Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
documentation:standard_operators:coulomb_repulsion [2017/02/27 11:28] Maurits W. Haverkortdocumentation:standard_operators:coulomb_repulsion [2017/02/27 12:40] Maurits W. Haverkort
Line 61: Line 61:
  
 ===== Single shell ===== ===== Single shell =====
 +
 +{{:documentation:standard_operators:coulomb_diagram_ll.png?nolink|}}
  
 ### ###
Line 71: Line 73:
 NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals) NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals)
 </code> </code>
-whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$.+whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$, i.e. $k$ is even.
 ### ###
  
Line 91: Line 93:
 F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j, F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$ in steps of 2. +with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$ in steps of 2, i.e. $k$ is even
  
 The indirect term is given by the exchange integrals: The indirect term is given by the exchange integrals:
Line 97: Line 99:
 G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j, G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2.+with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2, i.e. $k$ is even if both $l_1$ and $l_2$ are even or odd and $k$ is odd if one of the angular momenta involved is even and the other is odd.
 ### ###
  
Line 113: Line 115:
 OppG3pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,0}, {0,1}) OppG3pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,0}, {0,1})
 </code> </code>
 +###
 +
 +
 +===== General case of 4 different shells =====
 +###
 +
 ### ###
  
Print/export