Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
documentation:standard_operators:coulomb_repulsion [2017/02/27 11:28] Maurits W. Haverkortdocumentation:standard_operators:coulomb_repulsion [2017/02/27 12:43] Maurits W. Haverkort
Line 71: Line 71:
 NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals) NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals)
 </code> </code>
-whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$.+whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$, i.e. $k$ is even.
 ### ###
  
Line 85: Line 85:
  
 ===== Two shells, shell occupation conserving ===== ===== Two shells, shell occupation conserving =====
 +
  
 ### ###
-The Coulomb repulsion between two shells which does not change the number of electrons is given by a direct term ($l_1=l_3$ and $l_2=l_4$) and an indirect or exchange term ($l_1=l_4$ and $l_2=l_3$). The direct term is given by the Slater integrals:+{{:documentation:standard_operators:coulomb_diagram_ll.png?nolink&200 |}}The Coulomb repulsion between two shells which does not change the number of electrons is given by a direct term ($l_1=l_3$ and $l_2=l_4$) and an indirect or exchange term ($l_1=l_4$ and $l_2=l_3$). The direct term is given by the Slater integrals:
 \begin{equation} \begin{equation}
 F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j, F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$ in steps of 2. +with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$ in steps of 2, i.e. $k$ is even
  
 The indirect term is given by the exchange integrals: The indirect term is given by the exchange integrals:
Line 97: Line 98:
 G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j, G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2.+with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2, i.e. $k$ is even if both $l_1$ and $l_2$ are even or odd and $k$ is odd if one of the angular momenta involved is even and the other is odd.
 ### ###
  
Line 113: Line 114:
 OppG3pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,0}, {0,1}) OppG3pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, {0,0}, {0,1})
 </code> </code>
 +###
 +
 +===== General case of 4 different shells =====
 +
 +###
 +{{:documentation:standard_operators:coulomb_diagram_llll.png?nolink&200 |}}
 +
 ### ###
  
Print/export