{429} \text{Aff}(6,0) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ \text{s} | 1 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ p_x |\color{darkred}{ 0 }| \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_y |\color{darkred}{ 0 }| \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_z |\color{darkred}{ 0 }| 0 | 1 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{x^2-y^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 1 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{8} \left(\sqrt{5}-3\right) | 0 | -\frac{1}{8} \sqrt{3} \left(1+\sqrt{5}\right) | 0 | \frac{1}{8} \left(\sqrt{3}+\sqrt{15}\right) | 0 | \frac{1}{8} \left(3-\sqrt{5}\right) | | ||
+ | ^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{8} i \left(3+\sqrt{5}\right) | 0 | \frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) | 0 | \frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) | 0 | -\frac{1}{8} i \left(3+\sqrt{5}\right) | | ||
+ | ^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 | \frac{1}{2} | 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 | | ||
+ | ^ f_{\text{xyz}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{8} \left(\sqrt{3}+\sqrt{15}\right) | 0 | \frac{1}{8} \left(\sqrt{5}-3\right) | 0 | \frac{1}{8} \left(3-\sqrt{5}\right) | 0 | -\frac{1}{8} \sqrt{3} \left(1+\sqrt{5}\right) | | ||
+ | ^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) | 0 | -\frac{1}{8} i \left(3+\sqrt{5}\right) | 0 | -\frac{1}{8} i \left(3+\sqrt{5}\right) | 0 | -\frac{1}{8} i \sqrt{3} \left(\sqrt{5}-1\right) | | ||
+ | ^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{2 \sqrt{2}} | 0 | \frac{\sqrt{3}}{2} | 0 | -\frac{1}{2 \sqrt{2}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of symmetry adapted functions ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | After rotation we find | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ p_x ^ p_y ^ p_z ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} ^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} ^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} ^ f_{\text{xyz}} ^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} ^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} ^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} ^ | ||
+ | ^ \text{s} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ p_x |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_y |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_z |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{x^2-y^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0) | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Add}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Add}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)-\frac{320}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{320}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)-\frac{320}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{\text{xyz}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) | 0 | 0 | | ||
+ | ^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) | 0 | | ||
+ | ^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{80}{143} \text{Aff}(6,0) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Coupling for a single shell ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Eag} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Eag} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ | ||
+ | ^ \text{s} | \text{Eag} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ \text{s} | 1 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Eag} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Et1u} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \text{Et1u} | 0 | 0 | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \text{Et1u} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | 0 | 0 | \text{Et1u} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_x ^ p_y ^ p_z ^ | ||
+ | ^ p_x | \text{Et1u} | 0 | 0 | | ||
+ | ^ p_y | 0 | \text{Et1u} | 0 | | ||
+ | ^ p_z | 0 | 0 | \text{Et1u} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | | ||
+ | ^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | | ||
+ | ^ p_z | 0 | 1 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: | | ||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: | | ||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ehu} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | \text{Ehu} | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | \text{Ehu} | 0 | 0 | 0 | | ||
+ | ^ {Y_{0}^{(2)}} | 0 | 0 | \text{Ehu} | 0 | 0 | | ||
+ | ^ {Y_{1}^{(2)}} | 0 | 0 | 0 | \text{Ehu} | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | 0 | 0 | 0 | 0 | \text{Ehu} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
+ | ^ d_{x^2-y^2} | \text{Ehu} | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | \text{Ehu} | 0 | 0 | 0 | | ||
+ | ^ d_{\text{yz}} | 0 | 0 | \text{Ehu} | 0 | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | 0 | 0 | \text{Ehu} | 0 | | ||
+ | ^ d_{\text{xy}} | 0 | 0 | 0 | 0 | \text{Ehu} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 | | ||
+ | ^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ehu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: | | ||
+ | ^ ^\text{Ehu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Ehu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: | | ||
+ | ^ ^\text{Ehu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: | | ||
+ | ^ ^\text{Ehu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Ih_xyz.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {6, 0, (429/ | ||
+ | | ||
+ | {6, 2, (-429/ | ||
+ | | ||
+ | {6, 4, (-429/ | ||
+ | | ||
+ | {6, 6, (39/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-3}^{(3)}} | \frac{1}{16} (9 \text{Egu}+7 \text{Et2u}) | 0 | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) | 0 | -\frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) | | ||
+ | ^ {Y_{-2}^{(3)}} | 0 | \frac{1}{8} (5 \text{Egu}+3 \text{Et2u}) | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 | -\frac{3}{8} (\text{Egu}-\text{Et2u}) | 0 | | ||
+ | ^ {Y_{-1}^{(3)}} | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} (7 \text{Egu}+9 \text{Et2u}) | 0 | \frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) | | ||
+ | ^ {Y_{0}^{(3)}} | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 | \frac{1}{4} (3 \text{Egu}+\text{Et2u}) | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 | | ||
+ | ^ {Y_{1}^{(3)}} | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) | 0 | \frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} (7 \text{Egu}+9 \text{Et2u}) | 0 | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) | | ||
+ | ^ {Y_{2}^{(3)}} | 0 | -\frac{3}{8} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{4} \sqrt{\frac{3}{2}} (\text{Et2u}-\text{Egu}) | 0 | \frac{1}{8} (5 \text{Egu}+3 \text{Et2u}) | 0 | | ||
+ | ^ {Y_{3}^{(3)}} | -\frac{3}{16} \sqrt{5} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{15} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} \sqrt{3} (\text{Egu}-\text{Et2u}) | 0 | \frac{1}{16} (9 \text{Egu}+7 \text{Et2u}) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} ^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} ^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} ^ f_{\text{xyz}} ^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} ^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} ^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} ^ | ||
+ | ^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} | \text{Et2u} | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} | 0 | \text{Et2u} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | 0 | \text{Et2u} | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{\text{xyz}} | 0 | 0 | 0 | \text{Egu} | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} | 0 | 0 | 0 | 0 | \text{Egu} | 0 | 0 | | ||
+ | ^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} | 0 | 0 | 0 | 0 | 0 | \text{Egu} | 0 | | ||
+ | ^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | 0 | 0 | 0 | 0 | 0 | \text{Egu} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ f_{x\left(5x^2-3r^2+3\sqrt{5}\left(y^2-z^2\right)\right)} | \frac{\sqrt{5}}{8}-\frac{3}{8} | 0 | -\frac{\sqrt{3}}{8}-\frac{\sqrt{15}}{8} | 0 | \frac{\sqrt{3}}{8}+\frac{\sqrt{15}}{8} | 0 | \frac{3}{8}-\frac{\sqrt{5}}{8} | | ||
+ | ^ f_{y\left(5y^2-3r^2+3\sqrt{5}\left(z^2-x^2\right)\right)} | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} | 0 | \frac{i \sqrt{15}}{8}-\frac{i \sqrt{3}}{8} | 0 | \frac{i \sqrt{15}}{8}-\frac{i \sqrt{3}}{8} | 0 | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} | | ||
+ | ^ f_{z\left(5z^2-3r^2+3\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 | \frac{1}{2} | 0 | \frac{\sqrt{\frac{3}{2}}}{2} | 0 | | ||
+ | ^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x\left(5x^2-3r^2-\sqrt{5}\left(y^2-z^2\right)\right)} | \frac{\sqrt{3}}{8}+\frac{\sqrt{15}}{8} | 0 | \frac{\sqrt{5}}{8}-\frac{3}{8} | 0 | \frac{3}{8}-\frac{\sqrt{5}}{8} | 0 | -\frac{\sqrt{3}}{8}-\frac{\sqrt{15}}{8} | | ||
+ | ^ f_{y\left(5y^2-3r^2-\sqrt{5}\left(z^2-x^2\right)\right)} | \frac{i \sqrt{3}}{8}-\frac{i \sqrt{15}}{8} | 0 | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} | 0 | -\frac{3 i}{8}-\frac{i \sqrt{5}}{8} | 0 | \frac{i \sqrt{3}}{8}-\frac{i \sqrt{15}}{8} | | ||
+ | ^ f_{z\left(5z^2-3r^2-\sqrt{5}\left(x^2-y^2\right)\right)} | 0 | -\frac{1}{2 \sqrt{2}} | 0 | \frac{\sqrt{3}}{2} | 0 | -\frac{1}{2 \sqrt{2}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Et2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{64} \sqrt{\frac{7}{\pi }} e^{-3 i \phi } \sin (\theta ) \left(\left(5-3 \sqrt{5}\right) \left(1+e^{6 i \phi }\right) \sin ^2(\theta )-15 \left(1+\sqrt{5}\right) \left(e^{2 i \phi }+e^{4 i \phi }\right) \cos ^2(\theta )+6 \left(1+\sqrt{5}\right) e^{3 i \phi } \cos (\phi )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{7}{\pi }} x \left(\left(5-3 \sqrt{5}\right) x^2+3 \left(\left(3 \sqrt{5}-5\right) y^2-\left(1+\sqrt{5}\right) \left(5 z^2-1\right)\right)\right) | ::: | | ||
+ | ^ ^\text{Et2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{64} \sqrt{\frac{7}{\pi }} e^{-3 i \phi } \sin (\theta ) \left(i \left(5+3 \sqrt{5}\right) \left(-1+e^{6 i \phi }\right) \sin ^2(\theta )+3 \left(\sqrt{5}-1\right) e^{3 i \phi } (5 \cos (2 \theta )+3) \sin (\phi )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{7}{\pi }} y \left(-3 \left(5+3 \sqrt{5}\right) x^2+\left(5+3 \sqrt{5}\right) y^2+3 \left(\sqrt{5}-1\right) \left(5 z^2-1\right)\right) | ::: | | ||
+ | ^ ^\text{Et2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} \cos (\theta ) \left(6 \sqrt{5} \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )-1\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{7}{\pi }} z \left(3 \sqrt{5} x^2-3 \sqrt{5} y^2+5 z^2-3\right) | ::: | | ||
+ | ^ ^\text{Egu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: | | ||
+ | ^ ^\text{Egu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{21}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \left(5+\sqrt{5}\right) \sin ^2(\theta ) \cos (2 \phi )+\left(3 \sqrt{5}-5\right) \cos (2 \theta )+\sqrt{5}-7\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{21}{\pi }} x \left(\left(5+\sqrt{5}\right) x^2-3 \left(5+\sqrt{5}\right) y^2+\left(\sqrt{5}-3\right) \left(5 z^2-1\right)\right) | ::: | | ||
+ | ^ ^\text{Egu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{64} \sqrt{\frac{21}{\pi }} e^{-3 i \phi } \sin (\theta ) \left(-i \left(\sqrt{5}-5\right) \left(-1+e^{6 i \phi }\right) \sin ^2(\theta )-\left(3+\sqrt{5}\right) e^{3 i \phi } (5 \cos (2 \theta )+3) \sin (\phi )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{32} \sqrt{\frac{21}{\pi }} y \left(-3 \left(\sqrt{5}-5\right) x^2+\left(\sqrt{5}-5\right) y^2+\left(3+\sqrt{5}\right) \left(5 z^2-1\right)\right) | ::: | | ||
+ | ^ ^\text{Egu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{21}{\pi }} \left(\cos (\theta ) \left(3-4 \sqrt{5} \sin ^2(\theta ) \cos (2 \phi )\right)+5 \cos (3 \theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{21}{\pi }} z \left(-\sqrt{5} x^2+\sqrt{5} y^2+5 z^2-3\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |