This is an old revision of the document!


Density matrix plots

asked by Hebatalla Elnaggar (2019/01/31 20:45)

Hi Maurits,

I am trying to plot the GS density matrix for a d5 HS cubic system however I think something goes wrong. Here I compare four calculations (the problem occurs in the fourth case ):

1- Jex parallel to the X axis with no spin-orbit coupling. The first 3 ground-states are: # <E> <S^2> <L^2> <J^2> <Sx> <Lx> <Np> <Nd> <NL>

1  -5.6576   8.7500  -0.0000   8.7500  -2.5000   0.0000   6.0000   5.0000  10.0000
2  -5.5676   8.7500  -0.0000   8.7500  -1.5000   0.0000   6.0000   5.0000  10.0000
3  -5.4776   8.7500  -0.0000   8.7500  -0.5000   0.0000   6.0000   5.0000  10.0000

plotting the 1st GS I get a spherical state fully red as expected projecting along the x-axis

2- Jex parallel to the X axis with 100% spin-orbit coupling. The first 3 ground-states are:

#     <E>     <S^2>    <L^2>    <J^2>    <Sx>     <Lx>     <Np>      <Nd>     <NL>
1  -5.6621   8.7439   0.0030   8.7505  -2.4988  -0.0012   6.0000   5.0000  10.0000
2  -5.5722   8.7437   0.0031   8.7505  -1.4993  -0.0007   6.0000   5.0000  10.0000
3  -5.4822   8.7436   0.0032   8.7506  -0.4998  -0.0002   6.0000   5.0000  10.0000

plotting the 1st GS I get an almost spherical state fully red as expected projecting along the x-axis

3- Jex aligned 30 degrees from the Y axis (rotation about the Z-axis) with no spin-orbit coupling. The first 3 ground-states are:

#     <E>    <S^2>    <L^2>    <J^2>    <S||>     <L||>     <Np>      <Nd>     <NL>
1  -5.6576   8.7500  -0.0000   8.7500  -2.5000   0.0000   6.0000   5.0000  10.0000
2  -5.5676   8.7500  -0.0000   8.7500  -1.5000   0.0000   6.0000   5.0000  10.0000
3  -5.4776   8.7500  -0.0000   8.7500  -0.5000   0.0000   6.0000   5.0000  10.0000

plotting the 1st GS I get an almost spherical state nearly blue as expected for projecting along the || axis

4- Jex aligned 30 degrees from the Y axis (rotation about the Z-axis) with 100% spin-orbit coupling. The first 3 ground-states are: # <E> <S^2> <L^2> <J^2> <S||> <L||> <Np> <Nd> <NL>

1  -5.6621   8.7439   0.0030   8.7505  -2.4988  -0.0012   6.0000   5.0000  10.0000
2  -5.5722   8.7437   0.0031   8.7505  -1.4993  -0.0007   6.0000   5.0000  10.0000
3  -5.4822   8.7436   0.0032   8.7506  -0.4998  -0.0002   6.0000   5.0000  10.0000

plotting the 1st GS I get a very strange non-spherical state with a mixed spin. I do not understand why the plot fails here. The GS is almost identical to the case of 2 but the resulting density matrix is very different.

Below is the script I used:


function TableToMathematica(t)

Chop(t)
local ret = "{ "
for k,v in pairs(t) do
  if k~=1 then
    ret = ret.." , "
  end
  if (type(v) == "table") then
    ret = ret..TableToMathematica(v)
  else
      ret = ret..string.format("+ %18.15f ",Complex.Re(v))
      ret = ret..string.format("+ I %18.15f ",Complex.Im(v))
  end
end
ret = ret.." }"
return ret

end

NBosons = 0 NFermions = 26

NElectrons_2p = 6 NElectrons_3d = 5 NElectrons_Ld = 10

IndexDn_2p = {0, 2, 4} IndexUp_2p = {1, 3, 5} IndexDn_3d = {6, 8, 10, 12, 14} IndexUp_3d = {7, 9, 11, 13, 15} IndexDn_Ld = {16, 18, 20, 22, 24} IndexUp_Ld = {17, 19, 21, 23, 25}


-- Define the Coulomb term.


OppF0_3d_3d = NewOperator('U', NFermions, IndexUp_3d, IndexDn_3d, {1, 0, 0}) OppF2_3d_3d = NewOperator('U', NFermions, IndexUp_3d, IndexDn_3d, {0, 1, 0}) OppF4_3d_3d = NewOperator('U', NFermions, IndexUp_3d, IndexDn_3d, {0, 0, 1})

OppF0_2p_3d = NewOperator('U', NFermions, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {1, 0}, {0, 0}) OppF2_2p_3d = NewOperator('U', NFermions, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0, 1}, {0, 0}) OppG1_2p_3d = NewOperator('U', NFermions, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0, 0}, {1, 0}) OppG3_2p_3d = NewOperator('U', NFermions, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0, 0}, {0, 1})

OppNUp_2p = NewOperator('Number', NFermions, IndexUp_2p, IndexUp_2p, {1, 1, 1}) OppNDn_2p = NewOperator('Number', NFermions, IndexDn_2p, IndexDn_2p, {1, 1, 1}) OppN_2p = OppNUp_2p + OppNDn_2p

OppNUp_3d = NewOperator('Number', NFermions, IndexUp_3d, IndexUp_3d, {1, 1, 1, 1, 1}) OppNDn_3d = NewOperator('Number', NFermions, IndexDn_3d, IndexDn_3d, {1, 1, 1, 1, 1}) OppN_3d = OppNUp_3d + OppNDn_3d

OppNUp_Ld = NewOperator('Number', NFermions, IndexUp_Ld, IndexUp_Ld, {1, 1, 1, 1, 1}) OppNDn_Ld = NewOperator('Number', NFermions, IndexDn_Ld, IndexDn_Ld, {1, 1, 1, 1, 1}) OppN_Ld = OppNUp_Ld + OppNDn_Ld

OppConfNd={} for i=0,10 do

OppConfNd[i] = NewOperator("Identity", NFermions)
OppConfNd[i].Restrictions = {NFermions,NBosons,{"000000 1111111111 0000000000",i,i}}

end

-- Fe3+ --

Delta_sc = 1.5*1 U_3d_3d_sc = 6.5*1 F2_3d_3d_sc = 10.965*0.74 F4_3d_3d_sc = 7.5351*0.74 F0_3d_3d_sc = U_3d_3d_sc + 2 / 63 * F2_3d_3d_sc + 2 / 63 * F4_3d_3d_sc e_3d_sc = (10 * Delta_sc - NElectrons_3d * (19 + NElectrons_3d) * U_3d_3d_sc / 2) / (10 + NElectrons_3d) e_Ld_sc = NElectrons_3d * 1) / (16 + NElectrons_3d) e_3d_ic = (10 * Delta_ic - NElectrons_3d * (31 + NElectrons_3d) * U_3d_3d_ic / 2 - 90 * U_2p_3d_ic) / (16 + NElectrons_3d) e_Ld_ic = 2)

1)
1 + NElectrons_3d) * U_3d_3d_sc / 2 - Delta_sc) / (10 + NElectrons_3d) Delta_ic = 1.5*1 U_3d_3d_ic = 6.5*1 F2_3d_3d_ic = 12.736*0.74 -- 0.74 F4_3d_3d_ic = 7.963*0.74 -- 0.74 F0_3d_3d_ic = U_3d_3d_ic + 2 / 63 * F2_3d_3d_ic + 2 / 63 * F4_3d_3d_ic U_2p_3d_ic = 7.5*1 F2_2p_3d_ic = 5.957*0.75 -- 0.75 G1_2p_3d_ic = 4.453*0.75 -- 0.75 G3_2p_3d_ic = 2.533*0.75 -- 0.75 F0_2p_3d_ic = U_2p_3d_ic + 1 / 15 * G1_2p_3d_ic + 3 / 70 * G3_2p_3d_ic e_2p_ic = (10 * Delta_ic + (1 + NElectrons_3d) * (NElectrons_3d * U_3d_3d_ic / 2 - (10 + NElectrons_3d) * U_2p_3d_ic
2)
1 + NElectrons_3d) * (NElectrons_3d * U_3d_3d_ic / 2 + 6 * U_2p_3d_ic) - (6 + NElectrons_3d) * Delta_ic) / (16 + NElectrons_3d) Delta_fc = 1.5*1 U_3d_3d_fc = 6.5*1 F2_3d_3d_fc = 10.965*0.74 F4_3d_3d_fc = 7.5351*0.74 F0_3d_3d_fc = U_3d_3d_fc + 2 / 63 * F2_3d_3d_fc + 2 / 63 * F4_3d_3d_fc e_3d_fc = (10 * Delta_fc - NElectrons_3d * (19 + NElectrons_3d) * U_3d_3d_fc / 2) / (10 + NElectrons_3d) e_Ld_fc = NElectrons_3d * ((1 + NElectrons_3d) * U_3d_3d_fc / 2 - Delta_fc) / (10 + NElectrons_3d) H_coulomb_sc = F0_3d_3d_sc * OppF0_3d_3d
           + F2_3d_3d_sc * OppF2_3d_3d
           + F4_3d_3d_sc * OppF4_3d_3d
           + e_3d_sc     * OppN_3d
           + e_Ld_sc     * OppN_Ld
H_coulomb_ic = F0_3d_3d_ic * OppF0_3d_3d
           + F2_3d_3d_ic * OppF2_3d_3d
           + F4_3d_3d_ic * OppF4_3d_3d
           + F0_2p_3d_ic * OppF0_2p_3d
           + F2_2p_3d_ic * OppF2_2p_3d
           + G1_2p_3d_ic * OppG1_2p_3d
           + G3_2p_3d_ic * OppG3_2p_3d
           + e_2p_ic     * OppN_2p
           + e_3d_ic     * OppN_3d
           + e_Ld_ic     * OppN_Ld
H_coulomb_fc = F0_3d_3d_fc * OppF0_3d_3d
           + F2_3d_3d_fc * OppF2_3d_3d
           + F4_3d_3d_fc * OppF4_3d_3d
           + e_3d_fc     * OppN_3d
           + e_Ld_fc     * OppN_Ld

-- Define the spin-orbit coupling term.
Oppldots_3d = NewOperator('ldots', NFermions, IndexUp_3d, IndexDn_3d) Oppldots_2p = NewOperator('ldots', NFermions, IndexUp_2p, IndexDn_2p) zeta_3d_sc = 0.059*1 zeta_3d_ic = 0.075*1 zeta_2p_ic = 8.199 zeta_3d_fc = zeta_3d_sc H_soc_sc = zeta_3d_sc * Oppldots_3d H_soc_ic = zeta_3d_ic * Oppldots_3d
       + zeta_2p_ic * Oppldots_2p
H_soc_fc = zeta_3d_fc * Oppldots_3d
-- Define the ligand field term. Akm = 14 OpptenDq_3d = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, Akm) OpptenDq_Ld = NewOperator(“CF”, NFermions, IndexUp_Ld, IndexDn_Ld, Akm) Akm = 2_0_-7 OppDs_3d = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, Akm) OppDs_Ld = NewOperator(“CF”, NFermions, IndexUp_Ld, IndexDn_Ld, Akm) Akm = 4_0_-21 OppDt_3d = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, Akm) OppDt_Ld = NewOperator(“CF”, NFermions, IndexUp_Ld, IndexDn_Ld, Akm) Akm = PotentialExpandedOnClm('D4h', 2, {0,0,0,1}) OppVe = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator(“CF”, NFermions, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm('D4h', 2, {0,0,1,0}) OppVb2 = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator(“CF”, NFermions, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm('D4h', 2, {1,0,0,0}) OppVa1 = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator(“CF”, NFermions, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm('D4h', 2, {0,1,0,0}) OppVb1 = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator(“CF”, NFermions, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm('D4h', 2, {0,0,0,1}) OppNe = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm('D4h', 2, {0,0,1,0}) OppNb2 = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d,Akm) Akm = PotentialExpandedOnClm('D4h', 2, {1,0,0,0}) OppNa1 = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d,Akm) Akm = PotentialExpandedOnClm('D4h', 2, {0,1,0,0}) OppNb1 = NewOperator(“CF”, NFermions, IndexUp_3d, IndexDn_3d, Akm) Ds_3d = 0.0 Dt_3d = Ds_3d*0.15 tenDq_3d_sc = -0.6 + Dt_3d*10*7/12 tenDq_Ld_sc = tenDq_3d_sc/3--0.0 Veg_sc = 3.2*0 Vt2g_sc = 1.705 *0 Ve = Vt2g_sc Vb2 = Vt2g_sc Va1 = Veg_sc /1000 Vb1 = Veg_sc tenDq_3d_ic = tenDq_3d_sc tenDq_Ld_ic = tenDq_Ld_sc Veg_ic = Veg_sc Vt2g_ic = Vt2g_sc tenDq_3d_fc = tenDq_3d_sc tenDq_Ld_fc = tenDq_Ld_sc Veg_fc = Veg_sc Vt2g_fc = Vt2g_sc H_lf_sc = tenDq_3d_sc * OpptenDq_3d
      + tenDq_Ld_sc * OpptenDq_Ld
	+ Ds_3d		  * OppDs_3d
	+ Dt_3d	 	  * OppDt_3d
	+ Ve * OppVe 
	+ Vb2 * OppVb2 
	+ Va1 * OppVa1 
	+ Vb1 * OppVb1 
	-- + Veg_sc      * OppVeg
      -- + Vt2g_sc     * OppVt2g
H_lf_ic = tenDq_3d_ic * OpptenDq_3d
      + tenDq_Ld_ic * OpptenDq_Ld
	+ Ds_3d		  * OppDs_3d
	+ Dt_3d	 	  * OppDt_3d
	+ Ve * OppVe 
	+ Vb2 * OppVb2 
	+ Va1 * OppVa1 
	+ Vb1 * OppVb1 
	-- + Veg_ic      * OppVeg
      -- + Vt2g_ic     * OppVt2g
H_lf_fc = tenDq_3d_fc * OpptenDq_3d
      + tenDq_Ld_fc * OpptenDq_Ld
	+ Ds_3d		  * OppDs_3d
	+ Dt_3d	 	  * OppDt_3d
	+ Ve * OppVe 
	+ Vb2 * OppVb2 
	+ Va1 * OppVa1 
	+ Vb1 * OppVb1 
	-- + Veg_fc      * OppVeg
      -- + Vt2g_fc     * OppVt2g

-- Define the magnetic field term.
OppSx_3d = NewOperator('Sx' , NFermions, IndexUp_3d, IndexDn_3d) OppSy_3d = NewOperator('Sy' , NFermions, IndexUp_3d, IndexDn_3d) OppSz_3d = NewOperator('Sz' , NFermions, IndexUp_3d, IndexDn_3d) OppSsqr_3d = NewOperator('Ssqr' , NFermions, IndexUp_3d, IndexDn_3d) OppSplus_3d = NewOperator('Splus', NFermions, IndexUp_3d, IndexDn_3d) OppSmin_3d = NewOperator('Smin' , NFermions, IndexUp_3d, IndexDn_3d) OppLx_3d = NewOperator('Lx' , NFermions, IndexUp_3d, IndexDn_3d) OppLy_3d = NewOperator('Ly' , NFermions, IndexUp_3d, IndexDn_3d) OppLz_3d = NewOperator('Lz' , NFermions, IndexUp_3d, IndexDn_3d) OppLsqr_3d = NewOperator('Lsqr' , NFermions, IndexUp_3d, IndexDn_3d) OppLplus_3d = NewOperator('Lplus', NFermions, IndexUp_3d, IndexDn_3d) OppLmin_3d = NewOperator('Lmin' , NFermions, IndexUp_3d, IndexDn_3d) OppJx_3d = NewOperator('Jx' , NFermions, IndexUp_3d, IndexDn_3d) OppJy_3d = NewOperator('Jy' , NFermions, IndexUp_3d, IndexDn_3d) OppJz_3d = NewOperator('Jz' , NFermions, IndexUp_3d, IndexDn_3d) OppJsqr_3d = NewOperator('Jsqr' , NFermions, IndexUp_3d, IndexDn_3d) OppJplus_3d = NewOperator('Jplus', NFermions, IndexUp_3d, IndexDn_3d) OppJmin_3d = NewOperator('Jmin' , NFermions, IndexUp_3d, IndexDn_3d) OppSx_Ld = NewOperator('Sx' , NFermions, IndexUp_Ld, IndexDn_Ld) OppSy_Ld = NewOperator('Sy' , NFermions, IndexUp_Ld, IndexDn_Ld) OppSz_Ld = NewOperator('Sz' , NFermions, IndexUp_Ld, IndexDn_Ld) OppSsqr_Ld = NewOperator('Ssqr' , NFermions, IndexUp_Ld, IndexDn_Ld) OppSplus_Ld = NewOperator('Splus', NFermions, IndexUp_Ld, IndexDn_Ld) OppSmin_Ld = NewOperator('Smin' , NFermions, IndexUp_Ld, IndexDn_Ld) OppLx_Ld = NewOperator('Lx' , NFermions, IndexUp_Ld, IndexDn_Ld) OppLy_Ld = NewOperator('Ly' , NFermions, IndexUp_Ld, IndexDn_Ld) OppLz_Ld = NewOperator('Lz' , NFermions, IndexUp_Ld, IndexDn_Ld) OppLsqr_Ld = NewOperator('Lsqr' , NFermions, IndexUp_Ld, IndexDn_Ld) OppLplus_Ld = NewOperator('Lplus', NFermions, IndexUp_Ld, IndexDn_Ld) OppLmin_Ld = NewOperator('Lmin' , NFermions, IndexUp_Ld, IndexDn_Ld) OppJx_Ld = NewOperator('Jx' , NFermions, IndexUp_Ld, IndexDn_Ld) OppJy_Ld = NewOperator('Jy' , NFermions, IndexUp_Ld, IndexDn_Ld) OppJz_Ld = NewOperator('Jz' , NFermions, IndexUp_Ld, IndexDn_Ld) OppJsqr_Ld = NewOperator('Jsqr' , NFermions, IndexUp_Ld, IndexDn_Ld) OppJplus_Ld = NewOperator('Jplus', NFermions, IndexUp_Ld, IndexDn_Ld) OppJmin_Ld = NewOperator('Jmin' , NFermions, IndexUp_Ld, IndexDn_Ld) OppSx = OppSx_3d + OppSx_Ld OppSy = OppSy_3d + OppSy_Ld OppSz = OppSz_3d + OppSz_Ld OppSsqr = OppSx * OppSx + OppSy * OppSy + OppSz * OppSz OppLx = OppLx_3d + OppLx_Ld OppLy = OppLy_3d + OppLy_Ld OppLz = OppLz_3d + OppLz_Ld OppLsqr = OppLx * OppLx + OppLy * OppLy + OppLz * OppLz OppJx = OppJx_3d + OppJx_Ld OppJy = OppJy_3d + OppJy_Ld OppJz = OppJz_3d + OppJz_Ld OppJsqr = OppJx * OppJx + OppJy * OppJy + OppJz * OppJz Jvec= {1,0,0} J0 = 1e-3 * 90 B0 = 1e-4 Bx = Jvec[1]*B0 By = Jvec[2]*B0 Bz = Jvec[3]*B0 Jx = Jvec[1]*J0 Jy = Jvec[2]*J0 Jz = Jvec[3]*J0 Jex = Jx * OppSx
  + Jy * OppSy
  + Jz * OppSz
B = Bx * ( OppLx)
+ By * ( OppLy)
+ Bz * ( OppLz)

-- Compose the total Hamiltonian.
H_sc = 1 * H_coulomb_sc + 1 * H_soc_sc + 1 * H_lf_sc + B + Jex H_ic = 1 * H_coulomb_ic + 1 * H_soc_ic + 1 * H_lf_ic + B + Jex H_fc = 1 * H_coulomb_fc + 1 * H_soc_fc + 1 * H_lf_fc + B + Jex H_sc.Chop() H_ic.Chop() H_fc.Chop()
-- Define the starting restrictions and set the number of initial states.
StartingRestrictions = {NFermions, NBosons, {'111111 0000000000 0000000000', NElectrons_2p, NElectrons_2p},
                                         {'000000 1111111111 0000000000', NElectrons_3d, NElectrons_3d},
                                         {'000000 0000000000 1111111111', NElectrons_Ld, NElectrons_Ld}}
NPsis = 6 Restrictions = {NFermions, NBosons, {“000000 0000000000 1111111111”,10,10}} Psis = Eigensystem(H_sc, StartingRestrictions, NPsis,restrictions_restrictions) if not (type(Psis) == 'table') then
  Psis = {Psis}
end -- Plotting
mathematicaInput = [[
 Needs["Quanty`PlotTools`"];
 rho=%s;
 pl = Table[ Rasterize[ DensityMatrixPlot[ rho[ [i] ],QuantizationAxes->"x", PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}] ], {i, 1, Length[rho]}];
 For[i = 1, i <= Length[pl], i++,
     Export[",." <> ToString[i] <> ".png", pl[ [i] ] ];
    ];
 Quit[];
 ]]
-- Plotting density plots:
rhoList1 = DensityMatrix(Psis, {6,7,8,9,10,11,12,13,14,15})
rhoListMathematicaForm1 = TableToMathematica(rhoList1)
file = io.open("./Densitymatrix2.nb", "w")
file:write( mathematicaInput:format(rhoListMathematicaForm1 ) )
file:close()
--os.execute("/Applications/Mathematica.app/Contents/MacOS/MathKernel -run '<<".."Densitymatrix1.nb'")
print('Finished the density matrix') -- Print some useful information about the calculated states. file = io.open(“Expect2.txt”, “w”); OppSpar= Jvec[3]*OppSz_3d+Jvec[2]*OppSy_3d+Jvec[1]*OppSx_3d OppLpar= Jvec[3]*OppLz_3d+Jvec[2]*OppLy_3d+Jvec[1]*OppLx_3d OppList = {H_sc, OppSsqr, OppLsqr, OppJsqr, OppSpar, OppLpar, OppN_2p, OppN_3d, OppN_Ld} ConfNds={OppConfNd[6], OppConfNd[7], OppConfNd[8], OppConfNd[9], OppConfNd[10]} Psitemp={} print(' # <E> <S^2> <L^2> <J^2> <S||> <L||> <Np> <Nd> <NL>'); file:write(' # <E> <S^2> <L^2> <J^2> <Sz> <Lz> <Np> <Nd> <NL>'); file:write('\n') for key, Psi in pairs(Psis) do
expectationValues = Psi * OppList * Psi
file:write(string.format('%3d', key))
for key, expectationValue in pairs(expectationValues) do
	io.write(string.format('%9.4f', Complex.Re(expectationValue)))
	file:write(string.format('%9.4f', Complex.Re(expectationValue)))
	--io.write(string.format('%9.4f', Complex.Re(expectationValue)))
end
-- for k=6,10 do
	-- Psitemp = OppConfNd[k] * Psi
	-- ConfNdValue = Psitemp * OppConfNd[k] * Psitemp
	-- file:write(string.format('%9.4f', ConfNdValue))
-- end
io.write('\n')
file:write('\n')
end file:close() OppList = {H_sc, OppNa1, OppNb1, OppNe, OppNb2} print(' # <E> <Na1> <Nb1> <Ne> <Nb2> '); for key, Psi in pairs(Psis) do
expectationValues = Psi * OppList * Psi
for key, expectationValue in pairs(expectationValues) do
	io.write(string.format('%9.4f', Complex.Re(expectationValue)))
end
io.write('\n')
end os.exit() </WRAP> ~~DISCUSSION|Answers~~

Answers

, 2019/02/04 09:11

Dear Heba,

Your function TableToMathematica(t) can not handle complex numbers with negative imaginary part. In that case 1 - 2 I becomes 1 + I - 2. Below you find a correct version that should solve all your problems.

Maurits

function TableToMathematica(t)
  Chop(t)
  local ret = "{ "
  for k,v in pairs(t) do
    if k~=1 then
      ret = ret.." , "
    end
    if (type(v) == "table") then
      ret = ret..TableToMathematica(v)
    else
      if( Complex.Re(v) < 0) then
        ret = ret..string.format("- %18.15f ",Abs(Complex.Re(v)))
      else
        ret = ret..string.format("+ %18.15f ",Abs(Complex.Re(v)))
      end
      if( Complex.Im(v) < 0) then
        ret = ret..string.format("- I %18.15f ",Abs(Complex.Im(v)))
      else
        ret = ret..string.format("+ I %18.15f ",Abs(Complex.Im(v)))
      end
    end
  end
  ret = ret.." }"
  return ret
end
, 2019/02/04 11:00

Dear Maurits,

I see. That indeed solved the problem.

Thanks!

You could leave a comment if you were logged in.