Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
documentation:standard_operators:coulomb_repulsion [2017/02/23 17:28] Maurits W. Haverkortdocumentation:standard_operators:coulomb_repulsion [2017/02/27 12:40] Maurits W. Haverkort
Line 61: Line 61:
  
 ===== Single shell ===== ===== Single shell =====
 +
 +{{:documentation:standard_operators:coulomb_diagram_ll.png?nolink|}}
  
 ### ###
Line 71: Line 73:
 NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals) NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals)
 </code> </code>
-whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$.+whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$, i.e. $k$ is even.
 ### ###
  
Line 91: Line 93:
 F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j, F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$. The indirect term is given by the exchange integrals:+with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$ in steps of 2, i.e. $k$ is even.  
 + 
 +The indirect term is given by the exchange integrals:
 \begin{equation} \begin{equation}
 G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j, G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $|l_1-l_2| \leq k \leq |l_1+l_2|$.+with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2, i.e. $k$ is even if both $l_1$ and $l_2$ are even or odd and $k$ is odd if one of the angular momenta involved is even and the other is odd.
 ### ###
  
Line 102: Line 106:
 <code Quanty Example.Quanty> <code Quanty Example.Quanty>
 NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, Fk, Gk) NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, Fk, Gk)
-\end{lstlisting}+</code>
 For $l_1=1$ and $l_2=2$ one could define: For $l_1=1$ and $l_2=2$ one could define:
-\begin{lstlisting}+<code Quanty Example.Quanty>
 OppF0pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {1,0}, {0,0}) OppF0pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {1,0}, {0,0})
 OppF2pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,1}, {0,0}) OppF2pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,1}, {0,0})
Line 111: Line 115:
 OppG3pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,0}, {0,1}) OppG3pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,0}, {0,1})
 </code> </code>
 +###
 +
 +
 +===== General case of 4 different shells =====
 +###
 +
 ### ###
  
Print/export