Loading [MathJax]/jax/output/CommonHTML/jax.js

Tesseral Harmonics (Z)

Download a notebook that generates this page

The spherical harmonics are complex functions. For many cases one does not need to work with complex numbers and by making a suitable linear combination of the complex orbitals one can get a real basis. The tesseral harmonics are linear combinations of the spherical harmonics with +m and m such that the result is a pure real function. For m>0 the tesseral harmonics have a cos(mϕ) dependence, for m<0 they have a sin(mϕ) dependence. The tesseral harmonics are defined as: Z(m)l={Y(0)lm=012(Y(m)l+(1)mY(m)l)m>0i2(Y(m)l(1)mY(m)l)m<0

The following table shows the tesseral harmonics up to l=6. We list the explicit function in terms of the directional cosines x, y and z. The plots show the surface defined by the equation r=Z(m)lZ(m)l. The color of the surface is according to the phase with red for positive and cyan for negative. We show a 3D image as well as a projection along the x, y and z direction.



l=0

ml=0

Z(0)0=12πZ(0)0=12π



l=1

ml=1

Z(1)1=123πsin(θ)sin(ϕ)Z(1)1=123πy

ml=0

Z(0)1=123πcos(θ)Z(0)1=123πz

ml=1

Z(1)1=123πsin(θ)cos(ϕ)Z(1)1=123πx



l=2

ml=2

Z(2)2=1415πsin2(θ)sin(2ϕ)Z(2)2=1215πxy

ml=1

Z(1)2=1215πsin(θ)cos(θ)sin(ϕ)Z(1)2=1215πyz

ml=0

Z(0)2=185π(3cos(2θ)+1)Z(0)2=145π(x2+y22z2)

ml=1

Z(1)2=1215πsin(θ)cos(θ)cos(ϕ)Z(1)2=1215πxz

ml=2

Z(2)2=1415πsin2(θ)cos(2ϕ)Z(2)2=1415π(xy)(x+y)



l=3

ml=3

Z(3)3=14352πsin3(θ)sin(3ϕ)Z(3)3=14352πy(y23x2)

ml=2

Z(2)3=14105πsin2(θ)cos(θ)sin(2ϕ)Z(2)3=12105πxyz

ml=1

Z(1)3=116212π(sin(θ)+5sin(3θ))sin(ϕ)Z(1)3=14212πy(x2+y24z2)

ml=0

Z(0)3=187πcos(θ)(5cos(2θ)1)Z(0)3=147πz(2z23(x2+y2))

ml=1

Z(1)3=116212π(sin(θ)+5sin(3θ))cos(ϕ)Z(1)3=14212πx(x2+y24z2)

ml=2

Z(2)3=14105πsin2(θ)cos(θ)cos(2ϕ)Z(2)3=14105πz(xy)(x+y)

ml=3

Z(3)3=14352πsin3(θ)cos(3ϕ)Z(3)3=14352πx(x23y2)



l=4

ml=4

Z(4)4=31635πsin4(θ)sin(4ϕ)Z(4)4=3435πxy(xy)(x+y)

ml=3

Z(3)4=34352πsin3(θ)cos(θ)sin(3ϕ)Z(3)4=34352πyz(y23x2)

ml=2

Z(2)4=3165πsin2(θ)(7cos(2θ)+5)sin(2ϕ)Z(2)4=345πxy(x2+y26z2)

ml=1

Z(1)4=33252π(2sin(2θ)+7sin(4θ))sin(ϕ)Z(1)4=3452πyz(3(x2+y2)4z2)

ml=0

Z(0)4=3(20cos(2θ)+35cos(4θ)+9)128πZ(0)4=72z2(x2+y2)+9(x2+y2)2+24z416π

ml=1

Z(1)4=33252π(2sin(2θ)+7sin(4θ))cos(ϕ)Z(1)4=3452πxz(3(x2+y2)4z2)

ml=2

Z(2)4=3165πsin2(θ)(7cos(2θ)+5)cos(2ϕ)Z(2)4=385π(xy)(x+y)(x2+y26z2)

ml=3

Z(3)4=34352πsin3(θ)cos(θ)cos(3ϕ)Z(3)4=34352πxz(x23y2)

ml=4

Z(4)4=31635πsin4(θ)cos(4ϕ)Z(4)4=31635π(x46x2y2+y4)



l=5

ml=5

Z(5)5=316772πsin5(θ)sin(5ϕ)Z(5)5=316772πy(5x410x2y2+y4)

ml=4

Z(4)5=316385πsin4(θ)cos(θ)sin(4ϕ)Z(4)5=34385πxyz(xy)(x+y)

ml=3

Z(3)5=1323852πsin3(θ)(9cos(2θ)+7)sin(3ϕ)Z(3)5=1163852πy(y23x2)(x2+y28z2)

ml=2

Z(2)5=1161155πsin2(θ)cos(θ)(3cos(2θ)+1)sin(2ϕ)Z(2)5=141155πxyz(x2+y22z2)

ml=1

Z(1)5=1256165π(2sin(θ)+7(sin(3θ)+3sin(5θ)))sin(ϕ)Z(1)5=116165πy(12z2(x2+y2)+(x2+y2)2+8z4)

ml=0

Z(0)5=125611π(30cos(θ)+35cos(3θ)+63cos(5θ))Z(0)5=11611πz(40z2(x2+y2)+15(x2+y2)2+8z4)

ml=1

Z(1)5=1256165π(2sin(θ)+7(sin(3θ)+3sin(5θ)))cos(ϕ)Z(1)5=116165πx(12z2(x2+y2)+(x2+y2)2+8z4)

ml=2

Z(2)5=1161155πsin2(θ)cos(θ)(3cos(2θ)+1)cos(2ϕ)Z(2)5=181155πz(xy)(x+y)(x2+y22z2)

ml=3

Z(3)5=1323852πsin3(θ)(9cos(2θ)+7)cos(3ϕ)Z(3)5=1163852πx(x23y2)(x2+y28z2)

ml=4

Z(4)5=316385πsin4(θ)cos(θ)cos(4ϕ)Z(4)5=316385πz(x46x2y2+y4)

ml=5

Z(5)5=316772πsin5(θ)cos(5ϕ)Z(5)5=316772πx(x410x2y2+5y4)



l=6

ml=6

Z(6)6=13230032πsin6(θ)sin(6ϕ)Z(6)6=11630032πxy(3x410x2y2+3y4)

ml=5

Z(5)6=31610012πsin5(θ)cos(θ)sin(5ϕ)Z(5)6=31610012πyz(5x410x2y2+y4)

ml=4

Z(4)6=36491πsin4(θ)(11cos(2θ)+9)sin(4ϕ)Z(4)6=3891πxy(xy)(x+y)(x2+y210z2)

ml=3

Z(3)6=16413652πsin3(θ)(21cos(θ)+11cos(3θ))sin(3ϕ)Z(3)6=11613652πyz(y23x2)(3(x2+y2)8z2)

ml=2

Z(2)6=125613652πsin2(θ)(60cos(2θ)+33cos(4θ)+35)sin(2ϕ)Z(2)6=11613652πxy(16z2(x2+y2)+(x2+y2)2+16z4)

ml=1

Z(1)6=1512273π(5sin(2θ)+12sin(4θ)+33sin(6θ))sin(ϕ)Z(1)6=116273πyz(20z2(x2+y2)+5(x2+y2)2+8z4)

ml=0

Z(0)6=13213π(21cos2(θ)(11cos4(θ)15cos2(θ)+5)5)Z(0)6=13213π(120z4(x2+y2)+90z2(x2+y2)25(x2+y2)3+16z6)

ml=1

Z(1)6=1512273π(5sin(2θ)+12sin(4θ)+33sin(6θ))cos(ϕ)Z(1)6=116273πxz(20z2(x2+y2)+5(x2+y2)2+8z4)

ml=2

Z(2)6=125613652πsin2(θ)(60cos(2θ)+33cos(4θ)+35)cos(2ϕ)Z(2)6=13213652π(xy)(x+y)(16z2(x2+y2)+(x2+y2)2+16z4)

ml=3

Z(3)6=16413652πsin3(θ)(21cos(θ)+11cos(3θ))cos(3ϕ)Z(3)6=11613652πxz(x23y2)(3(x2+y2)8z2)

ml=4

Z(4)6=36491πsin4(θ)(11cos(2θ)+9)cos(4ϕ)Z(4)6=33291π(x46x2y2+y4)(x2+y210z2)

ml=5

Z(5)6=31610012πsin5(θ)cos(θ)cos(5ϕ)Z(5)6=31610012πxz(x410x2y2+5y4)

ml=6

Z(6)6=13230032πsin6(θ)cos(6ϕ)Z(6)6=13230032π(x615x4y2+15x2y4y6)

Different orbital basis sets used

Print/export