Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revision | |||
physics_chemistry:point_groups:c2:orientation_z [2018/03/22 23:24] – Stefano Agrestini | physics_chemistry:point_groups:c2:orientation_z [2018/04/06 09:13] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Z ====== | ====== Orientation Z ====== | ||
+ | |||
+ | ===== Symmetry Operations ===== | ||
### | ### | ||
- | ====== Character table ====== | + | |
- | ^C< | + | In the C2 Point Group, with orientation Z there are the following symmetry operations |
- | ^A | +1 | +1 | | + | |
- | ^B | +1 | -1 | | + | |
### | ### | ||
- | ===== Example ===== | + | ### |
+ | |||
+ | {{: | ||
### | ### | ||
- | description text | + | |
### | ### | ||
- | ==== Input ==== | + | ^ Operator ^ Orientation ^ |
- | <code Quanty | + | ^ E | {0,0,0} , | |
- | -- some example code | + | ^ C2 | {0,0,1} , | |
+ | |||
+ | ### | ||
+ | |||
+ | ===== Different Settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Character Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ E(1) ^ C2(1) ^ | ||
+ | ^ A | 1 | 1 | | ||
+ | ^ B | 1 | −1 | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Product Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ A ^ B ^ | ||
+ | ^ A | A | B | | ||
+ | ^ B | B | A | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Sub Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Super Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Invariant Potential expanded on renormalized spherical Harmonics ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | Any potential (function) can be written as a sum over spherical harmonics. | ||
+ | V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) | ||
+ | Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) | ||
+ | The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the C2 Point group with orientation Z the form of the expansion coefficients is: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Expansion ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty | ||
+ | |||
+ | Akm[k_, | ||
</ | </ | ||
- | ==== Result ==== | + | ### |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Input format suitable for Quanty |
- | {{indexmenu> | + | |
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, A(0,0)} , | ||
+ | {1, 0, A(1,0)} , | ||
+ | {2, 0, A(2,0)} , | ||
+ | | ||
+ | {2, 2, A(2,2) + (I)*(B(2, | ||
+ | {3, 0, A(3,0)} , | ||
+ | | ||
+ | {3, 2, A(3,2) + (I)*(B(3, | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 2, A(4,2) + (I)*(B(4, | ||
+ | | ||
+ | {4, 4, A(4,4) + (I)*(B(4, | ||
+ | {5, 0, A(5,0)} , | ||
+ | | ||
+ | {5, 2, A(5,2) + (I)*(B(5, | ||
+ | | ||
+ | {5, 4, A(5,4) + (I)*(B(5, | ||
+ | {6, 0, A(6,0)} , | ||
+ | | ||
+ | {6, 2, A(6,2) + (I)*(B(6, | ||
+ | | ||
+ | {6, 4, A(6,4) + (I)*(B(6, | ||
+ | | ||
+ | {6, 6, A(6,6) + (I)*(B(6, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. | ||
+ | An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ | ||
+ | Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m) | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(0)0 ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^Y(0)0|Ass(0,0)|0|Asp(1,0)√3|0|Asd(2,2)+iBsd(2,2)√5|0|Asd(2,0)√5|0|Asd(2,2)−iBsd(2,2)√5|0|Asf(3,2)+iBsf(3,2)√7|0|Asf(3,0)√7|0|Asf(3,2)−iBsf(3,2)√7|0| | ||
+ | ^Y(1)−1|0|App(0,0)−15App(2,0)|0|−15√6(App(2,2)−iBpp(2,2))|0|Apd(1,0)√5−3Apd(3,0)7√5|0|−17√6(Apd(3,2)−iBpd(3,2))|0|3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21|0|35√27Apf(2,0)−13√27Apf(4,0)|0|15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2))|0|−2(Apf(4,4)−iBpf(4,4))3√3| | ||
+ | ^Y(1)0|Asp(1,0)√3|0|App(0,0)+25App(2,0)|0|17√3(Apd(3,2)+iBpd(3,2))|0|2Apd(1,0)√15+37√35Apd(3,0)|0|17√3(Apd(3,2)−iBpd(3,2))|0|√335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|√335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7|0| | ||
+ | ^Y(1)1|0|−15√6(App(2,2)+iBpp(2,2))|0|App(0,0)−15App(2,0)|0|−17√6(Apd(3,2)+iBpd(3,2))|0|Apd(1,0)√5−3Apd(3,0)7√5|0|−2(Apf(4,4)+iBpf(4,4))3√3|0|15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2))|0|35√27Apf(2,0)−13√27Apf(4,0)|0|3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21| | ||
+ | ^Y(2)−2|Asd(2,2)−iBsd(2,2)√5|0|17√3(Apd(3,2)−iBpd(3,2))|0|Add(0,0)−27Add(2,0)+121Add(4,0)|0|17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2))|0|13√107(Add(4,4)−iBdd(4,4))|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0|533(Adf(5,2)−iBdf(5,2))−2(Adf(3,2)−iBdf(3,2))3√7|0|111√10(Adf(5,4)−iBdf(5,4))|0| | ||
+ | ^Y(2)−1|0|Apd(1,0)√5−3Apd(3,0)7√5|0|−17√6(Apd(3,2)−iBpd(3,2))|0|Add(0,0)+17Add(2,0)−421Add(4,0)|0|−17√6(Add(2,2)−iBdd(2,2))−221√10(Add(4,2)−iBdd(4,2))|0|13√57(Adf(3,2)+iBdf(3,2))−133√5(Adf(5,2)+iBdf(5,2))|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|−Adf(3,2)−iBdf(3,2)√21−5(Adf(5,2)−iBdf(5,2))11√3|0|−211√53(Adf(5,4)−iBdf(5,4))| | ||
+ | ^Y(2)0|Asd(2,0)√5|0|2Apd(1,0)√15+37√35Apd(3,0)|0|17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2))|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2))|0|111√5(Adf(5,2)+iBdf(5,2))|0|3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0)|0|111√5(Adf(5,2)−iBdf(5,2))|0| | ||
+ | ^Y(2)1|0|−17√6(Apd(3,2)+iBpd(3,2))|0|Apd(1,0)√5−3Apd(3,0)7√5|0|−17√6(Add(2,2)+iBdd(2,2))−221√10(Add(4,2)+iBdd(4,2))|0|Add(0,0)+17Add(2,0)−421Add(4,0)|0|−211√53(Adf(5,4)+iBdf(5,4))|0|−Adf(3,2)+iBdf(3,2)√21−5(Adf(5,2)+iBdf(5,2))11√3|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|13√57(Adf(3,2)−iBdf(3,2))−133√5(Adf(5,2)−iBdf(5,2))| | ||
+ | ^Y(2)2|Asd(2,2)+iBsd(2,2)√5|0|17√3(Apd(3,2)+iBpd(3,2))|0|13√107(Add(4,4)+iBdd(4,4))|0|17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2))|0|Add(0,0)−27Add(2,0)+121Add(4,0)|0|111√10(Adf(5,4)+iBdf(5,4))|0|533(Adf(5,2)+iBdf(5,2))−2(Adf(3,2)+iBdf(3,2))3√7|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0| | ||
+ | ^Y(3)−3|0|3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21|0|−2(Apf(4,4)−iBpf(4,4))3√3|0|13√57(Adf(3,2)−iBdf(3,2))−133√5(Adf(5,2)−iBdf(5,2))|0|−211√53(Adf(5,4)−iBdf(5,4))|0|Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0)|0|−13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2))|0|111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4))|0|−1013√733(Aff(6,6)−iBff(6,6))| | ||
+ | ^Y(3)−2|Asf(3,2)−iBsf(3,2)√7|0|√335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0|111√5(Adf(5,2)−iBdf(5,2))|0|111√10(Adf(5,4)−iBdf(5,4))|0|Aff(0,0)−733Aff(4,0)+10143Aff(6,0)|0|−2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2))|0|133√70(Aff(4,4)−iBff(4,4))+10143√14(Aff(6,4)−iBff(6,4))|0| | ||
+ | ^Y(3)−1|0|35√27Apf(2,0)−13√27Apf(4,0)|0|15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2))|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|−Adf(3,2)−iBdf(3,2)√21−5(Adf(5,2)−iBdf(5,2))11√3|0|−13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2))|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0)|0|−25√23(Aff(2,2)−iBff(2,2))−233√10(Aff(4,2)−iBff(4,2))−10143√353(Aff(6,2)−iBff(6,2))|0|111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4))| | ||
+ | ^Y(3)0|Asf(3,0)√7|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|533(Adf(5,2)+iBdf(5,2))−2(Adf(3,2)+iBdf(3,2))3√7|0|3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0)|0|533(Adf(5,2)−iBdf(5,2))−2(Adf(3,2)−iBdf(3,2))3√7|0|−2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2))|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|−2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2))|0| | ||
+ | ^Y(3)1|0|15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2))|0|35√27Apf(2,0)−13√27Apf(4,0)|0|−Adf(3,2)+iBdf(3,2)√21−5(Adf(5,2)+iBdf(5,2))11√3|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4))|0|−25√23(Aff(2,2)+iBff(2,2))−233√10(Aff(4,2)+iBff(4,2))−10143√353(Aff(6,2)+iBff(6,2))|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0)|0|−13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2))| | ||
+ | ^Y(3)2|Asf(3,2)+iBsf(3,2)√7|0|√335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7|0|111√10(Adf(5,4)+iBdf(5,4))|0|111√5(Adf(5,2)+iBdf(5,2))|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0|133√70(Aff(4,4)+iBff(4,4))+10143√14(Aff(6,4)+iBff(6,4))|0|−2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2))|0|Aff(0,0)−733Aff(4,0)+10143Aff(6,0)|0| | ||
+ | ^Y(3)3|0|−2(Apf(4,4)+iBpf(4,4))3√3|0|3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21|0|−211√53(Adf(5,4)+iBdf(5,4))|0|13√57(Adf(3,2)+iBdf(3,2))−133√5(Adf(5,2)+iBdf(5,2))|0|−1013√733(Aff(6,6)+iBff(6,6))|0|111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4))|0|−13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2))|0|Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0)| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(0)0 ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^s|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^px|0|1√2|0|−1√2|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^py|0|i√2|0|i√2|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^pz|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^dx2−y2|0|0|0|0|1√2|0|0|0|1√2|0|0|0|0|0|0|0| | ||
+ | ^d3z2−r2|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0| | ||
+ | ^dyz|0|0|0|0|0|i√2|0|i√2|0|0|0|0|0|0|0|0| | ||
+ | ^dxz|0|0|0|0|0|1√2|0|−1√2|0|0|0|0|0|0|0|0| | ||
+ | ^dxy|0|0|0|0|i√2|0|0|0|−i√2|0|0|0|0|0|0|0| | ||
+ | ^fxyz|0|0|0|0|0|0|0|0|0|0|i√2|0|0|0|−i√2|0| | ||
+ | ^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| | ||
+ | ^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| | ||
+ | ^fz(5z2−r2)|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0| | ||
+ | ^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| | ||
+ | ^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| | ||
+ | ^fz(x2−y2)|0|0|0|0|0|0|0|0|0|0|1√2|0|0|0|1√2|0| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of symmetry adapted functions ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | After rotation we find | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ fz(5z2−r2) ^ fx(y2−z2) ^ fy(z2−x2) ^ fz(x2−y2) ^ | ||
+ | ^s|Ass(0,0)|0|0|Asp(1,0)√3|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|−√27Bsf(3,2)|0|0|Asf(3,0)√7|0|0|√27Asf(3,2)| | ||
+ | ^px|0|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|0|0|−17√6Bpd(3,2)|Apd(1,0)√5−3Apd(3,0)7√5+17√6Apd(3,2)|0|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| | ||
+ | ^py|0|−15√6Bpp(2,2)|App(0,0)−15App(2,0)−15√6App(2,2)|0|0|0|Apd(1,0)√5−3Apd(3,0)7√5−17√6Apd(3,2)|−17√6Bpd(3,2)|0|0|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2|3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2|0| | ||
+ | ^pz|Asp(1,0)√3|0|0|App(0,0)+25App(2,0)|17√6Apd(3,2)|2Apd(1,0)√15+37√35Apd(3,0)|0|0|−17√6Bpd(3,2)|−√635Bpf(2,2)−23√27Bpf(4,2)|0|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|0|√635Apf(2,2)+23√27Apf(4,2)| | ||
+ | ^dx2−y2|√25Asd(2,2)|0|0|17√6Apd(3,2)|Add(0,0)−27Add(2,0)+121Add(4,0)+13√107Add(4,4)|17√103Add(4,2)−27√2Add(2,2)|0|0|−13√107Bdd(4,4)|−111√10Bdf(5,4)|0|0|533√2Adf(5,2)−23√27Adf(3,2)|0|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7+111√10Adf(5,4)| | ||
+ | ^d3z2−r2|Asd(2,0)√5|0|0|2Apd(1,0)√15+37√35Apd(3,0)|17√103Add(4,2)−27√2Add(2,2)|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|27√2Bdd(2,2)−17√103Bdd(4,2)|−111√10Bdf(5,2)|0|0|3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0)|0|0|111√10Adf(5,2)| | ||
+ | ^dyz|0|−17√6Bpd(3,2)|Apd(1,0)√5−3Apd(3,0)7√5−17√6Apd(3,2)|0|0|0|Add(0,0)+17Add(2,0)−17√6Add(2,2)−421Add(4,0)−221√10Add(4,2)|−17√6Bdd(2,2)−221√10Bdd(4,2)|0|0|23√27Bdf(3,2)+5Bdf(5,2)33√2−5Bdf(5,4)11√6|−√335Adf(1,0)−Adf(3,0)2√105−Adf(3,2)3√14+522√521Adf(5,0)+533√2Adf(5,2)+5Adf(5,4)11√6|0|111√152Bdf(5,2)+111√52Bdf(5,4)|Adf(1,0)√7+Adf(3,0)6√7−√542Adf(3,2)−25Adf(5,0)66√7−111√103Adf(5,2)+111√52Adf(5,4)|0| | ||
+ | ^dxz|0|Apd(1,0)√5−3Apd(3,0)7√5+17√6Apd(3,2)|−17√6Bpd(3,2)|0|0|0|−17√6Bdd(2,2)−221√10Bdd(4,2)|Add(0,0)+17Add(2,0)+17√6Add(2,2)−421Add(4,0)+221√10Add(4,2)|0|0|−√335Adf(1,0)−Adf(3,0)2√105+Adf(3,2)3√14+522√521Adf(5,0)−533√2Adf(5,2)+5Adf(5,4)11√6|\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2)+\frac{5 \text{Bdf}(5,2)}{33 \sqrt{2}}+\frac{5 \text{Bdf}(5,4)}{11 \sqrt{6}} }|\color{darkred}{ 0 }|\color{darkred}{ -\frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)+\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) }|\color{darkred}{ \frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,4)-\frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,2) }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{xy}} | -\sqrt{\frac{2}{5}} \text{Bsd}(2,2) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) }| -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) | \frac{2}{7} \sqrt{2} \text{Bdd}(2,2)-\frac{1}{7} \sqrt{\frac{10}{3}} \text{Bdd}(4,2) | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) |\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2)-\frac{5}{33} \sqrt{2} \text{Bdf}(5,2) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) }| | ||
+ | ^ f_{\text{xyz}} |\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bsf}(3,2) }| 0 | 0 | -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} \text{Bpf}(4,2) |\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) }|\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,2) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) }| \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)-\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)-\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | 0 | 0 | \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) | | ||
+ | ^ f_{x\left(5x^2-r^2\right)} |\color{darkred}{ 0 }| -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)-\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2)+\frac{5 \text{Bdf}(5,2)}{33 \sqrt{2}}-\frac{5 \text{Bdf}(5,4)}{11 \sqrt{6}} }|\color{darkred}{ -\sqrt{\frac{3}{35}} \text{Adf}(1,0)-\frac{\text{Adf}(3,0)}{2 \sqrt{105}}+\frac{\text{Adf}(3,2)}{3 \sqrt{14}}+\frac{5}{22} \sqrt{\frac{5}{21}} \text{Adf}(5,0)-\frac{5}{33} \sqrt{2} \text{Adf}(5,2)+\frac{5 \text{Adf}(5,4)}{11 \sqrt{6}} }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)+\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}+\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{5 \sqrt{6}}-\frac{1}{11} \sqrt{10} \text{Bff}(4,2)-\frac{5}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Bff}(6,6) | 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | 0 | | ||
+ | ^ f_{y\left(5y^2-r^2\right)} |\color{darkred}{ 0 }| \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)-\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\sqrt{\frac{3}{35}} \text{Adf}(1,0)-\frac{\text{Adf}(3,0)}{2 \sqrt{105}}-\frac{\text{Adf}(3,2)}{3 \sqrt{14}}+\frac{5}{22} \sqrt{\frac{5}{21}} \text{Adf}(5,0)+\frac{5}{33} \sqrt{2} \text{Adf}(5,2)+\frac{5 \text{Adf}(5,4)}{11 \sqrt{6}} }|\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2)+\frac{5 \text{Bdf}(5,2)}{33 \sqrt{2}}+\frac{5 \text{Bdf}(5,4)}{11 \sqrt{6}} }|\color{darkred}{ 0 }| 0 | \frac{\text{Bff}(2,2)}{5 \sqrt{6}}-\frac{1}{11} \sqrt{10} \text{Bff}(4,2)-\frac{5}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Bff}(6,6) | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)-\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}-\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | 0 | -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | | ||
+ | ^ f_{z\left(5z^2-r^2\right)} |\color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} }| 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} |\color{darkred}{ \frac{5}{33} \sqrt{2} \text{Adf}(5,2)-\frac{2}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,2) }|\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2)-\frac{5}{33} \sqrt{2} \text{Bdf}(5,2) }| \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) | | ||
+ | ^ f_{x\left(y^2-z^2\right)} |\color{darkred}{ 0 }| -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)+\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,4) }|\color{darkred}{ -\frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)+\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) }|\color{darkred}{ 0 }| 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | 0 | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | 0 | | ||
+ | ^ f_{y\left(z^2-x^2\right)} |\color{darkred}{ 0 }| \sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}+\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)-\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) }|\color{darkred}{ \frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,4)-\frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,2) }|\color{darkred}{ 0 }| 0 | \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)-\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)-\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | 0 | | ||
+ | ^ f_{z\left(x^2-y^2\right)} |\color{darkred}{ \sqrt{\frac{2}{7}} \text{Asf}(3,2) }| 0 | 0 | \sqrt{\frac{6}{35}} \text{Apf}(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2) |\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}+\frac{1}{11} \sqrt{10} \text{Adf}(5,4) }|\color{darkred}{ \frac{1}{11} \sqrt{10} \text{Adf}(5,2) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) }| -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Coupling for a single shell ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ea} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ea} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ | ||
+ | ^ \text{s} | \text{Ea} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ \text{s} | 1 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/3)*(Ea + Ebx + Eby)} , | ||
+ | {2, 0, (5/ | ||
+ | {2, 2, (5/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \frac{\text{Ebx}+\text{Eby}}{2} | 0 | \frac{1}{2} (-\text{Ebx}+\text{Eby}-2 i \text{Mb}) | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \text{Ea} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | \frac{1}{2} (-\text{Ebx}+\text{Eby}+2 i \text{Mb}) | 0 | \frac{\text{Ebx}+\text{Eby}}{2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_x ^ p_y ^ p_z ^ | ||
+ | ^ p_x | \text{Ebx} | \text{Mb} | 0 | | ||
+ | ^ p_y | \text{Mb} | \text{Eby} | 0 | | ||
+ | ^ p_z | 0 | 0 | \text{Ea} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | | ||
+ | ^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | | ||
+ | ^ p_z | 0 | 1 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ebx} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: | | ||
+ | ^ ^\text{Eby} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: | | ||
+ | ^ ^\text{Ea} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {2, 0, (1/ | ||
+ | | ||
+ | {2, 2, (1/ | ||
+ | {4, 0, (3/ | ||
+ | {4, 2, (3)*((1/ | ||
+ | | ||
+ | {4, 4, (3/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | \frac{\text{Eax2y2}+\text{Eaxy}}{2} | 0 | \frac{\text{Maxy2yz2}+i \text{Maz2xy}}{\sqrt{2}} | 0 | \frac{1}{2} (\text{Eax2y2}-\text{Eaxy}+2 i \text{Max2y2xy}) | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | \frac{\text{Ebxz}+\text{Ebyz}}{2} | 0 | \frac{1}{2} (-\text{Ebxz}+\text{Ebyz}-2 i \text{Mb}) | 0 | | ||
+ | ^ {Y_{0}^{(2)}} | \frac{\text{Maxy2yz2}-i \text{Maz2xy}}{\sqrt{2}} | 0 | \text{Eaz2} | 0 | \frac{\text{Maxy2yz2}+i \text{Maz2xy}}{\sqrt{2}} | | ||
+ | ^ {Y_{1}^{(2)}} | 0 | \frac{1}{2} (-\text{Ebxz}+\text{Ebyz}+2 i \text{Mb}) | 0 | \frac{\text{Ebxz}+\text{Ebyz}}{2} | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | \frac{1}{2} (\text{Eax2y2}-\text{Eaxy}-2 i \text{Max2y2xy}) | 0 | \frac{\text{Maxy2yz2}-i \text{Maz2xy}}{\sqrt{2}} | 0 | \frac{\text{Eax2y2}+\text{Eaxy}}{2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
+ | ^ d_{x^2-y^2} | \text{Eax2y2} | \text{Maxy2yz2} | 0 | 0 | \text{Max2y2xy} | | ||
+ | ^ d_{3z^2-r^2} | \text{Maxy2yz2} | \text{Eaz2} | 0 | 0 | \text{Maz2xy} | | ||
+ | ^ d_{\text{yz}} | 0 | 0 | \text{Ebyz} | \text{Mb} | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | 0 | \text{Mb} | \text{Ebxz} | 0 | | ||
+ | ^ d_{\text{xy}} | \text{Max2y2xy} | \text{Maz2xy} | 0 | 0 | \text{Eaxy} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 | | ||
+ | ^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Eax2y2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: | | ||
+ | ^ ^\text{Eaz2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Ebyz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: | | ||
+ | ^ ^\text{Ebxz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: | | ||
+ | ^ ^\text{Eaxy} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 6\land (((k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2))\land k\neq 4)\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4)))\lor (m\neq -6\land m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4\land m\neq 6) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/7)*(Eax3 + Eaxy2z2 + Eay3 + Eayz2x2 + Ebxyz + Ebz3 + Ebzx2y2)} , | ||
+ | {2, 0, (-5/ | ||
+ | | ||
+ | {2, 2, (5/ | ||
+ | {4, 0, (3/ | ||
+ | {4, 2, (3/ | ||
+ | | ||
+ | | ||
+ | {4, 4, (3/ | ||
+ | {6, 0, (-13/ | ||
+ | {6, 2, (13/ | ||
+ | | ||
+ | | ||
+ | {6, 4, (-13/ | ||
+ | | ||
+ | {6, 6, (13/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-3}^{(3)}} | \frac{1}{16} \left(5 \text{Eax3}+3 \text{Eaxy2z2}+5 \text{Eay3}+3 \text{Eayz2x2}+2 \sqrt{15} (\text{May3yz2x2}-\text{Max3xy2z2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eax3}+\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}-2 \text{Max3xy2z2}+2 i \left(\sqrt{15} \text{Max3y3}-\text{Max3yz2x2}+\sqrt{15} \text{Maxy2z2yz2x2}+\text{May3xy2z2}+i \text{May3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eax3}-\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}+2 (\text{Max3xy2z2}-4 i (\text{Max3yz2x2}+\text{May3xy2z2})-\text{May3yz2x2})\right) | 0 | \frac{1}{16} \left(-5 \text{Eax3}-3 \text{Eaxy2z2}+5 \text{Eay3}+3 \text{Eayz2x2}+2 \left(\sqrt{15} \text{Max3xy2z2}+5 i \text{Max3y3}+i \sqrt{15} \text{Max3yz2x2}-3 i \text{Maxy2z2yz2x2}+\sqrt{15} (\text{May3yz2x2}-i \text{May3xy2z2})\right)\right) | | ||
+ | ^ {Y_{-2}^{(3)}} | 0 | \frac{\text{Ebxyz}+\text{Ebzx2y2}}{2} | 0 | \frac{\text{Mbz3zx2y2}+i \text{Mbxyzz3}}{\sqrt{2}} | 0 | \frac{1}{2} (-\text{Ebxyz}+\text{Ebzx2y2}+2 i \text{Mbxyzzx2y2}) | 0 | | ||
+ | ^ {Y_{-1}^{(3)}} | \frac{1}{16} \left(-\sqrt{15} \text{Eax3}+\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}-2 \text{Max3xy2z2}-2 i \left(\sqrt{15} \text{Max3y3}-\text{Max3yz2x2}+\sqrt{15} \text{Maxy2z2yz2x2}+\text{May3xy2z2}-i \text{May3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(3 \text{Eax3}+5 \text{Eaxy2z2}+3 \text{Eay3}+5 \text{Eayz2x2}+2 \sqrt{15} (\text{Max3xy2z2}-\text{May3yz2x2})\right) | 0 | \frac{1}{16} \left(-3 \text{Eax3}-5 \text{Eaxy2z2}+3 \text{Eay3}+5 \text{Eayz2x2}-2 \left(\sqrt{15} \text{Max3xy2z2}+3 i \text{Max3y3}-i \sqrt{15} \text{Max3yz2x2}-5 i \text{Maxy2z2yz2x2}+\sqrt{15} (\text{May3yz2x2}+i \text{May3xy2z2})\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eax3}-\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}+2 (\text{Max3xy2z2}-4 i (\text{Max3yz2x2}+\text{May3xy2z2})-\text{May3yz2x2})\right) | | ||
+ | ^ {Y_{0}^{(3)}} | 0 | \frac{\text{Mbz3zx2y2}-i \text{Mbxyzz3}}{\sqrt{2}} | 0 | \text{Ebz3} | 0 | \frac{\text{Mbz3zx2y2}+i \text{Mbxyzz3}}{\sqrt{2}} | 0 | | ||
+ | ^ {Y_{1}^{(3)}} | \frac{1}{16} \left(\sqrt{15} \text{Eax3}-\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}+2 (\text{Max3xy2z2}+4 i (\text{Max3yz2x2}+\text{May3xy2z2})-\text{May3yz2x2})\right) | 0 | \frac{1}{16} \left(-3 \text{Eax3}-5 \text{Eaxy2z2}+3 \text{Eay3}+5 \text{Eayz2x2}-2 \sqrt{15} \text{Max3xy2z2}+2 i \left(3 \text{Max3y3}-\sqrt{15} \text{Max3yz2x2}-5 \text{Maxy2z2yz2x2}+\sqrt{15} (\text{May3xy2z2}+i \text{May3yz2x2})\right)\right) | 0 | \frac{1}{16} \left(3 \text{Eax3}+5 \text{Eaxy2z2}+3 \text{Eay3}+5 \text{Eayz2x2}+2 \sqrt{15} (\text{Max3xy2z2}-\text{May3yz2x2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eax3}+\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}-2 \text{Max3xy2z2}+2 i \left(\sqrt{15} \text{Max3y3}-\text{Max3yz2x2}+\sqrt{15} \text{Maxy2z2yz2x2}+\text{May3xy2z2}+i \text{May3yz2x2}\right)\right) | | ||
+ | ^ {Y_{2}^{(3)}} | 0 | \frac{1}{2} (-\text{Ebxyz}+\text{Ebzx2y2}-2 i \text{Mbxyzzx2y2}) | 0 | \frac{\text{Mbz3zx2y2}-i \text{Mbxyzz3}}{\sqrt{2}} | 0 | \frac{\text{Ebxyz}+\text{Ebzx2y2}}{2} | 0 | | ||
+ | ^ {Y_{3}^{(3)}} | \frac{1}{16} \left(-5 \text{Eax3}-3 \text{Eaxy2z2}+5 \text{Eay3}+3 \text{Eayz2x2}+2 \left(\sqrt{15} \text{Max3xy2z2}-5 i \text{Max3y3}-i \sqrt{15} \text{Max3yz2x2}+3 i \text{Maxy2z2yz2x2}+\sqrt{15} (\text{May3yz2x2}+i \text{May3xy2z2})\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eax3}-\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}+2 (\text{Max3xy2z2}+4 i (\text{Max3yz2x2}+\text{May3xy2z2})-\text{May3yz2x2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eax3}+\sqrt{15} \text{Eaxy2z2}+\sqrt{15} \text{Eay3}-\sqrt{15} \text{Eayz2x2}-2 \text{Max3xy2z2}-2 i \left(\sqrt{15} \text{Max3y3}-\text{Max3yz2x2}+\sqrt{15} \text{Maxy2z2yz2x2}+\text{May3xy2z2}-i \text{May3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(5 \text{Eax3}+3 \text{Eaxy2z2}+5 \text{Eay3}+3 \text{Eayz2x2}+2 \sqrt{15} (\text{May3yz2x2}-\text{Max3xy2z2})\right) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ f_{\text{xyz}} | \text{Ebxyz} | 0 | 0 | \text{Mbxyzz3} | 0 | 0 | \text{Mbxyzzx2y2} | | ||
+ | ^ f_{x\left(5x^2-r^2\right)} | 0 | \text{Eax3} | \text{Max3y3} | 0 | \text{Max3xy2z2} | \text{Max3yz2x2} | 0 | | ||
+ | ^ f_{y\left(5y^2-r^2\right)} | 0 | \text{Max3y3} | \text{Eay3} | 0 | \text{May3xy2z2} | \text{May3yz2x2} | 0 | | ||
+ | ^ f_{z\left(5z^2-r^2\right)} | \text{Mbxyzz3} | 0 | 0 | \text{Ebz3} | 0 | 0 | \text{Mbz3zx2y2} | | ||
+ | ^ f_{x\left(y^2-z^2\right)} | 0 | \text{Max3xy2z2} | \text{May3xy2z2} | 0 | \text{Eaxy2z2} | \text{Maxy2z2yz2x2} | 0 | | ||
+ | ^ f_{y\left(z^2-x^2\right)} | 0 | \text{Max3yz2x2} | \text{May3yz2x2} | 0 | \text{Maxy2z2yz2x2} | \text{Eayz2x2} | 0 | | ||
+ | ^ f_{z\left(x^2-y^2\right)} | \text{Mbxyzzx2y2} | 0 | 0 | \text{Mbz3zx2y2} | 0 | 0 | \text{Ebzx2y2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x\left(5x^2-r^2\right)} | \frac{\sqrt{5}}{4} | 0 | -\frac{\sqrt{3}}{4} | 0 | \frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | | ||
+ | ^ f_{y\left(5y^2-r^2\right)} | -\frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{5}}{4} | | ||
+ | ^ f_{z\left(5z^2-r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(y^2-z^2\right)} | -\frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{3}}{4} | | ||
+ | ^ f_{y\left(z^2-x^2\right)} | -\frac{i \sqrt{3}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} | | ||
+ | ^ f_{z\left(x^2-y^2\right)} | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ebxyz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: | | ||
+ | ^ ^\text{Eax3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )-5 \cos (2 \theta )-7\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} x \left(5 x^2-15 y^2-15 z^2+3\right) | ::: | | ||
+ | ^ ^\text{Eay3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )+7\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} y \left(-15 x^2+5 y^2-15 z^2+3\right) | ::: | | ||
+ | ^ ^\text{Ebz3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta )) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right) | ::: | | ||
+ | ^ ^\text{Eaxy2z2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{105}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \sin ^2(\theta ) \cos (2 \phi )+3 \cos (2 \theta )+1\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{105}{\pi }} x \left(x^2-3 y^2+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eayz2x2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{105}{\pi }} \sin (\theta ) \sin (\phi ) \left(-4 \sin ^2(\theta ) \cos (2 \phi )+6 \cos (2 \theta )+2\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{105}{\pi }} y \left(-3 x^2+y^2+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Ebzx2y2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s-p orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 1\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{1, 0, A(1,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | 0 | \frac{A(1,0)}{\sqrt{3}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_x ^ p_y ^ p_z ^ | ||
+ | ^ \text{s} | 0 | 0 | \frac{A(1,0)}{\sqrt{3}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | | ||
+ | {2, 2, A(2,2) + (I)*(B(2, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \frac{A(2,2)+i B(2,2)}{\sqrt{5}} | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | \frac{A(2,2)-i B(2,2)}{\sqrt{5}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
+ | ^ \text{s} | \sqrt{\frac{2}{5}} A(2,2) | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 | -\sqrt{\frac{2}{5}} B(2,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 3\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{3, 0, A(3,0)} , | ||
+ | | ||
+ | {3, 2, A(3,2) + (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | 0 | \frac{A(3,2)+i B(3,2)}{\sqrt{7}} | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | \frac{A(3,2)-i B(3,2)}{\sqrt{7}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ \text{s} | -\sqrt{\frac{2}{7}} B(3,2) | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | \sqrt{\frac{2}{7}} A(3,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 3\land (k\neq 1\lor m\neq 0))\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{1, 0, A(1,0)} , | ||
+ | {3, 0, A(3,0)} , | ||
+ | | ||
+ | {3, 2, A(3,2) + (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | -\frac{1}{7} \sqrt{6} (A(3,2)-i B(3,2)) | 0 | | ||
+ | ^ {Y_{0}^{(1)}} | \frac{1}{7} \sqrt{3} (A(3,2)+i B(3,2)) | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | \frac{1}{7} \sqrt{3} (A(3,2)-i B(3,2)) | | ||
+ | ^ {Y_{1}^{(1)}} | 0 | -\frac{1}{7} \sqrt{6} (A(3,2)+i B(3,2)) | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
+ | ^ p_x | 0 | 0 | -\frac{1}{7} \sqrt{6} B(3,2) | \frac{1}{35} \left(7 \sqrt{5} A(1,0)-3 \sqrt{5} A(3,0)+5 \sqrt{6} A(3,2)\right) | 0 | | ||
+ | ^ p_y | 0 | 0 | \frac{1}{35} \left(7 \sqrt{5} A(1,0)-3 \sqrt{5} A(3,0)-5 \sqrt{6} A(3,2)\right) | -\frac{1}{7} \sqrt{6} B(3,2) | 0 | | ||
+ | ^ p_z | \frac{1}{7} \sqrt{6} A(3,2) | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 | -\frac{1}{7} \sqrt{6} B(3,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | | ||
+ | {2, 2, A(2,2) + (I)*(B(2, | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 2, A(4,2) + (I)*(B(4, | ||
+ | | ||
+ | {4, 4, A(4,4) + (I)*(B(4, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \frac{3 (A(2,2)+i B(2,2))}{\sqrt{35}}-\frac{A(4,2)+i B(4,2)}{3 \sqrt{21}} | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)-i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)-i B(4,2)) | 0 | -\frac{2 (A(4,4)-i B(4,4))}{3 \sqrt{3}} | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)+i B(2,2))+\frac{2 (A(4,2)+i B(4,2))}{3 \sqrt{7}} | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)-i B(2,2))+\frac{2 (A(4,2)-i B(4,2))}{3 \sqrt{7}} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | -\frac{2 (A(4,4)+i B(4,4))}{3 \sqrt{3}} | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)+i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)+i B(4,2)) | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{3 (A(2,2)-i B(2,2))}{\sqrt{35}}-\frac{A(4,2)-i B(4,2)}{3 \sqrt{21}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ p_x | 0 | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)+81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)-2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)+7 B(4,4)\right)\right) | 0 | \frac{1}{210} \left(-9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)+5 \left(\sqrt{35} A(4,0)-2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | \sqrt{\frac{6}{35}} B(2,2)-\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | 0 | | ||
+ | ^ p_y | 0 | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)-7 B(4,4)\right)\right) | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)-81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)+2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | 0 | -\sqrt{\frac{6}{35}} B(2,2)+\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0 | | ||
+ | ^ p_z | -\sqrt{\frac{6}{35}} B(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} B(4,2) | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | \sqrt{\frac{6}{35}} A(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} A(4,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 5\land (((k\neq 1\lor m\neq 0)\land k\neq 3)\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C2_Z.Quanty> | ||
+ | |||
+ | Akm = {{1, 0, A(1,0)} , | ||
+ | {3, 0, A(3,0)} , | ||
+ | | ||
+ | {3, 2, A(3,2) + (I)*(B(3, | ||
+ | {5, 0, A(5,0)} , | ||
+ | | ||
+ | {5, 2, A(5,2) + (I)*(B(5, | ||
+ | | ||
+ | {5, 4, A(5,4) + (I)*(B(5, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | \frac{5}{33} (A(5,2)-i B(5,2))-\frac{2 (A(3,2)-i B(3,2))}{3 \sqrt{7}} | 0 | \frac{1}{11} \sqrt{10} (A(5,4)-i B(5,4)) | 0 | | ||
+ | ^ {Y_{-1}^{(2)}} | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,2)+i B(3,2))-\frac{1}{33} \sqrt{5} (A(5,2)+i B(5,2)) | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | -\frac{A(3,2)-i B(3,2)}{\sqrt{21}}-\frac{5 (A(5,2)-i B(5,2))}{11 \sqrt{3}} | 0 | -\frac{2}{11} \sqrt{\frac{5}{3}} (A(5,4)-i B(5,4)) | | ||
+ | ^ {Y_{0}^{(2)}} | 0 | \frac{1}{11} \sqrt{5} (A(5,2)+i B(5,2)) | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | \frac{1}{11} \sqrt{5} (A(5,2)-i B(5,2)) | 0 | | ||
+ | ^ {Y_{1}^{(2)}} | -\frac{2}{11} \sqrt{\frac{5}{3}} (A(5,4)+i B(5,4)) | 0 | -\frac{A(3,2)+i B(3,2)}{\sqrt{21}}-\frac{5 (A(5,2)+i B(5,2))}{11 \sqrt{3}} | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,2)-i B(3,2))-\frac{1}{33} \sqrt{5} (A(5,2)-i B(5,2)) | | ||
+ | ^ {Y_{2}^{(2)}} | 0 | \frac{1}{11} \sqrt{10} (A(5,4)+i B(5,4)) | 0 | \frac{5}{33} (A(5,2)+i B(5,2))-\frac{2 (A(3,2)+i B(3,2))}{3 \sqrt{7}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ d_{x^2-y^2} | -\frac{1}{11} \sqrt{10} B(5,4) | 0 | 0 | \frac{5}{33} \sqrt{2} A(5,2)-\frac{2}{3} \sqrt{\frac{2}{7}} A(3,2) | 0 | 0 | \frac{1}{231} \left(33 \sqrt{7} A(1,0)-22 \sqrt{7} A(3,0)+5 \sqrt{7} A(5,0)+21 \sqrt{10} A(5,4)\right) | | ||
+ | ^ d_{3z^2-r^2} | -\frac{1}{11} \sqrt{10} B(5,2) | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | \frac{1}{11} \sqrt{10} A(5,2) | | ||
+ | ^ d_{\text{yz}} | 0 | \frac{44 \sqrt{7} B(3,2)+35 \left(B(5,2)-\sqrt{3} B(5,4)\right)}{231 \sqrt{2}} | \frac{-66 \sqrt{105} A(1,0)-11 \sqrt{105} A(3,0)+5 \left(-11 \sqrt{14} A(3,2)+5 \sqrt{105} A(5,0)+70 \sqrt{2} A(5,2)+35 \sqrt{6} A(5,4)\right)}{2310} | 0 | \frac{1}{11} \sqrt{\frac{5}{2}} \left(\sqrt{3} B(5,2)+B(5,4)\right) | \frac{1}{462} \left(66 \sqrt{7} A(1,0)+11 \sqrt{7} A(3,0)-11 \sqrt{210} A(3,2)-25 \sqrt{7} A(5,0)-14 \sqrt{30} A(5,2)+21 \sqrt{10} A(5,4)\right) | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | \frac{-66 \sqrt{105} A(1,0)-11 \sqrt{105} A(3,0)+5 \left(11 \sqrt{14} A(3,2)+5 \sqrt{105} A(5,0)-70 \sqrt{2} A(5,2)+35 \sqrt{6} A(5,4)\right)}{2310} | \frac{44 \sqrt{7} B(3,2)+35 \left(B(5,2)+\sqrt{3} B(5,4)\right)}{231 \sqrt{2}} | 0 | -\frac{66 \sqrt{35} A(1,0)+11 \sqrt{35} A(3,0)+55 \sqrt{42} A(3,2)-25 \sqrt{35} A(5,0)+70 \sqrt{6} A(5,2)+105 \sqrt{2} A(5,4)}{462 \sqrt{5}} | \frac{1}{11} \sqrt{\frac{5}{2}} \left(B(5,4)-\sqrt{3} B(5,2)\right) | 0 | | ||
+ | ^ d_{\text{xy}} | \frac{1}{231} \left(33 \sqrt{7} A(1,0)-22 \sqrt{7} A(3,0)+5 \sqrt{7} A(5,0)-21 \sqrt{10} A(5,4)\right) | 0 | 0 | \frac{2}{3} \sqrt{\frac{2}{7}} B(3,2)-\frac{5}{33} \sqrt{2} B(5,2) | 0 | 0 | -\frac{1}{11} \sqrt{10} B(5,4) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |