−Table of Contents
Chop
Numerics inside a computer is not exact. Quanty represents numbers by doubles, which can store numbers with about 16 digits accuracy. The fact that you only have 16 digits can lead to number-loss and situations where numbers that should be zero are close to zero but not exactly zero. An example in base 10: If you represent 1/3 by 0.3333333333333333 then 1−3×0.3333333333333333=0.00000000000000001. In Quanty you can remove these small numbers with the command Chop().
For a wavefunction psi, psi.Chop() or psi.Chop(ϵ) Removes determinants with small prefactors (smaller than ϵ) from the wavefunction. The standard value (when the argument is omitted) for ϵ=2.2×10−15. psi.Chop() returns nil and changes the value of psi.
Example
We can define the following function: |ψ⟩=(1√4a†0a†1+1√4a†0a†2+(1+0.0000001∗I)1√4a†1a†2)|0⟩, and remove the small complex part with the command Chop()
Input
- Example.Quanty
NF=3 NB=0 psi = NewWavefunction(NF, NB, {{"110",sqrt(1/4)},{"101",sqrt(1/4)},{"011",(1+0.0000001*I)*sqrt(1/4)}}) print(psi) psi.Chop(0.00001) print(psi)
Result
WaveFunction: Wave Function QComplex = 1 (Real==0 or Complex==1) N = 3 (Number of basis functions used to discribe psi) NFermionic modes = 3 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor +I pre-factor Determinant 1 5.000000000000E-01 0.000000000000E+00 110 2 5.000000000000E-01 0.000000000000E+00 101 3 5.000000000000E-01 5.000000000000E-08 011 WaveFunction: Wave Function QComplex = 0 (Real==0 or Complex==1) N = 3 (Number of basis functions used to discribe psi) NFermionic modes = 3 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 5.000000000000E-01 110 2 5.000000000000E-01 101 3 5.000000000000E-01 011