Processing math: 86%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
physics_chemistry:point_groups:c4:orientation_z [2018/03/21 15:16] Stefano Agrestiniphysics_chemistry:point_groups:c4:orientation_z [2018/04/06 09:11] (current) Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation Z ====== ====== Orientation Z ======
 +
 +===== Symmetry Operations =====
  
 ### ###
-alligned paragraph text+ 
 +In the C4 Point Group, with orientation Z there are the following symmetry operations 
 ### ###
  
-===== Example =====+### 
 + 
 +{{:physics_chemistry:pointgroup:c4_z.png}}
  
 ### ###
-description text+
 ### ###
  
-==== Input ==== +^ Operator ^ Orientation ^ 
-<code Quanty Example.Quanty> +^ E | {0,0,0} , | 
--- some example code+^ C4 | {0,0,1} , {0,0,1} , | 
 +^ C2 | {0,0,1} , | 
 + 
 +### 
 + 
 +===== Different Settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c4:orientation_x|Point Group C4 with orientation X]] 
 +  * [[physics_chemistry:point_groups:c4:orientation_y|Point Group C4 with orientation Y]] 
 +  * [[physics_chemistry:point_groups:c4:orientation_z|Point Group C4 with orientation Z]] 
 + 
 +### 
 + 
 +===== Character Table ===== 
 + 
 +### 
 + 
 +  ^  E(1)  ^  C4(2)  ^  C2(1)  ^ 
 +^ A111
 +^ B111
 +^ E202
 + 
 +### 
 + 
 +===== Product Table ===== 
 + 
 +### 
 + 
 +  ^  A  ^  B  ^  E  ^ 
 +^ A  | A  | B  | E  | 
 +^ B  | B  | A  | E  | 
 +^ E  | E  | E  | 2A+2B  | 
 + 
 +### 
 + 
 +===== Sub Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] 
 +  * [[physics_chemistry:point_groups:c2:orientation_z|Point Group C2 with orientation Z]] 
 + 
 +### 
 + 
 +===== Super Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c4h:orientation_z|Point Group C4h with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c4v:orientation_zxy|Point Group C4v with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:d4d:orientation_zxy|Point Group D4d with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:d4:orientation_zxy|Point Group D4 with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_xyz|Point Group Oh with orientation XYZ]] 
 +  * [[physics_chemistry:point_groups:o:orientation_xyz|Point Group O with orientation XYZ]] 
 + 
 +### 
 + 
 +===== Invariant Potential expanded on renormalized spherical Harmonics ===== 
 + 
 +### 
 + 
 +Any potential (function) can be written as a sum over spherical harmonics. 
 +V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) 
 +Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) 
 +The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the C4 Point group with orientation Z the form of the expansion coefficients is: 
 + 
 +### 
 + 
 +==== Expansion ==== 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + A(0,0) & k=0\land m=0 \\ 
 + A(1,0) & k=1\land m=0 \\ 
 + A(2,0) & k=2\land m=0 \\ 
 + A(3,0) & k=3\land m=0 \\ 
 + A(4,4)-i B(4,4) & k=4\land m=-4 \\ 
 + A(4,0) & k=4\land m=0 \\ 
 + A(4,4)+i B(4,4) & k=4\land m=4 \\ 
 + A(5,4)-i B(5,4) & k=5\land m=-4 \\ 
 + A(5,0) & k=5\land m=0 \\ 
 + A(5,4)+i B(5,4) & k=5\land m=4 \\ 
 + A(6,4)-i B(6,4) & k=6\land m=-4 \\ 
 + A(6,0) & k=6\land m=0 \\ 
 + A(6,4)+i B(6,4) & k=6\land m=4 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +==== Input format suitable for Mathematica (Quanty.nb) ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_C4_Z.Quanty.nb
 + 
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[1, 0], k == 1 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[3, 0], k == 3 && m == 0}, {A[4, 4] I*B[4, 4], k == 4 && m == -4}, {A[4, 0], k == 4 && m == 0}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {A[5, 4] - I*B[5, 4], k == 5 && m == -4}, {A[5, 0], k == 5 && m == 0}, {A[5, 4] + I*B[5, 4], k == 5 && m == 4}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 0], k == 6 && m == 0}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}}, 0] 
 </code> </code>
  
-==== Result ==== +###
-<WRAP center box 100%> +
-text produced as output +
-</WRAP>+
  
-===== Table of contents ===== +==== Input format suitable for Quanty ====
-{{indexmenu>.#1}}+
  
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{0, 0, A(0,0)} , 
 +       {1, 0, A(1,0)} , 
 +       {2, 0, A(2,0)} , 
 +       {3, 0, A(3,0)} , 
 +       {4, 0, A(4,0)} , 
 +       {4,-4, A(4,4) + (-I)*(B(4,4))} , 
 +       {4, 4, A(4,4) + (I)*(B(4,4))} , 
 +       {5, 0, A(5,0)} , 
 +       {5,-4, A(5,4) + (-I)*(B(5,4))} , 
 +       {5, 4, A(5,4) + (I)*(B(5,4))} , 
 +       {6, 0, A(6,0)} , 
 +       {6,-4, A(6,4) + (-I)*(B(6,4))} , 
 +       {6, 4, A(6,4) + (I)*(B(6,4))} }
 +
 +</code>
 +
 +###
 +
 +==== One particle coupling on a basis of spherical harmonics ====
 +
 +###
 +
 +The operator representing the potential in second quantisation is given as:
 +O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
 +Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l
 +Note the difference between the function Ak,m and the parameter Anl,nl(k,m)
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +we can express the operator as 
 +O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^Y(0)0|Ass(0,0)|0|Asp(1,0)3|0|0|0|Asd(2,0)5|0|0|0|0|0|Asf(3,0)7|0|0|0|
 +^Y(1)1|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2(Apf(4,4)iBpf(4,4))33|
 +^Y(1)0|Asp(1,0)3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|
 +^Y(1)1|0|0|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|2(Apf(4,4)+iBpf(4,4))33|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|
 +^Y(2)2|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|0|13107(Add(4,4)iBdd(4,4))|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|0|11110(Adf(5,4)iBdf(5,4))|0|
 +^Y(2)1|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|21153(Adf(5,4)iBdf(5,4))|
 +^Y(2)0|Asd(2,0)5|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|0|
 +^Y(2)1|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|21153(Adf(5,4)+iBdf(5,4))|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|
 +^Y(2)2|0|0|0|0|13107(Add(4,4)+iBdd(4,4))|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|11110(Adf(5,4)+iBdf(5,4))|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|
 +^Y(3)3|0|0|0|2(Apf(4,4)iBpf(4,4))33|0|0|0|21153(Adf(5,4)iBdf(5,4))|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|0|0|0|111143(Aff(4,4)iBff(4,4))5143703(Aff(6,4)iBff(6,4))|0|0|
 +^Y(3)2|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|0|11110(Adf(5,4)iBdf(5,4))|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|0|0|13370(Aff(4,4)iBff(4,4))+1014314(Aff(6,4)iBff(6,4))|0|
 +^Y(3)1|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|0|111143(Aff(4,4)iBff(4,4))5143703(Aff(6,4)iBff(6,4))|
 +^Y(3)0|Asf(3,0)7|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|0|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|0|
 +^Y(3)1|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|111143(Aff(4,4)+iBff(4,4))5143703(Aff(6,4)+iBff(6,4))|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|
 +^Y(3)2|0|0|0|0|11110(Adf(5,4)+iBdf(5,4))|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|13370(Aff(4,4)+iBff(4,4))+1014314(Aff(6,4)+iBff(6,4))|0|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|
 +^Y(3)3|0|2(Apf(4,4)+iBpf(4,4))33|0|0|0|21153(Adf(5,4)+iBdf(5,4))|0|0|0|0|0|111143(Aff(4,4)+iBff(4,4))5143703(Aff(6,4)+iBff(6,4))|0|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|
 +
 +
 +###
 +
 +==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
 +
 +###
 +
 +
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^s|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^py|0|i2|0|i2|0|0|0|0|0|0|0|0|0|0|0|0|
 +^pz|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^px|0|12|0|12|0|0|0|0|0|0|0|0|0|0|0|0|
 +^dxy|0|0|0|0|i2|0|0|0|i2|0|0|0|0|0|0|0|
 +^dyz|0|0|0|0|0|i2|0|i2|0|0|0|0|0|0|0|0|
 +^d3z2r2|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|
 +^dxz|0|0|0|0|0|12|0|12|0|0|0|0|0|0|0|0|
 +^dx2y2|0|0|0|0|12|0|0|0|12|0|0|0|0|0|0|0|
 +^fy(3x2y2)|0|0|0|0|0|0|0|0|0|i2|0|0|0|0|0|i2|
 +^fxyz|0|0|0|0|0|0|0|0|0|0|i2|0|0|0|i2|0|
 +^fy(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|i2|0|i2|0|0|
 +^fz(5z23r2)|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|
 +^fx(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|12|0|12|0|0|
 +^fz(x2y2)|0|0|0|0|0|0|0|0|0|0|12|0|0|0|12|0|
 +^fx(x23y2)|0|0|0|0|0|0|0|0|0|12|0|0|0|0|0|12|
 +
 +
 +###
 +
 +==== One particle coupling on a basis of symmetry adapted functions ====
 +
 +###
 +
 +After rotation we find
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  s  ^  py  ^  pz  ^  px  ^  dxy  ^  dyz  ^  d3z2r2  ^  dxz  ^  dx2y2  ^  fy(3x2y2)  ^  fxyz  ^  fy(5z2r2)  ^  fz(5z23r2)  ^  fx(5z2r2)  ^  fz(x2y2)  ^  fx(x23y2)  ^
 +^s|Ass(0,0)|0|Asp(1,0)3|0|0|0|Asd(2,0)5|0|0|0|0|0|Asf(3,0)7|0|0|0|
 +^py|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|2Apf(4,4)33|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2Bpf(4,4)33|
 +^pz|Asp(1,0)3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|
 +^px|0|0|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|2Bpf(4,4)33|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|2Apf(4,4)33|
 +^dxy|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)13107Add(4,4)|0|0|0|13107Bdd(4,4)|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)33711110Adf(5,4)|0|0|0|11110Bdf(5,4)|0|
 +^dyz|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|0|21153Adf(5,4)|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|21153Bdf(5,4)|
 +^d3z2r2|Asd(2,0)5|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|0|
 +^dxz|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|21153Bdf(5,4)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|21153Adf(5,4)|
 +^dx2y2|0|0|0|0|13107Bdd(4,4)|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)+13107Add(4,4)|0|11110Bdf(5,4)|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337+11110Adf(5,4)|0|
 +^fy(3x2y2)|0|2Apf(4,4)33|0|2Bpf(4,4)33|0|21153Adf(5,4)|0|21153Bdf(5,4)|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|0|111143Aff(4,4)5143703Aff(6,4)|0|111143Bff(4,4)5143703Bff(6,4)|0|0|
 +^fxyz|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)33711110Adf(5,4)|0|0|0|11110Bdf(5,4)|0|Aff(0,0)733Aff(4,0)13370Aff(4,4)+10143Aff(6,0)1014314Aff(6,4)|0|0|0|13370Bff(4,4)1014314Bff(6,4)|0|
 +^fy(5z2r2)|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|111143Aff(4,4)5143703Aff(6,4)|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|0|111143Bff(4,4)5143703Bff(6,4)|
 +^fz(5z23r2)|Asf(3,0)7|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|0|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|0|
 +^fx(5z2r2)|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|111143Bff(4,4)5143703Bff(6,4)|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|5143703Aff(6,4)111143Aff(4,4)|
 +^fz(x2y2)|0|0|0|0|11110Bdf(5,4)|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337+11110Adf(5,4)|0|13370Bff(4,4)1014314Bff(6,4)|0|0|0|Aff(0,0)733Aff(4,0)+13370Aff(4,4)+10143Aff(6,0)+1014314Aff(6,4)|0|
 +^fx(x23y2)|0|2Bpf(4,4)33|0|2Apf(4,4)33|0|21153Bdf(5,4)|0|21153Adf(5,4)|0|0|0|111143Bff(4,4)5143703Bff(6,4)|0|5143703Aff(6,4)111143Aff(4,4)|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|
 +
 +
 +###
 +
 +===== Coupling for a single shell =====
 +
 +
 +
 +###
 +
 +Although the parameters Al,l(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al,l(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l and l.
 +
 +###
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Ea} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Ea, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{0, 0, Ea} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +  ^  Y(0)0  ^
 +^Y(0)0|Ea|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +  ^  s  ^
 +^s|Ea|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +  ^  Y(0)0  ^
 +^s|1|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^Ea | {{:physics_chemistry:pointgroup:c4_z_orb_0_1.png?150}} |
 +|ψ(θ,ϕ)=11 |12π | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |12π | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{3} (\text{Ea}+2 \text{Ee}) & k=0\land m=0 \\
 + 0 & k\neq 2\lor m\neq 0 \\
 + \frac{5 (\text{Ea}-\text{Ee})}{3} & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + 2*Ee)/3, k == 0 && m == 0}, {0, k != 2 || m != 0}}, (5*(Ea - Ee))/3]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{0, 0, (1/3)*(Ea + (2)*(Ee))} , 
 +       {2, 0, (5/3)*(Ea + (-1)*(Ee))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^
 +^Y(1)1|Ee|0|0|
 +^Y(1)0|0|Ea|0|
 +^Y(1)1|0|0|Ee|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +  ^  py  ^  pz  ^  px  ^
 +^py|Ee|0|0|
 +^pz|0|Ea|0|
 +^px|0|0|Ee|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^
 +^py|i2|0|i2|
 +^pz|0|1|0|
 +^px|12|0|12|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^Ee | {{:physics_chemistry:pointgroup:c4_z_orb_1_1.png?150}} |
 +|ψ(θ,ϕ)=11 |123πsin(θ)sin(ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |123πy | ::: |
 +^ ^Ea | {{:physics_chemistry:pointgroup:c4_z_orb_1_2.png?150}} |
 +|ψ(θ,ϕ)=11 |123πcos(θ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |123πz | ::: |
 +^ ^Ee | {{:physics_chemistry:pointgroup:c4_z_orb_1_3.png?150}} |
 +|ψ(θ,ϕ)=11 |123πsin(θ)cos(ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |123πx | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{5} (\text{Ea}+\text{Ebx2y2}+\text{Ebxy}+2 \text{Ee}) & k=0\land m=0 \\
 + 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\
 + \text{Ea}-\text{Ebx2y2}-\text{Ebxy}+\text{Ee} & k=2\land m=0 \\
 + \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Ebx2y2}-\text{Ebxy}+2 i \text{Mb}) & k=4\land m=-4 \\
 + \frac{3}{10} (6 \text{Ea}+\text{Ebx2y2}+\text{Ebxy}-8 \text{Ee}) & k=4\land m=0 \\
 + \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Ebx2y2}-\text{Ebxy}-2 i \text{Mb}) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + Ebx2y2 + Ebxy + 2*Ee)/5, k == 0 && m == 0}, {0, (k != 4 && (k != 2 || m != 0)) || (m != -4 && m != 0 && m != 4)}, {Ea - Ebx2y2 - Ebxy + Ee, k == 2 && m == 0}, {(3*Sqrt[7/10]*(Ebx2y2 - Ebxy + (2*I)*Mb))/2, k == 4 && m == -4}, {(3*(6*Ea + Ebx2y2 + Ebxy - 8*Ee))/10, k == 4 && m == 0}}, (3*Sqrt[7/10]*(Ebx2y2 - Ebxy - (2*I)*Mb))/2]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{0, 0, (1/5)*(Ea + Ebx2y2 + Ebxy + (2)*(Ee))} , 
 +       {2, 0, Ea + (-1)*(Ebx2y2) + (-1)*(Ebxy) + Ee} , 
 +       {4, 0, (3/10)*((6)*(Ea) + Ebx2y2 + Ebxy + (-8)*(Ee))} , 
 +       {4, 4, (3/2)*((sqrt(7/10))*(Ebx2y2 + (-1)*(Ebxy) + (-2*I)*(Mb)))} , 
 +       {4,-4, (3/2)*((sqrt(7/10))*(Ebx2y2 + (-1)*(Ebxy) + (2*I)*(Mb)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^
 +^Y(2)2|Ebx2y2+Ebxy2|0|0|0|12(Ebx2y2Ebxy+2iMb)|
 +^Y(2)1|0|Ee|0|0|0|
 +^Y(2)0|0|0|Ea|0|0|
 +^Y(2)1|0|0|0|Ee|0|
 +^Y(2)2|12(Ebx2y2Ebxy2iMb)|0|0|0|Ebx2y2+Ebxy2|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +  ^  dxy  ^  dyz  ^  d3z2r2  ^  dxz  ^  dx2y2  ^
 +^dxy|Ebxy|0|0|0|Mb|
 +^dyz|0|Ee|0|0|0|
 +^d3z2r2|0|0|Ea|0|0|
 +^dxz|0|0|0|Ee|0|
 +^dx2y2|Mb|0|0|0|Ebx2y2|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^
 +^dxy|i2|0|0|0|i2|
 +^dyz|0|i2|0|i2|0|
 +^d3z2r2|0|0|1|0|0|
 +^dxz|0|12|0|12|0|
 +^dx2y2|12|0|0|0|12|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^Ebxy | {{:physics_chemistry:pointgroup:c4_z_orb_2_1.png?150}} |
 +|ψ(θ,ϕ)=11 |1415πsin2(θ)sin(2ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πxy | ::: |
 +^ ^Ee | {{:physics_chemistry:pointgroup:c4_z_orb_2_2.png?150}} |
 +|ψ(θ,ϕ)=11 |1415πsin(2θ)sin(ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πyz | ::: |
 +^ ^Ea | {{:physics_chemistry:pointgroup:c4_z_orb_2_3.png?150}} |
 +|ψ(θ,ϕ)=11 |185π(3cos(2θ)+1) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |145π(3z21) | ::: |
 +^ ^Ee | {{:physics_chemistry:pointgroup:c4_z_orb_2_4.png?150}} |
 +|ψ(θ,ϕ)=11 |1415πsin(2θ)cos(ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |1215πxz | ::: |
 +^ ^Ebx2y2 | {{:physics_chemistry:pointgroup:c4_z_orb_2_5.png?150}} |
 +|ψ(θ,ϕ)=11 |1415πsin2(θ)cos(2ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |1415π(x2y2) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for f orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{7} (\text{Ea}+\text{Ebxyz}+\text{Ebzx2y2}+2 \text{Ee1}+2 \text{Ee3}) & k=0\land m=0 \\
 + 0 & (k\neq 4\land k\neq 6\land (k\neq 2\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\
 + \frac{5}{14} (2 \text{Ea}+3 \text{Ee1}-5 \text{Ee3}) & k=2\land m=0 \\
 + \frac{3}{28} \left(-\sqrt{70} \text{Ebxyz}+\sqrt{70} \text{Ebzx2y2}+2 i \sqrt{70} \text{Mb}-4 i \sqrt{42} \text{MeIm}+4 \sqrt{42} \text{MeRe}\right) & k=4\land m=-4 \\
 + \frac{3}{14} (6 \text{Ea}-7 \text{Ebxyz}-7 \text{Ebzx2y2}+2 \text{Ee1}+6 \text{Ee3}) & k=4\land m=0 \\
 + \frac{3}{28} \left(-\sqrt{70} \text{Ebxyz}+\sqrt{70} \text{Ebzx2y2}-2 i \sqrt{70} \text{Mb}+4 i \sqrt{42} \text{MeIm}+4 \sqrt{42} \text{MeRe}\right) & k=4\land m=4 \\
 + -\frac{13 \left(3 \text{Ebxyz}-3 \text{Ebzx2y2}-6 i \text{Mb}-2 i \sqrt{15} \text{MeIm}+2 \sqrt{15} \text{MeRe}\right)}{10 \sqrt{14}} & k=6\land m=-4 \\
 + \frac{13}{70} (10 \text{Ea}+3 \text{Ebxyz}+3 \text{Ebzx2y2}-15 \text{Ee1}-\text{Ee3}) & k=6\land m=0 \\
 + -\frac{13 \left(3 \text{Ebxyz}-3 \text{Ebzx2y2}+6 i \text{Mb}+2 i \sqrt{15} \text{MeIm}+2 \sqrt{15} \text{MeRe}\right)}{10 \sqrt{14}} & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + Ebxyz + Ebzx2y2 + 2*Ee1 + 2*Ee3)/7, k == 0 && m == 0}, {0, (k != 4 && k != 6 && (k != 2 || m != 0)) || (m != -4 && m != 0 && m != 4)}, {(5*(2*Ea + 3*Ee1 - 5*Ee3))/14, k == 2 && m == 0}, {(3*(-(Sqrt[70]*Ebxyz) + Sqrt[70]*Ebzx2y2 + (2*I)*Sqrt[70]*Mb - (4*I)*Sqrt[42]*MeIm + 4*Sqrt[42]*MeRe))/28, k == 4 && m == -4}, {(3*(6*Ea - 7*Ebxyz - 7*Ebzx2y2 + 2*Ee1 + 6*Ee3))/14, k == 4 && m == 0}, {(3*(-(Sqrt[70]*Ebxyz) + Sqrt[70]*Ebzx2y2 - (2*I)*Sqrt[70]*Mb + (4*I)*Sqrt[42]*MeIm + 4*Sqrt[42]*MeRe))/28, k == 4 && m == 4}, {(-13*(3*Ebxyz - 3*Ebzx2y2 - (6*I)*Mb - (2*I)*Sqrt[15]*MeIm + 2*Sqrt[15]*MeRe))/(10*Sqrt[14]), k == 6 && m == -4}, {(13*(10*Ea + 3*Ebxyz + 3*Ebzx2y2 - 15*Ee1 - Ee3))/70, k == 6 && m == 0}}, (-13*(3*Ebxyz - 3*Ebzx2y2 + (6*I)*Mb + (2*I)*Sqrt[15]*MeIm + 2*Sqrt[15]*MeRe))/(10*Sqrt[14])]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{0, 0, (1/7)*(Ea + Ebxyz + Ebzx2y2 + (2)*(Ee1) + (2)*(Ee3))} , 
 +       {2, 0, (5/14)*((2)*(Ea) + (3)*(Ee1) + (-5)*(Ee3))} , 
 +       {4, 0, (3/14)*((6)*(Ea) + (-7)*(Ebxyz) + (-7)*(Ebzx2y2) + (2)*(Ee1) + (6)*(Ee3))} , 
 +       {4, 4, (3/28)*((-1)*((sqrt(70))*(Ebxyz)) + (sqrt(70))*(Ebzx2y2) + (-2*I)*((sqrt(70))*(Mb)) + (4*I)*((sqrt(42))*(MeIm)) + (4)*((sqrt(42))*(MeRe)))} , 
 +       {4,-4, (3/28)*((-1)*((sqrt(70))*(Ebxyz)) + (sqrt(70))*(Ebzx2y2) + (2*I)*((sqrt(70))*(Mb)) + (-4*I)*((sqrt(42))*(MeIm)) + (4)*((sqrt(42))*(MeRe)))} , 
 +       {6, 0, (13/70)*((10)*(Ea) + (3)*(Ebxyz) + (3)*(Ebzx2y2) + (-15)*(Ee1) + (-1)*(Ee3))} , 
 +       {6,-4, (-13/10)*((1/(sqrt(14)))*((3)*(Ebxyz) + (-3)*(Ebzx2y2) + (-6*I)*(Mb) + (-2*I)*((sqrt(15))*(MeIm)) + (2)*((sqrt(15))*(MeRe))))} , 
 +       {6, 4, (-13/10)*((1/(sqrt(14)))*((3)*(Ebxyz) + (-3)*(Ebzx2y2) + (6*I)*(Mb) + (2*I)*((sqrt(15))*(MeIm)) + (2)*((sqrt(15))*(MeRe))))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^Y(3)3|Ee3|0|0|0|MeReiMeIm|0|0|
 +^Y(3)2|0|Ebxyz+Ebzx2y22|0|0|0|12(Ebxyz+Ebzx2y2+2iMb)|0|
 +^Y(3)1|0|0|Ee1|0|0|0|MeReiMeIm|
 +^Y(3)0|0|0|0|Ea|0|0|0|
 +^Y(3)1|MeRe+iMeIm|0|0|0|Ee1|0|0|
 +^Y(3)2|0|12(Ebxyz+Ebzx2y22iMb)|0|0|0|Ebxyz+Ebzx2y22|0|
 +^Y(3)3|0|0|MeRe+iMeIm|0|0|0|Ee3|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +  ^  fy(3x2y2)  ^  fxyz  ^  fy(5z2r2)  ^  fz(5z23r2)  ^  fx(5z2r2)  ^  fz(x2y2)  ^  fx(x23y2)  ^
 +^fy(3x2y2)|Ee3|0|MeRe|0|MeIm|0|0|
 +^fxyz|0|Ebxyz|0|0|0|Mb|0|
 +^fy(5z2r2)|MeRe|0|Ee1|0|0|0|MeIm|
 +^fz(5z23r2)|0|0|0|Ea|0|0|0|
 +^fx(5z2r2)|MeIm|0|0|0|Ee1|0|MeRe|
 +^fz(x2y2)|0|Mb|0|0|0|Ebzx2y2|0|
 +^fx(x23y2)|0|0|MeIm|0|MeRe|0|Ee3|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^fy(3x2y2)|i2|0|0|0|0|0|i2|
 +^fxyz|0|i2|0|0|0|i2|0|
 +^fy(5z2r2)|0|0|i2|0|i2|0|0|
 +^fz(5z23r2)|0|0|0|1|0|0|0|
 +^fx(5z2r2)|0|0|12|0|12|0|0|
 +^fz(x2y2)|0|12|0|0|0|12|0|
 +^fx(x23y2)|12|0|0|0|0|0|12|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^Ee3 | {{:physics_chemistry:pointgroup:c4_z_orb_3_1.png?150}} |
 +|ψ(θ,ϕ)=11 |14352πsin3(θ)sin(3ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |14352πy(y23x2) | ::: |
 +^ ^Ebxyz | {{:physics_chemistry:pointgroup:c4_z_orb_3_2.png?150}} |
 +|ψ(θ,ϕ)=11 |14105πsin2(θ)cos(θ)sin(2ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |12105πxyz | ::: |
 +^ ^Ee1 | {{:physics_chemistry:pointgroup:c4_z_orb_3_3.png?150}} |
 +|ψ(θ,ϕ)=11 |18212πsin(θ)(5cos(2θ)+3)sin(ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |14212πy(5z21) | ::: |
 +^ ^Ea | {{:physics_chemistry:pointgroup:c4_z_orb_3_4.png?150}} |
 +|ψ(θ,ϕ)=11 |1167π(3cos(θ)+5cos(3θ)) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |147πz(5z23) | ::: |
 +^ ^Ee1 | {{:physics_chemistry:pointgroup:c4_z_orb_3_5.png?150}} |
 +|ψ(θ,ϕ)=11 |116212π(sin(θ)+5sin(3θ))cos(ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |14212πx(5z21) | ::: |
 +^ ^Ebzx2y2 | {{:physics_chemistry:pointgroup:c4_z_orb_3_6.png?150}} |
 +|ψ(θ,ϕ)=11 |14105πsin2(θ)cos(θ)cos(2ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |14105πz(x2y2) | ::: |
 +^ ^Ee3 | {{:physics_chemistry:pointgroup:c4_z_orb_3_7.png?150}} |
 +|ψ(θ,ϕ)=11 |14352πsin3(θ)cos(3ϕ) | ::: |
 +|ψ(ˆx,ˆy,ˆz)=11 |14352πx(x23y2) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +===== Coupling between two shells =====
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s-p orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 1\lor m\neq 0 \\
 + A(1,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 1 || m != 0}}, A[1, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^
 +^Y(0)0|0|A(1,0)3|0|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +  ^  py  ^  pz  ^  px  ^
 +^s|0|A(1,0)3|0|
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for s-d orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 2\lor m\neq 0 \\
 + A(2,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{2, 0, A(2,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^
 +^Y(0)0|0|0|A(2,0)5|0|0|
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +  ^  dxy  ^  dyz  ^  d3z2r2  ^  dxz  ^  dx2y2  ^
 +^s|0|0|A(2,0)5|0|0|
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for s-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 3\lor m\neq 0 \\
 + A(3,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 3 || m != 0}}, A[3, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{3, 0, A(3,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^Y(0)0|0|0|0|A(3,0)7|0| 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ \text{s} | 0 | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p-d orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 1\land k\neq 3)\lor m\neq 0 \\
 + A(1,0) & k=1\land m=0 \\
 + A(3,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 1 && k != 3) || m != 0}, {A[1, 0], k == 1 && m == 0}}, A[3, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} , 
 +       {3, 0, A(3,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ p_y | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | 0 |
 +^ p_z | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 |
 +^ p_x | 0 | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\
 + A(2,0) & k=2\land m=0 \\
 + A(4,4)-i B(4,4) & k=4\land m=-4 \\
 + A(4,0) & k=4\land m=0 \\
 + A(4,4)+i B(4,4) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || m != 0)) || (m != -4 && m != 0 && m != 4)}, {A[2, 0], k == 2 && m == 0}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 0], k == 4 && m == 0}}, A[4, 4] + I*B[4, 4]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{2, 0, A(2,0)} , 
 +       {4, 0, A(4,0)} , 
 +       {4,-4, A(4,4) + (-I)*(B(4,4))} , 
 +       {4, 4, A(4,4) + (I)*(B(4,4))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | 0 | -\frac{2 (A(4,4)-i B(4,4))}{3 \sqrt{3}} |
 +^ {Y_{0}^{(1)}} | 0 | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | 0 |
 +^ {Y_{1}^{(1)}} | -\frac{2 (A(4,4)+i B(4,4))}{3 \sqrt{3}} | 0 | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ p_y | -\frac{2 A(4,4)}{3 \sqrt{3}} | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | 0 | -\frac{2 B(4,4)}{3 \sqrt{3}} |
 +^ p_z | 0 | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | 0 |
 +^ p_x | -\frac{2 B(4,4)}{3 \sqrt{3}} | 0 | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{2 A(4,4)}{3 \sqrt{3}} |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 5\land ((k\neq 1\land k\neq 3)\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\
 + A(1,0) & k=1\land m=0 \\
 + A(3,0) & k=3\land m=0 \\
 + A(5,4)-i B(5,4) & k=5\land m=-4 \\
 + A(5,0) & k=5\land m=0 \\
 + A(5,4)+i B(5,4) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 5 && ((k != 1 && k != 3) || m != 0)) || (m != -4 && m != 0 && m != 4)}, {A[1, 0], k == 1 && m == 0}, {A[3, 0], k == 3 && m == 0}, {A[5, 4] - I*B[5, 4], k == 5 && m == -4}, {A[5, 0], k == 5 && m == 0}}, A[5, 4] + I*B[5, 4]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C4_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} , 
 +       {3, 0, A(3,0)} , 
 +       {5, 0, A(5,0)} , 
 +       {5,-4, A(5,4) + (-I)*(B(5,4))} , 
 +       {5, 4, A(5,4) + (I)*(B(5,4))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-2}^{(2)}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | 0 | 0 | \frac{1}{11} \sqrt{10} (A(5,4)-i B(5,4)) | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | 0 | -\frac{2}{11} \sqrt{\frac{5}{3}} (A(5,4)-i B(5,4)) |
 +^ {Y_{0}^{(2)}} | 0 | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | 0 |
 +^ {Y_{1}^{(2)}} | -\frac{2}{11} \sqrt{\frac{5}{3}} (A(5,4)+i B(5,4)) | 0 | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 |
 +^ {Y_{2}^{(2)}} | 0 | \frac{1}{11} \sqrt{10} (A(5,4)+i B(5,4)) | 0 | 0 | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ d_{\text{xy}} | 0 | \frac{1}{231} \left(33 \sqrt{7} A(1,0)-22 \sqrt{7} A(3,0)+5 \sqrt{7} A(5,0)-21 \sqrt{10} A(5,4)\right) | 0 | 0 | 0 | -\frac{1}{11} \sqrt{10} B(5,4) | 0 |
 +^ d_{\text{yz}} | -\frac{2}{11} \sqrt{\frac{5}{3}} A(5,4) | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | 0 | -\frac{2}{11} \sqrt{\frac{5}{3}} B(5,4) |
 +^ d_{3z^2-r^2} | 0 | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | 0 |
 +^ d_{\text{xz}} | -\frac{2}{11} \sqrt{\frac{5}{3}} B(5,4) | 0 | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | \frac{2}{11} \sqrt{\frac{5}{3}} A(5,4) |
 +^ d_{x^2-y^2} | 0 | -\frac{1}{11} \sqrt{10} B(5,4) | 0 | 0 | 0 | \frac{1}{231} \left(33 \sqrt{7} A(1,0)-22 \sqrt{7} A(3,0)+5 \sqrt{7} A(5,0)+21 \sqrt{10} A(5,4)\right) | 0 |
 +
 +
 +###
 +
 +</hidden>
 +
 +===== Table of several point groups =====
 +
 +###
 +
 +[[physics_chemistry:point_groups|Return to Main page on Point Groups]]
 +
 +###
 +
 +###
 +
 +^Nonaxial groups      | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | |
 +^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub>
 +^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub>
 +^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub>
 +^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | | 
 +^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub>
 +^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub>
 +^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> |  | 
 +^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub>
 +^Linear groups      | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|\inftyv]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|\inftyh]]</sub> | | | | | |
 +
 +###
Print/export