Processing math: 50%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
physics_chemistry:point_groups:c6:orientation_z [2018/03/21 15:15] Stefano Agrestiniphysics_chemistry:point_groups:c6:orientation_z [2024/06/27 09:19] (current) – Typo: indices m and l were switched in spherical harmonics in "we can express the operator as ..." Finn Keuchel
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation Z ====== ====== Orientation Z ======
 +
 +===== Symmetry Operations =====
  
 ### ###
-alligned paragraph text+ 
 +In the C6 Point Group, with orientation Z there are the following symmetry operations 
 ### ###
  
-===== Example =====+### 
 + 
 +{{:physics_chemistry:pointgroup:c6_z.png}}
  
 ### ###
-description text+
 ### ###
  
-==== Input ==== +^ Operator ^ Orientation ^ 
-<code Quanty Example.Quanty> +^ E | {0,0,0} , | 
--- some example code+^ C6 | {0,0,1} , {0,0,1} , | 
 +^ C3 | {0,0,1} , {0,0,1} , | 
 +^ C2 | {0,0,1} , | 
 + 
 +### 
 + 
 +===== Different Settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c6:orientation_x|Point Group C6 with orientation X]] 
 +  * [[physics_chemistry:point_groups:c6:orientation_y|Point Group C6 with orientation Y]] 
 +  * [[physics_chemistry:point_groups:c6:orientation_z|Point Group C6 with orientation Z]] 
 + 
 +### 
 + 
 +===== Character Table ===== 
 + 
 +### 
 + 
 +  ^  E(1)  ^  C6(2)  ^  C3(2)  ^  C2(1)  ^ 
 +^ A1111
 +^ B1111
 +^ E12112
 +^ E22112
 + 
 +### 
 + 
 +===== Product Table ===== 
 + 
 +### 
 + 
 +  ^  A  ^  B  ^  E1  ^  E2  ^ 
 +^ A  | A  | B  | E1  | E2  | 
 +^ B  | B  | A  | E2  | E1  | 
 +^ E1  | E1  | E2  | 2A+E2  | 2B+E1  | 
 +^ E2  | E2  | E1  | 2B+E1  | 2A+E2  | 
 + 
 +### 
 + 
 +===== Sub Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] 
 +  * [[physics_chemistry:point_groups:c2:orientation_z|Point Group C2 with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c3:orientation_z|Point Group C3 with orientation Z]] 
 + 
 +### 
 + 
 +===== Super Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c6h:orientation_z|Point Group C6h with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c6v:orientation_zx|Point Group C6v with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:c6v:orientation_zy|Point Group C6v with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:d6:orientation_zxy|Point Group D6 with orientation Zxy]] 
 + 
 +### 
 + 
 +===== Invariant Potential expanded on renormalized spherical Harmonics ===== 
 + 
 +### 
 + 
 +Any potential (function) can be written as a sum over spherical harmonics. 
 +V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) 
 +Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) 
 +The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the C6 Point group with orientation Z the form of the expansion coefficients is: 
 + 
 +### 
 + 
 +==== Expansion ==== 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + A(0,0) & k=0\land m=0 \\ 
 + A(1,0) & k=1\land m=0 \\ 
 + A(2,0) & k=2\land m=0 \\ 
 + A(3,0) & k=3\land m=0 \\ 
 + A(4,0) & k=4\land m=0 \\ 
 + A(5,0) & k=5\land m=0 \\ 
 + A(6,6)-i B(6,6) & k=6\land m=-6 \\ 
 + A(6,0) & k=6\land m=0 \\ 
 + A(6,6)+i B(6,6) & k=6\land m=6 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +==== Input format suitable for Mathematica (Quanty.nb) ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_C6_Z.Quanty.nb
 + 
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[1, 0], k == 1 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[3, 0], k == 3 && m == 0}, {A[4, 0], k == 4 && m == 0}, {A[5, 0], k == 5 && m == 0}, {A[6, 6] I*B[6, 6], k == 6 && m == -6}, {A[6, 0], k == 6 && m == 0}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] 
 </code> </code>
  
-==== Result ==== +###
-<WRAP center box 100%> +
-text produced as output +
-</WRAP>+
  
-===== Table of contents ===== +==== Input format suitable for Quanty ====
-{{indexmenu>.#1}}+
  
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{0, 0, A(0,0)} , 
 +       {1, 0, A(1,0)} , 
 +       {2, 0, A(2,0)} , 
 +       {3, 0, A(3,0)} , 
 +       {4, 0, A(4,0)} , 
 +       {5, 0, A(5,0)} , 
 +       {6, 0, A(6,0)} , 
 +       {6,-6, A(6,6) + (-I)*(B(6,6))} , 
 +       {6, 6, A(6,6) + (I)*(B(6,6))} }
 +
 +</code>
 +
 +###
 +
 +==== One particle coupling on a basis of spherical harmonics ====
 +
 +###
 +
 +The operator representing the potential in second quantisation is given as:
 +O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
 +Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l
 +Note the difference between the function Ak,m and the parameter Anl,nl(k,m)
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +we can express the operator as 
 +O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(l)m(θ,ϕ)|C(m)k(θ,ϕ)|Y(l)m(θ,ϕ)an,l,man,l,m
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^Y(0)0|Ass(0,0)|0|Asp(1,0)3|0|0|0|Asd(2,0)5|0|0|0|0|0|Asf(3,0)7|0|0|0|
 +^Y(1)1|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|0|
 +^Y(1)0|Asp(1,0)3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|
 +^Y(1)1|0|0|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|
 +^Y(2)2|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|0|0|0|
 +^Y(2)1|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|0|
 +^Y(2)0|Asd(2,0)5|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|0|
 +^Y(2)1|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|
 +^Y(2)2|0|0|0|0|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|
 +^Y(3)3|0|0|0|0|0|0|0|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|0|0|0|0|0|1013733(Aff(6,6)iBff(6,6))|
 +^Y(3)2|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|0|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|0|0|0|0|
 +^Y(3)1|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|0|0|
 +^Y(3)0|Asf(3,0)7|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|0|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|0|
 +^Y(3)1|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|
 +^Y(3)2|0|0|0|0|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|0|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|
 +^Y(3)3|0|0|0|0|0|0|0|0|0|1013733(Aff(6,6)+iBff(6,6))|0|0|0|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|
 +
 +
 +###
 +
 +==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
 +
 +###
 +
 +
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^s|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^py|0|i2|0|i2|0|0|0|0|0|0|0|0|0|0|0|0|
 +^pz|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^px|0|12|0|12|0|0|0|0|0|0|0|0|0|0|0|0|
 +^dxy|0|0|0|0|i2|0|0|0|i2|0|0|0|0|0|0|0|
 +^dyz|0|0|0|0|0|i2|0|i2|0|0|0|0|0|0|0|0|
 +^d3z2r2|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|
 +^dxz|0|0|0|0|0|12|0|12|0|0|0|0|0|0|0|0|
 +^dx2y2|0|0|0|0|12|0|0|0|12|0|0|0|0|0|0|0|
 +^fy(3x2y2)|0|0|0|0|0|0|0|0|0|i2|0|0|0|0|0|i2|
 +^fxyz|0|0|0|0|0|0|0|0|0|0|i2|0|0|0|i2|0|
 +^fy(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|i2|0|i2|0|0|
 +^fz(5z23r2)|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|
 +^fx(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|12|0|12|0|0|
 +^fz(x2y2)|0|0|0|0|0|0|0|0|0|0|12|0|0|0|12|0|
 +^fx(x23y2)|0|0|0|0|0|0|0|0|0|12|0|0|0|0|0|12|
 +
 +
 +###
 +
 +==== One particle coupling on a basis of symmetry adapted functions ====
 +
 +###
 +
 +After rotation we find
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  s  ^  py  ^  pz  ^  px  ^  dxy  ^  dyz  ^  d3z2r2  ^  dxz  ^  dx2y2  ^  fy(3x2y2)  ^  fxyz  ^  fy(5z2r2)  ^  fz(5z23r2)  ^  fx(5z2r2)  ^  fz(x2y2)  ^  fx(x23y2)  ^
 +^s|Ass(0,0)|0|Asp(1,0)3|0|0|0|Asd(2,0)5|0|0|0|0|0|Asf(3,0)7|0|0|0|
 +^py|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|0|
 +^pz|Asp(1,0)3|0|App(0,0)+25App(2,0)|0|0|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|
 +^px|0|0|0|App(0,0)15App(2,0)|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|
 +^dxy|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|0|0|0|0|
 +^dyz|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|0|0|
 +^d3z2r2|Asd(2,0)5|0|2Apd(1,0)15+3735Apd(3,0)|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|3Adf(1,0)35+4Adf(3,0)335+103357Adf(5,0)|0|0|0|
 +^dxz|0|0|0|Apd(1,0)53Apd(3,0)75|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|0|0|0|2235Adf(1,0)+13235Adf(3,0)533107Adf(5,0)|0|0|
 +^dx2y2|0|0|0|0|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|0|0|0|Adf(1,0)72Adf(3,0)37+5Adf(5,0)337|0|
 +^fy(3x2y2)|0|0|0|0|0|0|0|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)1013733Aff(6,6)|0|0|0|0|0|1013733Bff(6,6)|
 +^ f_{\text{xyz}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
 +^ f_{y\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
 +^ f_{z\left(5z^2-3r^2\right)} |\color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} }| 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
 +^ f_{x\left(5z^2-r^2\right)} |\color{darkred}{ 0 }| 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
 +^ f_{z\left(x^2-y^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }| 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
 +^ f_{x\left(x^2-3y^2\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Bff}(6,6) | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)+\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) |
 +
 +
 +###
 +
 +===== Coupling for a single shell =====
 +
 +
 +
 +###
 +
 +Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
 +
 +###
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Ea} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Ea, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{0, 0, Ea} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ {Y_{0}^{(0)}} | \text{Ea} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  \text{s}   ^
 +^ \text{s} | \text{Ea} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ \text{s} | 1 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ea} | {{:physics_chemistry:pointgroup:c6_z_orb_0_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{3} (\text{Ea}+2 \text{Ee1}) & k=0\land m=0 \\
 + 0 & k\neq 2\lor m\neq 0 \\
 + \frac{5 (\text{Ea}-\text{Ee1})}{3} & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + 2*Ee1)/3, k == 0 && m == 0}, {0, k != 2 || m != 0}}, (5*(Ea - Ee1))/3]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{0, 0, (1/3)*(Ea + (2)*(Ee1))} , 
 +       {2, 0, (5/3)*(Ea + (-1)*(Ee1))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ {Y_{-1}^{(1)}} | \text{Ee1} | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | \text{Ea} | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | \text{Ee1} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  p_y   ^  p_z   ^  p_x   ^
 +^ p_y | \text{Ee1} | 0 | 0 |
 +^ p_z | 0 | \text{Ea} | 0 |
 +^ p_x | 0 | 0 | \text{Ee1} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |
 +^ p_z | 0 | 1 | 0 |
 +^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c6_z_orb_1_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: |
 +^ ^\text{Ea} | {{:physics_chemistry:pointgroup:c6_z_orb_1_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c6_z_orb_1_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{5} (\text{Ea}+2 (\text{Ee1}+\text{Ee2})) & k=0\land m=0 \\
 + 0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\
 + \text{Ea}+\text{Ee1}-2 \text{Ee2} & k=2\land m=0 \\
 + \frac{3}{5} (3 \text{Ea}-4 \text{Ee1}+\text{Ee2}) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + 2*(Ee1 + Ee2))/5, k == 0 && m == 0}, {0, (k != 2 && k != 4) || m != 0}, {Ea + Ee1 - 2*Ee2, k == 2 && m == 0}}, (3*(3*Ea - 4*Ee1 + Ee2))/5]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{0, 0, (1/5)*(Ea + (2)*(Ee1 + Ee2))} , 
 +       {2, 0, Ea + Ee1 + (-2)*(Ee2)} , 
 +       {4, 0, (3/5)*((3)*(Ea) + (-4)*(Ee1) + Ee2)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-2}^{(2)}} | \text{Ee2} | 0 | 0 | 0 | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | \text{Ee1} | 0 | 0 | 0 |
 +^ {Y_{0}^{(2)}} | 0 | 0 | \text{Ea} | 0 | 0 |
 +^ {Y_{1}^{(2)}} | 0 | 0 | 0 | \text{Ee1} | 0 |
 +^ {Y_{2}^{(2)}} | 0 | 0 | 0 | 0 | \text{Ee2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ d_{\text{xy}} | \text{Ee2} | 0 | 0 | 0 | 0 |
 +^ d_{\text{yz}} | 0 | \text{Ee1} | 0 | 0 | 0 |
 +^ d_{3z^2-r^2} | 0 | 0 | \text{Ea} | 0 | 0 |
 +^ d_{\text{xz}} | 0 | 0 | 0 | \text{Ee1} | 0 |
 +^ d_{x^2-y^2} | 0 | 0 | 0 | 0 | \text{Ee2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} |
 +^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 |
 +^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 |
 +^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 |
 +^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c6_z_orb_2_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c6_z_orb_2_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: |
 +^ ^\text{Ea} | {{:physics_chemistry:pointgroup:c6_z_orb_2_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c6_z_orb_2_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: |
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c6_z_orb_2_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for f orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{7} (\text{Ea}+\text{Ebxx2y2}+\text{Ebyx2y2}+2 \text{Ee1}+2 \text{Ee2}) & k=0\land m=0 \\
 + 0 & (k\neq 6\land ((k\neq 2\land k\neq 4)\lor m\neq 0))\lor (m\neq -6\land m\neq 0\land m\neq 6) \\
 + \frac{5}{28} (4 \text{Ea}-5 \text{Ebxx2y2}-5 \text{Ebyx2y2}+6 \text{Ee2}) & k=2\land m=0 \\
 + \frac{3}{14} (6 \text{Ea}+3 \text{Ebxx2y2}+3 \text{Ebyx2y2}-14 \text{Ee1}+2 \text{Ee2}) & k=4\land m=0 \\
 + \frac{13}{20} \sqrt{\frac{33}{7}} (\text{Ebxx2y2}-\text{Ebyx2y2}+2 i \text{Mb}) & k=6\land m=-6 \\
 + \frac{13}{140} (20 \text{Ea}-\text{Ebxx2y2}-\text{Ebyx2y2}+12 \text{Ee1}-30 \text{Ee2}) & k=6\land m=0 \\
 + \frac{13}{20} \sqrt{\frac{33}{7}} (\text{Ebxx2y2}-\text{Ebyx2y2}-2 i \text{Mb}) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea + Ebxx2y2 + Ebyx2y2 + 2*Ee1 + 2*Ee2)/7, k == 0 && m == 0}, {0, (k != 6 && ((k != 2 && k != 4) || m != 0)) || (m != -6 && m != 0 && m != 6)}, {(5*(4*Ea - 5*Ebxx2y2 - 5*Ebyx2y2 + 6*Ee2))/28, k == 2 && m == 0}, {(3*(6*Ea + 3*Ebxx2y2 + 3*Ebyx2y2 - 14*Ee1 + 2*Ee2))/14, k == 4 && m == 0}, {(13*Sqrt[33/7]*(Ebxx2y2 - Ebyx2y2 + (2*I)*Mb))/20, k == 6 && m == -6}, {(13*(20*Ea - Ebxx2y2 - Ebyx2y2 + 12*Ee1 - 30*Ee2))/140, k == 6 && m == 0}}, (13*Sqrt[33/7]*(Ebxx2y2 - Ebyx2y2 - (2*I)*Mb))/20]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{0, 0, (1/7)*(Ea + Ebxx2y2 + Ebyx2y2 + (2)*(Ee1) + (2)*(Ee2))} , 
 +       {2, 0, (5/28)*((4)*(Ea) + (-5)*(Ebxx2y2) + (-5)*(Ebyx2y2) + (6)*(Ee2))} , 
 +       {4, 0, (3/14)*((6)*(Ea) + (3)*(Ebxx2y2) + (3)*(Ebyx2y2) + (-14)*(Ee1) + (2)*(Ee2))} , 
 +       {6, 0, (13/140)*((20)*(Ea) + (-1)*(Ebxx2y2) + (-1)*(Ebyx2y2) + (12)*(Ee1) + (-30)*(Ee2))} , 
 +       {6, 6, (13/20)*((sqrt(33/7))*(Ebxx2y2 + (-1)*(Ebyx2y2) + (-2*I)*(Mb)))} , 
 +       {6,-6, (13/20)*((sqrt(33/7))*(Ebxx2y2 + (-1)*(Ebyx2y2) + (2*I)*(Mb)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-3}^{(3)}} | \frac{\text{Ebxx2y2}+\text{Ebyx2y2}}{2} | 0 | 0 | 0 | 0 | 0 | \frac{1}{2} (-\text{Ebxx2y2}+\text{Ebyx2y2}-2 i \text{Mb}) |
 +^ {Y_{-2}^{(3)}} | 0 | \text{Ee1} | 0 | 0 | 0 | 0 | 0 |
 +^ {Y_{-1}^{(3)}} | 0 | 0 | \text{Ee2} | 0 | 0 | 0 | 0 |
 +^ {Y_{0}^{(3)}} | 0 | 0 | 0 | \text{Ea} | 0 | 0 | 0 |
 +^ {Y_{1}^{(3)}} | 0 | 0 | 0 | 0 | \text{Ee2} | 0 | 0 |
 +^ {Y_{2}^{(3)}} | 0 | 0 | 0 | 0 | 0 | \text{Ee1} | 0 |
 +^ {Y_{3}^{(3)}} | \frac{1}{2} (-\text{Ebxx2y2}+\text{Ebyx2y2}+2 i \text{Mb}) | 0 | 0 | 0 | 0 | 0 | \frac{\text{Ebxx2y2}+\text{Ebyx2y2}}{2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ f_{y\left(3x^2-y^2\right)} | \text{Ebyx2y2} | 0 | 0 | 0 | 0 | 0 | \text{Mb} |
 +^ f_{\text{xyz}} | 0 | \text{Ee1} | 0 | 0 | 0 | 0 | 0 |
 +^ f_{y\left(5z^2-r^2\right)} | 0 | 0 | \text{Ee2} | 0 | 0 | 0 | 0 |
 +^ f_{z\left(5z^2-3r^2\right)} | 0 | 0 | 0 | \text{Ea} | 0 | 0 | 0 |
 +^ f_{x\left(5z^2-r^2\right)} | 0 | 0 | 0 | 0 | \text{Ee2} | 0 | 0 |
 +^ f_{z\left(x^2-y^2\right)} | 0 | 0 | 0 | 0 | 0 | \text{Ee1} | 0 |
 +^ f_{x\left(x^2-3y^2\right)} | \text{Mb} | 0 | 0 | 0 | 0 | 0 | \text{Ebxx2y2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ f_{y\left(3x^2-y^2\right)} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{i}{\sqrt{2}} |
 +^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
 +^ f_{y\left(5z^2-r^2\right)} | 0 | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 |
 +^ f_{z\left(5z^2-3r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
 +^ f_{x\left(5z^2-r^2\right)} | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | 0 |
 +^ f_{z\left(x^2-y^2\right)} | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
 +^ f_{x\left(x^2-3y^2\right)} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ebyx2y2} | {{:physics_chemistry:pointgroup:c6_z_orb_3_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right) | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c6_z_orb_3_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: |
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c6_z_orb_3_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{21}{2 \pi }} \sin (\theta ) (5 \cos (2 \theta )+3) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} y \left(5 z^2-1\right) | ::: |
 +^ ^\text{Ea} | {{:physics_chemistry:pointgroup:c6_z_orb_3_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta )) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right) | ::: |
 +^ ^\text{Ee2} | {{:physics_chemistry:pointgroup:c6_z_orb_3_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{21}{2 \pi }} (\sin (\theta )+5 \sin (3 \theta )) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} x \left(5 z^2-1\right) | ::: |
 +^ ^\text{Ee1} | {{:physics_chemistry:pointgroup:c6_z_orb_3_6.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right) | ::: |
 +^ ^\text{Ebxx2y2} | {{:physics_chemistry:pointgroup:c6_z_orb_3_7.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +===== Coupling between two shells =====
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s-p orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 1\lor m\neq 0 \\
 + A(1,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 1 || m != 0}}, A[1, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ {Y_{0}^{(0)}} | 0 | \frac{A(1,0)}{\sqrt{3}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  p_y   ^  p_z   ^  p_x   ^
 +^ \text{s} | 0 | \frac{A(1,0)}{\sqrt{3}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for s-d orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 2\lor m\neq 0 \\
 + A(2,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{2, 0, A(2,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{0}^{(0)}} | 0 | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ \text{s} | 0 | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for s-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 3\lor m\neq 0 \\
 + A(3,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 3 || m != 0}}, A[3, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{3, 0, A(3,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{0}^{(0)}} | 0 | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ \text{s} | 0 | 0 | 0 | \frac{A(3,0)}{\sqrt{7}} | 0 | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p-d orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 1\land k\neq 3)\lor m\neq 0 \\
 + A(1,0) & k=1\land m=0 \\
 + A(3,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 1 && k != 3) || m != 0}, {A[1, 0], k == 1 && m == 0}}, A[3, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} , 
 +       {3, 0, A(3,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ p_y | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 | 0 | 0 |
 +^ p_z | 0 | 0 | \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} | 0 | 0 |
 +^ p_x | 0 | 0 | 0 | \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\
 + A(2,0) & k=2\land m=0 \\
 + A(4,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 2 && k != 4) || m != 0}, {A[2, 0], k == 2 && m == 0}}, A[4, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{2, 0, A(2,0)} , 
 +       {4, 0, A(4,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ p_y | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 | 0 | 0 |
 +^ p_z | 0 | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | 0 |
 +^ p_x | 0 | 0 | 0 | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 1\land k\neq 3\land k\neq 5)\lor m\neq 0 \\
 + A(1,0) & k=1\land m=0 \\
 + A(3,0) & k=3\land m=0 \\
 + A(5,0) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 1 && k != 3 && k != 5) || m != 0}, {A[1, 0], k == 1 && m == 0}, {A[3, 0], k == 3 && m == 0}}, A[5, 0]]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_C6_Z.Quanty>
 +
 +Akm = {{1, 0, A(1,0)} , 
 +       {3, 0, A(3,0)} , 
 +       {5, 0, A(5,0)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-2}^{(2)}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | 0 | 0 | 0 | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | 0 | 0 |
 +^ {Y_{0}^{(2)}} | 0 | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | 0 |
 +^ {Y_{1}^{(2)}} | 0 | 0 | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 |
 +^ {Y_{2}^{(2)}} | 0 | 0 | 0 | 0 | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ d_{\text{xy}} | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 | 0 | 0 | 0 | 0 |
 +^ d_{\text{yz}} | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 | 0 | 0 |
 +^ d_{3z^2-r^2} | 0 | 0 | 0 | \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} | 0 | 0 | 0 |
 +^ d_{\text{xz}} | 0 | 0 | 0 | 0 | \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) | 0 | 0 |
 +^ d_{x^2-y^2} | 0 | 0 | 0 | 0 | 0 | \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +
 +===== Table of several point groups =====
 +
 +###
 +
 +[[physics_chemistry:point_groups|Return to Main page on Point Groups]]
 +
 +###
 +
 +###
 +
 +^Nonaxial groups      | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | |
 +^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub>
 +^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub>
 +^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub>
 +^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | | 
 +^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub>
 +^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub>
 +^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> |  | 
 +^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub>
 +^Linear groups      | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|\inftyv]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|\inftyh]]</sub> | | | | | |
 +
 +###
Print/export