Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
physics_chemistry:point_groups:c6:orientation_z [2018/03/21 15:15] – Stefano Agrestini | physics_chemistry:point_groups:c6:orientation_z [2024/06/27 09:19] (current) – Typo: indices m and l were switched in spherical harmonics in "we can express the operator as ..." Finn Keuchel | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Z ====== | ====== Orientation Z ====== | ||
+ | |||
+ | ===== Symmetry Operations ===== | ||
### | ### | ||
- | alligned paragraph text | + | |
+ | In the C6 Point Group, with orientation Z there are the following symmetry operations | ||
### | ### | ||
- | ===== Example ===== | + | ### |
+ | |||
+ | {{: | ||
### | ### | ||
- | description text | + | |
### | ### | ||
- | ==== Input ==== | + | ^ Operator ^ Orientation ^ |
- | <code Quanty | + | ^ E | {0,0,0} , | |
- | -- some example code | + | ^ C6 | {0,0,1} , {0,0,−1} , | |
+ | ^ C3 | {0,0,1} , {0,0,−1} , | | ||
+ | ^ C2 | {0,0,1} , | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Different Settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Character Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ E(1) ^ C6(2) ^ C3(2) ^ C2(1) ^ | ||
+ | ^ A | 1 | 1 | 1 | 1 | | ||
+ | ^ B | 1 | −1 | 1 | −1 | | ||
+ | ^ E1 | 2 | 1 | −1 | −2 | | ||
+ | ^ E2 | 2 | −1 | −1 | 2 | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Product Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ A ^ B ^ E1 ^ E2 ^ | ||
+ | ^ A | A | B | E1 | E2 | | ||
+ | ^ B | B | A | E2 | E1 | | ||
+ | ^ E1 | E1 | E2 | 2A+E2 | 2B+E1 | | ||
+ | ^ E2 | E2 | E1 | 2B+E1 | 2A+E2 | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Sub Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Super Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Invariant Potential expanded on renormalized spherical Harmonics ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | Any potential (function) can be written as a sum over spherical harmonics. | ||
+ | V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) | ||
+ | Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) | ||
+ | The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the C6 Point group with orientation Z the form of the expansion coefficients is: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Expansion ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty | ||
+ | |||
+ | Akm[k_, | ||
</ | </ | ||
- | ==== Result ==== | + | ### |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Input format suitable for Quanty |
- | {{indexmenu> | + | |
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, A(0,0)} , | ||
+ | {1, 0, A(1,0)} , | ||
+ | {2, 0, A(2,0)} , | ||
+ | {3, 0, A(3,0)} , | ||
+ | {4, 0, A(4,0)} , | ||
+ | {5, 0, A(5,0)} , | ||
+ | {6, 0, A(6,0)} , | ||
+ | | ||
+ | {6, 6, A(6,6) + (I)*(B(6, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. | ||
+ | An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ | ||
+ | Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m) | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(l″)m″(θ,ϕ)|C(m)k(θ,ϕ)|Y(l′)m′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(0)0 ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^Y(0)0|Ass(0,0)|0|Asp(1,0)√3|0|0|0|Asd(2,0)√5|0|0|0|0|0|Asf(3,0)√7|0|0|0| | ||
+ | ^Y(1)−1|0|App(0,0)−15App(2,0)|0|0|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|0|0|35√27Apf(2,0)−13√27Apf(4,0)|0|0|0|0| | ||
+ | ^Y(1)0|Asp(1,0)√3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)√15+37√35Apd(3,0)|0|0|0|0|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|0|0| | ||
+ | ^Y(1)1|0|0|0|App(0,0)−15App(2,0)|0|0|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|0|0|35√27Apf(2,0)−13√27Apf(4,0)|0|0| | ||
+ | ^Y(2)−2|0|0|0|0|Add(0,0)−27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0|0|0|0|0| | ||
+ | ^Y(2)−1|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|Add(0,0)+17Add(2,0)−421Add(4,0)|0|0|0|0|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|0|0|0| | ||
+ | ^Y(2)0|Asd(2,0)√5|0|2Apd(1,0)√15+37√35Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0)|0|0|0| | ||
+ | ^Y(2)1|0|0|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|Add(0,0)+17Add(2,0)−421Add(4,0)|0|0|0|0|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|0| | ||
+ | ^Y(2)2|0|0|0|0|0|0|0|0|Add(0,0)−27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0| | ||
+ | ^Y(3)−3|0|0|0|0|0|0|0|0|0|Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0)|0|0|0|0|0|−1013√733(Aff(6,6)−iBff(6,6))| | ||
+ | ^Y(3)−2|0|0|0|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0|0|0|0|0|Aff(0,0)−733Aff(4,0)+10143Aff(6,0)|0|0|0|0|0| | ||
+ | ^Y(3)−1|0|35√27Apf(2,0)−13√27Apf(4,0)|0|0|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|0|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0)|0|0|0|0| | ||
+ | ^Y(3)0|Asf(3,0)√7|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|0|0|3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0)|0|0|0|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|0| | ||
+ | ^Y(3)1|0|0|0|35√27Apf(2,0)−13√27Apf(4,0)|0|0|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|0|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0)|0|0| | ||
+ | ^Y(3)2|0|0|0|0|0|0|0|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0|0|0|0|0|Aff(0,0)−733Aff(4,0)+10143Aff(6,0)|0| | ||
+ | ^Y(3)3|0|0|0|0|0|0|0|0|0|−1013√733(Aff(6,6)+iBff(6,6))|0|0|0|0|0|Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0)| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(0)0 ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^s|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^py|0|i√2|0|i√2|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^pz|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^px|0|1√2|0|−1√2|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^dxy|0|0|0|0|i√2|0|0|0|−i√2|0|0|0|0|0|0|0| | ||
+ | ^dyz|0|0|0|0|0|i√2|0|i√2|0|0|0|0|0|0|0|0| | ||
+ | ^d3z2−r2|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0| | ||
+ | ^dxz|0|0|0|0|0|1√2|0|−1√2|0|0|0|0|0|0|0|0| | ||
+ | ^dx2−y2|0|0|0|0|1√2|0|0|0|1√2|0|0|0|0|0|0|0| | ||
+ | ^fy(3x2−y2)|0|0|0|0|0|0|0|0|0|i√2|0|0|0|0|0|i√2| | ||
+ | ^fxyz|0|0|0|0|0|0|0|0|0|0|i√2|0|0|0|−i√2|0| | ||
+ | ^fy(5z2−r2)|0|0|0|0|0|0|0|0|0|0|0|i√2|0|i√2|0|0| | ||
+ | ^fz(5z2−3r2)|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0| | ||
+ | ^fx(5z2−r2)|0|0|0|0|0|0|0|0|0|0|0|1√2|0|−1√2|0|0| | ||
+ | ^fz(x2−y2)|0|0|0|0|0|0|0|0|0|0|1√2|0|0|0|1√2|0| | ||
+ | ^fx(x2−3y2)|0|0|0|0|0|0|0|0|0|1√2|0|0|0|0|0|−1√2| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of symmetry adapted functions ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | After rotation we find | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ s ^ py ^ pz ^ px ^ dxy ^ dyz ^ d3z2−r2 ^ dxz ^ dx2−y2 ^ fy(3x2−y2) ^ fxyz ^ fy(5z2−r2) ^ fz(5z2−3r2) ^ fx(5z2−r2) ^ fz(x2−y2) ^ fx(x2−3y2) ^ | ||
+ | ^s|Ass(0,0)|0|Asp(1,0)√3|0|0|0|Asd(2,0)√5|0|0|0|0|0|Asf(3,0)√7|0|0|0| | ||
+ | ^py|0|App(0,0)−15App(2,0)|0|0|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|0|0|35√27Apf(2,0)−13√27Apf(4,0)|0|0|0|0| | ||
+ | ^pz|Asp(1,0)√3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)√15+37√35Apd(3,0)|0|0|0|0|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|0|0| | ||
+ | ^px|0|0|0|App(0,0)−15App(2,0)|0|0|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|0|0|35√27Apf(2,0)−13√27Apf(4,0)|0|0| | ||
+ | ^dxy|0|0|0|0|Add(0,0)−27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0|0|0|0|0| | ||
+ | ^dyz|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|Add(0,0)+17Add(2,0)−421Add(4,0)|0|0|0|0|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|0|0|0| | ||
+ | ^d3z2−r2|Asd(2,0)√5|0|2Apd(1,0)√15+37√35Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0)|0|0|0| | ||
+ | ^dxz|0|0|0|Apd(1,0)√5−3Apd(3,0)7√5|0|0|0|Add(0,0)+17Add(2,0)−421Add(4,0)|0|0|0|0|0|2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0)|0|0| | ||
+ | ^dx2−y2|0|0|0|0|0|0|0|0|Add(0,0)−27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7|0| | ||
+ | ^fy(3x2−y2)|0|0|0|0|0|0|0|0|0|Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0)−1013√733Aff(6,6)|0|0|0|0|0|−1013√733Bff(6,6)| | ||
+ | ^ f_{\text{xyz}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{y\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{z\left(5z^2-3r^2\right)} |\color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} }| 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | | ||
+ | ^ f_{z\left(x^2-y^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }| 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | | ||
+ | ^ f_{x\left(x^2-3y^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Bff}(6,6) | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)+\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Coupling for a single shell ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ea} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ea} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ | ||
+ | ^ \text{s} | \text{Ea} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ \text{s} | 1 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & k\neq 2\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/3)*(Ea + (2)*(Ee1))} , | ||
+ | {2, 0, (5/3)*(Ea + (-1)*(Ee1))} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \text{Ee1} | 0 | 0 | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \text{Ea} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | 0 | 0 | \text{Ee1} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_y ^ p_z ^ p_x ^ | ||
+ | ^ p_y | \text{Ee1} | 0 | 0 | | ||
+ | ^ p_z | 0 | \text{Ea} | 0 | | ||
+ | ^ p_x | 0 | 0 | \text{Ee1} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | | ||
+ | ^ p_z | 0 | 1 | 0 | | ||
+ | ^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ee1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: | | ||
+ | ^ ^\text{Ea} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: | | ||
+ | ^ ^\text{Ee1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\ | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/5)*(Ea + (2)*(Ee1 + Ee2))} , | ||
+ | {2, 0, Ea + Ee1 + (-2)*(Ee2)} , | ||
+ | {4, 0, (3/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | \text{Ee2} | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | \text{Ee1} | 0 | 0 | 0 | | ||
+ | ^ {Y_{0}^{(2)}} | 0 | 0 | \text{Ea} | 0 | 0 | | ||
+ | ^ {Y_{1}^{(2)}} | 0 | 0 | 0 | \text{Ee1} | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | 0 | 0 | 0 | 0 | \text{Ee2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{\text{xy}} ^ d_{\text{yz}} ^ d_{3z^2-r^2} ^ d_{\text{xz}} ^ d_{x^2-y^2} ^ | ||
+ | ^ d_{\text{xy}} | \text{Ee2} | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{\text{yz}} | 0 | \text{Ee1} | 0 | 0 | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | \text{Ea} | 0 | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | 0 | 0 | \text{Ee1} | 0 | | ||
+ | ^ d_{x^2-y^2} | 0 | 0 | 0 | 0 | \text{Ee2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | | ||
+ | ^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | | ||
+ | ^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ee2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: | | ||
+ | ^ ^\text{Ee1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: | | ||
+ | ^ ^\text{Ea} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Ee1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: | | ||
+ | ^ ^\text{Ee2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 6\land ((k\neq 2\land k\neq 4)\lor m\neq 0))\lor (m\neq -6\land m\neq 0\land m\neq 6) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/7)*(Ea + Ebxx2y2 + Ebyx2y2 + (2)*(Ee1) + (2)*(Ee2))} , | ||
+ | {2, 0, (5/ | ||
+ | {4, 0, (3/ | ||
+ | {6, 0, (13/ | ||
+ | {6, 6, (13/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-3}^{(3)}} | \frac{\text{Ebxx2y2}+\text{Ebyx2y2}}{2} | 0 | 0 | 0 | 0 | 0 | \frac{1}{2} (-\text{Ebxx2y2}+\text{Ebyx2y2}-2 i \text{Mb}) | | ||
+ | ^ {Y_{-2}^{(3)}} | 0 | \text{Ee1} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{-1}^{(3)}} | 0 | 0 | \text{Ee2} | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{0}^{(3)}} | 0 | 0 | 0 | \text{Ea} | 0 | 0 | 0 | | ||
+ | ^ {Y_{1}^{(3)}} | 0 | 0 | 0 | 0 | \text{Ee2} | 0 | 0 | | ||
+ | ^ {Y_{2}^{(3)}} | 0 | 0 | 0 | 0 | 0 | \text{Ee1} | 0 | | ||
+ | ^ {Y_{3}^{(3)}} | \frac{1}{2} (-\text{Ebxx2y2}+\text{Ebyx2y2}+2 i \text{Mb}) | 0 | 0 | 0 | 0 | 0 | \frac{\text{Ebxx2y2}+\text{Ebyx2y2}}{2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{y\left(3x^2-y^2\right)} ^ f_{\text{xyz}} ^ f_{y\left(5z^2-r^2\right)} ^ f_{z\left(5z^2-3r^2\right)} ^ f_{x\left(5z^2-r^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ f_{x\left(x^2-3y^2\right)} ^ | ||
+ | ^ f_{y\left(3x^2-y^2\right)} | \text{Ebyx2y2} | 0 | 0 | 0 | 0 | 0 | \text{Mb} | | ||
+ | ^ f_{\text{xyz}} | 0 | \text{Ee1} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{y\left(5z^2-r^2\right)} | 0 | 0 | \text{Ee2} | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{z\left(5z^2-3r^2\right)} | 0 | 0 | 0 | \text{Ea} | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(5z^2-r^2\right)} | 0 | 0 | 0 | 0 | \text{Ee2} | 0 | 0 | | ||
+ | ^ f_{z\left(x^2-y^2\right)} | 0 | 0 | 0 | 0 | 0 | \text{Ee1} | 0 | | ||
+ | ^ f_{x\left(x^2-3y^2\right)} | \text{Mb} | 0 | 0 | 0 | 0 | 0 | \text{Ebxx2y2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ f_{y\left(3x^2-y^2\right)} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{i}{\sqrt{2}} | | ||
+ | ^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{y\left(5z^2-r^2\right)} | 0 | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | | ||
+ | ^ f_{z\left(5z^2-3r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(5z^2-r^2\right)} | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | 0 | | ||
+ | ^ f_{z\left(x^2-y^2\right)} | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x\left(x^2-3y^2\right)} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ebyx2y2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right) | ::: | | ||
+ | ^ ^\text{Ee1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: | | ||
+ | ^ ^\text{Ee2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{21}{2 \pi }} \sin (\theta ) (5 \cos (2 \theta )+3) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} y \left(5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Ea} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta )) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right) | ::: | | ||
+ | ^ ^\text{Ee2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{21}{2 \pi }} (\sin (\theta )+5 \sin (3 \theta )) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} x \left(5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Ee1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right) | ::: | | ||
+ | ^ ^\text{Ebxx2y2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s-p orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 1\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{1, 0, A(1,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | 0 | \frac{A(1,0)}{\sqrt{3}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_y ^ p_z ^ p_x ^ | ||
+ | ^ \text{s} | 0 | \frac{A(1,0)}{\sqrt{3}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 2\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | 0 | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{\text{xy}} ^ d_{\text{yz}} ^ d_{3z^2-r^2} ^ d_{\text{xz}} ^ d_{x^2-y^2} ^ | ||
+ | ^ \text{s} | 0 | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 3\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{3, 0, A(3,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | 0 | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{y\left(3x^2-y^2\right)} ^ f_{\text{xyz}} ^ f_{y\left(5z^2-r^2\right)} ^ f_{z\left(5z^2-3r^2\right)} ^ f_{x\left(5z^2-r^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ f_{x\left(x^2-3y^2\right)} ^ | ||
+ | ^ \text{s} | 0 | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 1\land k\neq 3)\lor m\neq 0 \\ | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{1, 0, A(1,0)} , | ||
+ | {3, 0, A(3,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | 0 | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | 0 | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{\text{xy}} ^ d_{\text{yz}} ^ d_{3z^2-r^2} ^ d_{\text{xz}} ^ d_{x^2-y^2} ^ | ||
+ | ^ p_y | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | 0 | | ||
+ | ^ p_z | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 | | ||
+ | ^ p_x | 0 | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\ | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | {4, 0, A(4,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | 0 | 0 | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{y\left(3x^2-y^2\right)} ^ f_{\text{xyz}} ^ f_{y\left(5z^2-r^2\right)} ^ f_{z\left(5z^2-3r^2\right)} ^ f_{x\left(5z^2-r^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ f_{x\left(x^2-3y^2\right)} ^ | ||
+ | ^ p_y | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | 0 | 0 | | ||
+ | ^ p_z | 0 | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | 0 | | ||
+ | ^ p_x | 0 | 0 | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 1\land k\neq 3\land k\neq 5)\lor m\neq 0 \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_C6_Z.Quanty> | ||
+ | |||
+ | Akm = {{1, 0, A(1,0)} , | ||
+ | {3, 0, A(3,0)} , | ||
+ | {5, 0, A(5,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | 0 | 0 | | ||
+ | ^ {Y_{0}^{(2)}} | 0 | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | 0 | | ||
+ | ^ {Y_{1}^{(2)}} | 0 | 0 | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | 0 | 0 | 0 | 0 | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{y\left(3x^2-y^2\right)} ^ f_{\text{xyz}} ^ f_{y\left(5z^2-r^2\right)} ^ f_{z\left(5z^2-3r^2\right)} ^ f_{x\left(5z^2-r^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ f_{x\left(x^2-3y^2\right)} ^ | ||
+ | ^ d_{\text{xy}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{\text{yz}} | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | 0 | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | | ||
+ | ^ d_{x^2-y^2} | 0 | 0 | 0 | 0 | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |