Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
physics_chemistry:point_groups:ih [2018/03/21 18:50] – created Stefano Agrestini | physics_chemistry:point_groups:ih [2018/03/23 10:52] (current) – Stefano Agrestini | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Ih ====== | + | ====== |
+ | |||
+ | ===== Character Table ===== | ||
### | ### | ||
- | alligned paragraph | + | |
+ | | ^ $ \text{E} \, | ||
+ | ^ Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ||
+ | ^ T1g | 3 | 12(1+√5) | 12(1−√5) | 0 | −1 | 3 | 12(1−√5) | 12(1+√5) | 0 | −1 | | ||
+ | ^ T2g | 3 | 12(1−√5) | 12(1+√5) | 0 | −1 | 3 | 12(1+√5) | 12(1−√5) | 0 | −1 | | ||
+ | ^ Gg | 4 | −1 | −1 | 1 | 0 | 4 | −1 | −1 | 1 | 0 | | ||
+ | ^ Hg | 5 | 0 | 0 | −1 | 1 | 5 | 0 | 0 | −1 | 1 | | ||
+ | ^ Au | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | | ||
+ | ^ T1u | 3 | 12(1+√5) | 12(1−√5) | 0 | −1 | −3 | 12(−1+√5) | 12(−1−√5) | 0 | 1 | | ||
+ | ^ T2u | 3 | 12(1−√5) | 12(1+√5) | 0 | −1 | −3 | 12(−1−√5) | 12(−1+√5) | 0 | 1 | | ||
+ | ^ Gu | 4 | −1 | −1 | 1 | 0 | −4 | 1 | 1 | −1 | 0 | | ||
+ | ^ Hu | 5 | 0 | 0 | −1 | 1 | −5 | 0 | 0 | 1 | −1 | | ||
### | ### | ||
- | ===== Example | + | ===== Product Table ===== |
### | ### | ||
- | description text | + | |
+ | | ^ Ag ^ T1g ^ T2g ^ Gg ^ Hg ^ Au ^ T1u ^ T2u ^ Gu ^ Hu ^ | ||
+ | ^ Ag | Ag | T1g | T2g | Gg | Hg | Au | T1u | T2u | Gu | Hu | | ||
+ | ^ T1g | T1g | Ag+Hg+T1g | Gg+Hg | Gg+Hg+T2g | Gg+Hg+T1g+T2g | T1u | Au+Hu+T1u | Gu+Hu | Gu+Hu+T2u | Gu+Hu+T1u+T2u | | ||
+ | ^ T2g | T2g | Gg+Hg | Ag+Hg+T2g | Gg+Hg+T1g | Gg+Hg+T1g+T2g | T2u | Gu+Hu | Au+Hu+T2u | Gu+Hu+T1u | Gu+Hu+T1u+T2u | | ||
+ | ^ Gg | Gg | Gg+Hg+T2g | Gg+Hg+T1g | Ag+Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | Gu | Gu+Hu+T2u | Gu+Hu+T1u | Au+Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | | ||
+ | ^ Hg | Hg | Gg+Hg+T1g+T2g | Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | Ag+2Gg+2Hg+T1g+T2g | Hu | Gu+Hu+T1u+T2u | Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | Au+2Gu+2Hu+T1u+T2u | | ||
+ | ^ Au | Au | T1u | T2u | Gu | Hu | Ag | T1g | T2g | Gg | Hg | | ||
+ | ^ T1u | T1u | Au+Hu+T1u | Gu+Hu | Gu+Hu+T2u | Gu+Hu+T1u+T2u | T1g | Ag+Hg+T1g | Gg+Hg | Gg+Hg+T2g | Gg+Hg+T1g+T2g | | ||
+ | ^ T2u | T2u | Gu+Hu | Au+Hu+T2u | Gu+Hu+T1u | Gu+Hu+T1u+T2u | T2g | Gg+Hg | Ag+Hg+T2g | Gg+Hg+T1g | Gg+Hg+T1g+T2g | | ||
+ | ^ Gu | Gu | Gu+Hu+T2u | Gu+Hu+T1u | Au+Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | Gg | Gg+Hg+T2g | Gg+Hg+T1g | Ag+Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | | ||
+ | ^ Hu | Hu | Gu+Hu+T1u+T2u | Gu+Hu+T1u+T2u | Gu+2Hu+T1u+T2u | Au+2Gu+2Hu+T1u+T2u | Hg | Gg+Hg+T1g+T2g | Gg+Hg+T1g+T2g | Gg+2Hg+T1g+T2g | Ag+2Gg+2Hg+T1g+T2g | | ||
### | ### | ||
- | ==== Input ==== | + | ===== Implemented Settings ===== |
- | <code Quanty Example.Quanty> | + | |
- | -- some example code | + | |
- | </ | + | |
- | ==== Result ==== | + | [[physics_chemistry: |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Setting xyz ==== |
- | {{indexmenu> | + | |
+ | [[physics_chemistry: | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ Operator ^ Orientation ^ | ||
+ | ^ E | {0,0,0} , | | ||
+ | ^ C5 | {1+√5,2,0} , {−1−√5,−2,0} , {1+√5,−2,0} , {−1−√5,2,0} , {0,1+√5,2} , {0,−1−√5,−2} , {0,1+√5,−2} , {0,−1−√5,2} , {2,0,1+√5} , {−2,0,−1−√5} , {−2,0,1+√5} , {2,0,−1−√5} , | | ||
+ | ^ C25 | {1+√5,2,0} , {−1−√5,−2,0} , {1+√5,−2,0} , {−1−√5,2,0} , {0,1+√5,2} , {0,−1−√5,−2} , {0,1+√5,−2} , {0,−1−√5,2} , {2,0,1+√5} , {−2,0,−1−√5} , {−2,0,1+√5} , {2,0,−1−√5} , | | ||
+ | ^ C3 | {−1,−1,−1} , {0,12(1−√5),12(−1−√5)} , {0,12(√5−1),12(1+√5)} , {1,1,1} , {12(−1−√5),0,12(1−√5)} , {12(1−√5),12(−1−√5),0} , {12(√5−1),12(1+√5),0} , {12(1+√5),0,12(√5−1)} , {18(√30−10√5−√6−2√5−2(1+√5)),20+8√5+√30−10√5+5√6−2√54(5+√5),−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5)} , {18(−√30−10√5+√6−2√5−2(1+√5)),−−20−8√5+√30−10√5+5√6−2√54(5+√5),3√30−10√5+5√6−2√5+2(5+√5)4(5+√5)} , {18(√30−10√5−√6−2√5+2(1+√5)),−20−8√5+√30−10√5+5√6−2√54(5+√5),−3√30−10√5+5√6−2√5+2(5+√5)4(5+√5)} , {18(−√30−10√5+√6−2√5+2(1+√5)),−20+8√5+√30−10√5+5√6−2√54(5+√5),−−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5)} , {−−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5),18(−√30−10√5+√6−2√5+2(1+√5)),−20+8√5+√30−10√5+5√6−2√54(5+√5)} , {−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5),18(√30−10√5−√6−2√5−2(1+√5)),20+8√5+√30−10√5+5√6−2√54(5+√5)} , {−3√30−10√5+5√6−2√5+2(5+√5)4(5+√5),18(√30−10√5−√6−2√5+2(1+√5)),−20−8√5+√30−10√5+5√6−2√54(5+√5)} , {3√30−10√5+5√6−2√5+2(5+√5)4(5+√5),18(−√30−10√5+√6−2√5−2(1+√5)),−−20−8√5+√30−10√5+5√6−2√54(5+√5)} , {−10(−4√25−5√5−10√5−√5+√5+√5(25+11√5))(5+√5)7/2,−10(7√25−5√5+15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(√30−10√5−√6−2√5+2(1+√5))} , {10(−4√25−5√5−10√5−√5+√5+√5(25+11√5))(5+√5)7/2,10(7√25−5√5+15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(−√30−10√5+√6−2√5−2(1+√5))} , {−10(4√25−5√5+10√5−√5+√5+√5(25+11√5))(5+√5)7/2,−10(−7√25−5√5−15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(−√30−10√5+√6−2√5+2(1+√5))} , {10(4√25−5√5+10√5−√5+√5+√5(25+11√5))(5+√5)7/2,10(−7√25−5√5−15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(√30−10√5−√6−2√5−2(1+√5))} , | | ||
+ | ^ C2 | {0,0,1} , {0,1,0} , {1,0,0} , {10(2+√5),−5(1+√5),−12(5+√5)2} , {10(2+√5),−5(1+√5),12(5+√5)2} , {10(2+√5),5(1+√5),−12(5+√5)2} , {10(2+√5),5(1+√5),12(5+√5)2} , {−14(√5−5)(1+√5)(5+√5),−12(5+√5)2,12(5+√5)(5+3√5)} , {−14(√5−5)(1+√5)(5+√5),12(5+√5)2,12(5+√5)(5+3√5)} , {14(√5−5)(1+√5)(5+√5),−12(5+√5)2,12(5+√5)(5+3√5)} , {14(√5−5)(1+√5)(5+√5),12(5+√5)2,12(5+√5)(5+3√5)} , {−12(5+√5)2,12(5+√5)(5+3√5),−14(√5−5)(1+√5)(5+√5)} , {−12(5+√5)2,12(5+√5)(5+3√5),14(√5−5)(1+√5)(5+√5)} , {12(5+√5)2,12(5+√5)(5+3√5),−14(√5−5)(1+√5)(5+√5)} , {12(5+√5)2,12(5+√5)(5+3√5),14(√5−5)(1+√5)(5+√5)} , | | ||
+ | ^ i | {0,0,0} , | | ||
+ | ^ S10 | {1+√5,2,0} , {−1−√5,−2,0} , {1+√5,−2,0} , {−1−√5,2,0} , {0,1+√5,2} , {0,−1−√5,−2} , {0,1+√5,−2} , {0,−1−√5,2} , {2,0,1+√5} , {−2,0,−1−√5} , {−2,0,1+√5} , {2,0,−1−√5} , | | ||
+ | ^ S310 | {1+√5,2,0} , {−1−√5,−2,0} , {1+√5,−2,0} , {−1−√5,2,0} , {0,1+√5,2} , {0,−1−√5,−2} , {0,1+√5,−2} , {0,−1−√5,2} , {2,0,1+√5} , {−2,0,−1−√5} , {−2,0,1+√5} , {2,0,−1−√5} , | | ||
+ | ^ S6 | {−1,−1,−1} , {0,12(1−√5),12(−1−√5)} , {0,12(√5−1),12(1+√5)} , {1,1,1} , {12(−1−√5),0,12(1−√5)} , {12(1−√5),12(−1−√5),0} , {12(√5−1),12(1+√5),0} , {12(1+√5),0,12(√5−1)} , {18(√30−10√5−√6−2√5−2(1+√5)),20+8√5+√30−10√5+5√6−2√54(5+√5),−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5)} , {18(−√30−10√5+√6−2√5−2(1+√5)),−−20−8√5+√30−10√5+5√6−2√54(5+√5),3√30−10√5+5√6−2√5+2(5+√5)4(5+√5)} , {18(√30−10√5−√6−2√5+2(1+√5)),−20−8√5+√30−10√5+5√6−2√54(5+√5),−3√30−10√5+5√6−2√5+2(5+√5)4(5+√5)} , {18(−√30−10√5+√6−2√5+2(1+√5)),−20+8√5+√30−10√5+5√6−2√54(5+√5),−−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5)} , {−−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5),18(−√30−10√5+√6−2√5+2(1+√5)),−20+8√5+√30−10√5+5√6−2√54(5+√5)} , {−3√30−10√5−5√6−2√5+2(5+√5)4(5+√5),18(√30−10√5−√6−2√5−2(1+√5)),20+8√5+√30−10√5+5√6−2√54(5+√5)} , {−3√30−10√5+5√6−2√5+2(5+√5)4(5+√5),18(√30−10√5−√6−2√5+2(1+√5)),−20−8√5+√30−10√5+5√6−2√54(5+√5)} , {3√30−10√5+5√6−2√5+2(5+√5)4(5+√5),18(−√30−10√5+√6−2√5−2(1+√5)),−−20−8√5+√30−10√5+5√6−2√54(5+√5)} , {−10(−4√25−5√5−10√5−√5+√5+√5(25+11√5))(5+√5)7/2,−10(7√25−5√5+15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(√30−10√5−√6−2√5+2(1+√5))} , {10(−4√25−5√5−10√5−√5+√5+√5(25+11√5))(5+√5)7/2,10(7√25−5√5+15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(−√30−10√5+√6−2√5−2(1+√5))} , {−10(4√25−5√5+10√5−√5+√5+√5(25+11√5))(5+√5)7/2,−10(−7√25−5√5−15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(−√30−10√5+√6−2√5+2(1+√5))} , {10(4√25−5√5+10√5−√5+√5+√5(25+11√5))(5+√5)7/2,10(−7√25−5√5−15√5−√5+2√5+√5(5+2√5))(5+√5)7/2,18(√30−10√5−√6−2√5−2(1+√5))} , | | ||
+ | ^ \sigma _h | \{0,0,1\} , \{0,1,0\} , \{1,0,0\} , \left\{10 \left(2+\sqrt{5}\right),-5 \left(1+\sqrt{5}\right),-\frac{1}{2} \left(5+\sqrt{5}\right)^2\right\} , \left\{10 \left(2+\sqrt{5}\right),-5 \left(1+\sqrt{5}\right),\frac{1}{2} \left(5+\sqrt{5}\right)^2\right\} , \left\{10 \left(2+\sqrt{5}\right),5 \left(1+\sqrt{5}\right),-\frac{1}{2} \left(5+\sqrt{5}\right)^2\right\} , \left\{10 \left(2+\sqrt{5}\right),5 \left(1+\sqrt{5}\right),\frac{1}{2} \left(5+\sqrt{5}\right)^2\right\} , \left\{-\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right),-\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right)\right\} , \left\{-\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right),\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right)\right\} , \left\{\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right),-\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right)\right\} , \left\{\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right),\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right)\right\} , \left\{-\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right),-\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right)\right\} , \left\{-\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right),\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right)\right\} , \left\{\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right),-\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right)\right\} , \left\{\frac{1}{2} \left(5+\sqrt{5}\right)^2,\frac{1}{2} \left(5+\sqrt{5}\right) \left(5+3 \sqrt{5}\right),\frac{1}{4} \left(\sqrt{5}-5\right) \left(1+\sqrt{5}\right) \left(5+\sqrt{5}\right)\right\} , | | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |