Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
physics_chemistry:point_groups:d3d:orientation_111 [2018/03/21 18:36] – created Stefano Agrestini | physics_chemistry:point_groups:d3d:orientation_111 [2024/12/14 14:34] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation 111 ====== | ====== Orientation 111 ====== | ||
### | ### | ||
- | alligned paragraph text | + | |
+ | This orientation is non-standard, | ||
### | ### | ||
- | ===== Example | + | ===== Symmetry Operations |
### | ### | ||
- | description text | + | |
+ | In the D3d Point Group, with orientation 111 there are the following symmetry operations | ||
### | ### | ||
- | ==== Input ==== | + | ### |
- | <code Quanty | + | |
- | -- some example code | + | {{: |
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ Operator ^ Orientation ^ | ||
+ | ^ E | {0,0,0} , | | ||
+ | ^ C3 | {1,1,1} , {−1,−1,−1} , | | ||
+ | ^ C2 | {1,−1,0} , {0,1,−1} , {1,0,−1} , | | ||
+ | ^ i | {0,0,0} , | | ||
+ | ^ S6 | {1,1,1} , {−1,−1,−1} , | | ||
+ | ^ σd | {1,−1,0} , {0,1,−1} , {1,0,−1} , | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Different Settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Character Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ E(1) ^ C3(2) ^ C2(3) ^ i(1) ^ S6(2) ^ σd(3) ^ | ||
+ | ^ A1g | 1 | 1 | 1 | 1 | 1 | 1 | | ||
+ | ^ A2g | 1 | 1 | −1 | 1 | 1 | −1 | | ||
+ | ^ Eg | 2 | −1 | 0 | 2 | −1 | 0 | | ||
+ | ^ A1u | 1 | 1 | 1 | −1 | −1 | −1 | | ||
+ | ^ A2u | 1 | 1 | −1 | −1 | −1 | 1 | | ||
+ | ^ Eu | 2 | −1 | 0 | −2 | 1 | 0 | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Product Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ A1g ^ A2g ^ Eg ^ A1u ^ A2u ^ Eu ^ | ||
+ | ^ A1g | A1g | A2g | Eg | A1u | A2u | Eu | | ||
+ | ^ A2g | A2g | A1g | Eg | A2u | A1u | Eu | | ||
+ | ^ Eg | Eg | Eg | A1g+A2g+Eg | Eu | Eu | A1u+A2u+Eu | | ||
+ | ^ A1u | A1u | A2u | Eu | A1g | A2g | Eg | | ||
+ | ^ A2u | A2u | A1u | Eu | A2g | A1g | Eg | | ||
+ | ^ Eu | Eu | Eu | A1u+A2u+Eu | Eg | Eg | A1g+A2g+Eg | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Sub Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Super Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Invariant Potential expanded on renormalized spherical Harmonics ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | Any potential (function) can be written as a sum over spherical harmonics. | ||
+ | V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) | ||
+ | Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) | ||
+ | The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the D3d Point group with orientation 111 the form of the expansion coefficients is: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Expansion ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | -i A(2,1) & k=2\land m=-2 \\ | ||
+ | | ||
+ | (1-i) A(2,1) & k=2\land m=1 \\ | ||
+ | i A(2,1) & k=2\land m=2 \\ | ||
+ | | ||
+ | | ||
+ | 2 i \sqrt{2} A(4,1) & k=4\land m=-2 \\ | ||
+ | | ||
+ | | ||
+ | (1-i) A(4,1) & k=4\land m=1 \\ | ||
+ | -2 i \sqrt{2} A(4,1) & k=4\land m=2 \\ | ||
+ | (1+i) \sqrt{7} A(4,1) & k=4\land m=3 \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | -i B(6,2) & k=6\land m=-2 \\ | ||
+ | | ||
+ | | ||
+ | (1-i) A(6,1) & k=6\land m=1 \\ | ||
+ | i B(6,2) & k=6\land m=2 \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty | ||
+ | |||
+ | Akm[k_, | ||
</ | </ | ||
- | ==== Result ==== | + | ### |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Input format suitable for Quanty |
- | {{indexmenu> | + | |
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, A(0,0)} , | ||
+ | | ||
+ | {2, 1, (1+-1*I)*(A(2, | ||
+ | | ||
+ | {2, 2, (I)*(A(2, | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 1, (1+-1*I)*(A(4, | ||
+ | {4, 2, (-2*I)*((sqrt(2))*(A(4, | ||
+ | | ||
+ | | ||
+ | {4, 3, (1+1*I)*((sqrt(7))*(A(4, | ||
+ | | ||
+ | {4, 4, (sqrt(5/ | ||
+ | {6, 0, A(6,0)} , | ||
+ | | ||
+ | {6, 1, (1+-1*I)*(A(6, | ||
+ | | ||
+ | {6, 2, (I)*(B(6, | ||
+ | {6, 3, (-1/ | ||
+ | | ||
+ | | ||
+ | {6, 4, (-1)*((sqrt(7/ | ||
+ | | ||
+ | {6, 5, (1+-1*I)*((1/ | ||
+ | | ||
+ | {6, 6, (1/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | O=∑n″ | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. | ||
+ | A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle | ||
+ | Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m) | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'} | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i \text{Asd}(2,1)}{\sqrt{5}} | -\frac{(1-i) \text{Asd}(2,1)}{\sqrt{5}} | 0 | \frac{(1+i) \text{Asd}(2,1)}{\sqrt{5}} | -\frac{i \text{Asd}(2,1)}{\sqrt{5}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-1}^{(1)}} |\color{darkred}{ 0 }| \text{App}(0,0) | \left(-\frac{1}{5}-\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) | \frac{1}{5} i \sqrt{6} \text{App}(2,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{3 i \text{Apf}(2,1)}{\sqrt{35}}+\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) | \frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}}-(1-i) \sqrt{\frac{6}{35}} \text{Apf}(2,1) | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \frac{\left(\frac{3}{5}+\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}}-\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1) | -\frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)-\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | | ||
+ | ^ {Y_{0}^{(1)}} |\color{darkred}{ 0 }| \left(-\frac{1}{5}+\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) | \text{App}(0,0) | \left(\frac{1}{5}+\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) | i \sqrt{\frac{3}{35}} \text{Apf}(2,1)-\frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1) | \left(-\frac{2}{5}+\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)-\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \left(\frac{2}{5}+\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)+\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | \frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1)-i \sqrt{\frac{3}{35}} \text{Apf}(2,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) | | ||
+ | ^ {Y_{1}^{(1)}} |\color{darkred}{ 0 }| -\frac{1}{5} i \sqrt{6} \text{App}(2,1) | \left(\frac{1}{5}-\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) | \frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)+\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1)-\frac{\left(\frac{3}{5}-\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}} | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | (1+i) \sqrt{\frac{6}{35}} \text{Apf}(2,1)-\frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}} | -\frac{3 i \text{Apf}(2,1)}{\sqrt{35}}-\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) | | ||
+ | ^ {Y_{-2}^{(2)}} | -\frac{i \text{Asd}(2,1)}{\sqrt{5}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | \left(\frac{1}{21}+\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1)-\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1) | \frac{2}{7} i \text{Add}(2,1)+\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) | \frac{5}{21} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-1}^{(2)}} | -\frac{(1+i) \text{Asd}(2,1)}{\sqrt{5}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(\frac{1}{21}-\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1)-\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1) | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | \left(-\frac{1}{7}-\frac{i}{7}\right) \text{Add}(2,1)-\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \frac{1}{7} i \sqrt{6} \text{Add}(2,1)-\frac{8}{21} i \sqrt{5} \text{Add}(4,1) | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{0}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{2}{7} i \text{Add}(2,1)-\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) | \left(-\frac{1}{7}+\frac{i}{7}\right) \text{Add}(2,1)-\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | \left(\frac{1}{7}+\frac{i}{7}\right) \text{Add}(2,1)+\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \frac{2}{7} i \text{Add}(2,1)+\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{1}^{(2)}} | \frac{(1-i) \text{Asd}(2,1)}{\sqrt{5}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) | \frac{8}{21} i \sqrt{5} \text{Add}(4,1)-\frac{1}{7} i \sqrt{6} \text{Add}(2,1) | \left(\frac{1}{7}-\frac{i}{7}\right) \text{Add}(2,1)+\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | \left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1)-\left(\frac{1}{21}+\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{2}^{(2)}} | \frac{i \text{Asd}(2,1)}{\sqrt{5}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{5}{21} \text{Add}(4,0) | \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) | -\frac{2}{7} i \text{Add}(2,1)-\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) | \left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1)-\left(\frac{1}{21}-\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1) | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-3}^{(3)}} |\color{darkred}{ 0 }| -\frac{3 i \text{Apf}(2,1)}{\sqrt{35}}-\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | \left(-\frac{1}{3}-\frac{i}{3}\right) \text{Aff}(2,1)+\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)-\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) | \frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)+\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)+\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) | \left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)+\left(\frac{7}{11}-\frac{7 i}{11}\right) \text{Aff}(4,1) | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | \left(-\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) | \frac{10}{429} i \sqrt{\frac{7}{33}} \left(8 \sqrt{22} \text{Aff}(6,1)-\sqrt{55} \text{Bff}(6,2)\right) | | ||
+ | ^ {Y_{-2}^{(3)}} |\color{darkred}{ 0 }| \frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}}-(1+i) \sqrt{\frac{6}{35}} \text{Apf}(2,1) | \frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1)-i \sqrt{\frac{3}{35}} \text{Apf}(2,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(-\frac{1}{3}+\frac{i}{3}\right) \text{Aff}(2,1)+\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)-\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | -\frac{(1+i) \text{Aff}(2,1)}{\sqrt{15}}-\left(\frac{4}{33}+\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)+\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}-\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)-\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \left(\frac{7}{33}-\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) | \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) | \left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) | | ||
+ | ^ {Y_{-1}^{(3)}} |\color{darkred}{ 0 }| -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \left(-\frac{2}{5}-\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)-\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | -\frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)-\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)-\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) | -\frac{(1-i) \text{Aff}(2,1)}{\sqrt{15}}-\left(\frac{4}{33}-\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)+\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | \left(-\frac{1}{15}-\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)-\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)-\left(\frac{25}{429}+\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \frac{2}{5} i \sqrt{\frac{2}{3}} \text{Aff}(2,1)-\frac{8}{33} i \sqrt{5} \text{Aff}(4,1)+\frac{10}{143} i \sqrt{\frac{35}{3}} \text{Bff}(6,2) | \left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)-\left(\frac{7}{33}-\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1) | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | | ||
+ | ^ {Y_{0}^{(3)}} |\color{darkred}{ 0 }| \frac{\left(\frac{3}{5}-\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}}-\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1) | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1)-\frac{\left(\frac{3}{5}+\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)+\left(\frac{7}{11}+\frac{7 i}{11}\right) \text{Aff}(4,1) | -\frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}+\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)+\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \left(-\frac{1}{15}+\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)-\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)-\left(\frac{25}{429}-\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | \left(\frac{1}{15}+\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)+\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)+\left(\frac{25}{429}+\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}-\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)-\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \left(-\frac{7}{11}+\frac{7 i}{11}\right) \text{Aff}(4,1)-\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) | | ||
+ | ^ {Y_{1}^{(3)}} |\color{darkred}{ 0 }| \frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)+\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) | \left(\frac{2}{5}-\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)+\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | \left(\frac{7}{33}+\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) | -\frac{2}{5} i \sqrt{\frac{2}{3}} \text{Aff}(2,1)+\frac{8}{33} i \sqrt{5} \text{Aff}(4,1)-\frac{10}{143} i \sqrt{\frac{35}{3}} \text{Bff}(6,2) | \left(\frac{1}{15}-\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)+\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)+\left(\frac{25}{429}-\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | \frac{(1+i) \text{Aff}(2,1)}{\sqrt{15}}+\left(\frac{4}{33}+\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)+\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)+\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) | | ||
+ | ^ {Y_{2}^{(3)}} |\color{darkred}{ 0 }| \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) | i \sqrt{\frac{3}{35}} \text{Apf}(2,1)-\frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1) | (1-i) \sqrt{\frac{6}{35}} \text{Apf}(2,1)-\frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(-\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) | \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) | \left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)-\left(\frac{7}{33}+\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1) | -\frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}+\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)+\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \frac{(1-i) \text{Aff}(2,1)}{\sqrt{15}}+\left(\frac{4}{33}-\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | \left(\frac{1}{3}+\frac{i}{3}\right) \text{Aff}(2,1)-\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)+\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) | | ||
+ | ^ {Y_{3}^{(3)}} |\color{darkred}{ 0 }| -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) | \frac{3 i \text{Apf}(2,1)}{\sqrt{35}}+\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{10}{429} i \sqrt{\frac{7}{33}} \left(8 \sqrt{22} \text{Aff}(6,1)-\sqrt{55} \text{Bff}(6,2)\right) | \left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | \left(-\frac{7}{11}-\frac{7 i}{11}\right) \text{Aff}(4,1)-\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) | -\frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)-\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) | \left(\frac{1}{3}-\frac{i}{3}\right) \text{Aff}(2,1)-\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)+\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ \text{s} | 1 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ p_{x+y+z} |\color{darkred}{ 0 }| \frac{1+i}{\sqrt{6}} | \frac{1}{\sqrt{3}} | -\frac{1-i}{\sqrt{6}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_{x-y} |\color{darkred}{ 0 }| \frac{1}{2}-\frac{i}{2} | 0 | -\frac{1}{2}-\frac{i}{2} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_{3z-r} |\color{darkred}{ 0 }| -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | \sqrt{\frac{2}{3}} | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{\text{yz}+\text{xz}+\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{6}} | \frac{1+i}{\sqrt{6}} | 0 | -\frac{1-i}{\sqrt{6}} | -\frac{i}{\sqrt{6}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{yz}-\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{2}+\frac{i}{2} | 0 | \frac{1}{2}+\frac{i}{2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{2\text{xy}-\text{xz}-\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{3}} | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | 0 | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} | -\frac{i}{\sqrt{3}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{x^2-y^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 1 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ f_{\text{xyz}} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x^3+y^3+z^3} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} | 0 | -\frac{1}{4}-\frac{i}{4} | \frac{1}{\sqrt{3}} | \frac{1}{4}-\frac{i}{4} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} | | ||
+ | ^ f_{x^3-y^3} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | | ||
+ | ^ f_{2z^3-x^3-y^3} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} | 0 | \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} | \sqrt{\frac{2}{3}} | -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} | | ||
+ | ^ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{4}-\frac{i}{4} | \frac{1}{\sqrt{6}} | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} | \frac{1}{\sqrt{6}} | \frac{1}{4}-\frac{i}{4} | | ||
+ | ^ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} | \frac{1}{\sqrt{3}} | \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} | \frac{1}{\sqrt{3}} | -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} | | ||
+ | ^ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of symmetry adapted functions ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | After rotation we find | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ p_{x+y+z} ^ p_{x-y} ^ p_{3z-r} ^ d_{\text{yz}+\text{xz}+\text{xy}} ^ d_{\text{yz}-\text{xz}} ^ d_{2\text{xy}-\text{xz}-\text{yz}} ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ f_{\text{xyz}} ^ f_{x^3+y^3+z^3} ^ f_{x^3-y^3} ^ f_{2z^3-x^3-y^3} ^ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} ^ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} ^ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} ^ | ||
+ | ^ \text{s} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\sqrt{\frac{6}{5}} \text{Asd}(2,1) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ p_{x+y+z} |\color{darkred}{ 0 }| \text{App}(0,0)-\frac{2}{5} \sqrt{6} \text{App}(2,1) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{8 \text{Apf}(4,1)}{\sqrt{21}}-3 \sqrt{\frac{2}{35}} \text{Apf}(2,1) | \frac{6}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}-\frac{4}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_{x-y} |\color{darkred}{ 0 }| 0 | \text{App}(0,0)+\frac{1}{5} \sqrt{6} \text{App}(2,1) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) | 0 | | ||
+ | ^ p_{3z-r} |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0)+\frac{1}{5} \sqrt{6} \text{App}(2,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) | | ||
+ | ^ d_{\text{yz}+\text{xz}+\text{xy}} | -\sqrt{\frac{6}{5}} \text{Asd}(2,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0)-\frac{2}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)+\frac{16}{21} \sqrt{5} \text{Add}(4,1) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{yz}-\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)-\frac{8}{21} \sqrt{5} \text{Add}(4,1) | 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{2\text{xy}-\text{xz}-\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)-\frac{8}{21} \sqrt{5} \text{Add}(4,1) | 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{x^2-y^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ f_{\text{xyz}} |\color{darkred}{ 0 }| \frac{8 \text{Apf}(4,1)}{\sqrt{21}}-3 \sqrt{\frac{2}{35}} \text{Apf}(2,1) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)-\frac{4}{11} \text{Aff}(4,0)+\frac{80}{143} \text{Aff}(6,0) | 2 \sqrt{\frac{2}{15}} \text{Aff}(2,1)-\frac{4}{11} \text{Aff}(4,1)-\frac{40}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{x^3+y^3+z^3} |\color{darkred}{ 0 }| \frac{6}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}-\frac{4}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 2 \sqrt{\frac{2}{15}} \text{Aff}(2,1)-\frac{4}{11} \text{Aff}(4,1)-\frac{40}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | \text{Aff}(0,0)+\frac{1}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,1)+\frac{2}{11} \text{Aff}(4,0)+\frac{8}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)+\frac{100}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{20}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{x^3-y^3} |\color{darkred}{ 0 }| 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{2}{11} \text{Aff}(4,0)-\frac{4}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)-\frac{50}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{10}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 | | ||
+ | ^ f_{2z^3-x^3-y^3} |\color{darkred}{ 0 }| 0 | 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{2}{11} \text{Aff}(4,0)-\frac{4}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)-\frac{50}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{10}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | | ||
+ | ^ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\sqrt{\frac{2}{3}} \text{Aff}(2,1)-\frac{2}{33} \text{Aff}(4,0)+\frac{8}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)-\frac{20}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{20}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 | | ||
+ | ^ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} |\color{darkred}{ 0 }| 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{\sqrt{6}}-\frac{2}{33} \text{Aff}(4,0)-\frac{4}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | | ||
+ | ^ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} |\color{darkred}{ 0 }| 0 | 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{\sqrt{6}}-\frac{2}{33} \text{Aff}(4,0)-\frac{4}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Coupling for a single shell ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ea1g} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ea1g} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ | ||
+ | ^ \text{s} | \text{Ea1g} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ \text{s} | 1 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea1g} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/3)*(Ea2u + (2)*(Eeu))} , | ||
+ | {2, 1, (-5/ | ||
+ | | ||
+ | {2, 2, (-5/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \frac{1}{3} (\text{Ea2u}+2 \text{Eeu}) | \frac{1}{3} \sqrt[4]{-1} (\text{Ea2u}-\text{Eeu}) | -\frac{1}{3} i (\text{Ea2u}-\text{Eeu}) | | ||
+ | ^ {Y_{0}^{(1)}} | \frac{1}{3} (-1)^{3/4} (\text{Eeu}-\text{Ea2u}) | \frac{1}{3} (\text{Ea2u}+2 \text{Eeu}) | \frac{1}{3} \sqrt[4]{-1} (\text{Eeu}-\text{Ea2u}) | | ||
+ | ^ {Y_{1}^{(1)}} | \frac{1}{3} i (\text{Ea2u}-\text{Eeu}) | \frac{1}{3} (-1)^{3/4} (\text{Ea2u}-\text{Eeu}) | \frac{1}{3} (\text{Ea2u}+2 \text{Eeu}) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_{x+y+z} ^ p_{x-y} ^ p_{3z-r} ^ | ||
+ | ^ p_{x+y+z} | \text{Ea2u} | 0 | 0 | | ||
+ | ^ p_{x-y} | 0 | \text{Eeu} | 0 | | ||
+ | ^ p_{3z-r} | 0 | 0 | \text{Eeu} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ p_{x+y+z} | \frac{1+i}{\sqrt{6}} | \frac{1}{\sqrt{3}} | -\frac{1-i}{\sqrt{6}} | | ||
+ | ^ p_{x-y} | \frac{1}{2}-\frac{i}{2} | 0 | -\frac{1}{2}-\frac{i}{2} | | ||
+ | ^ p_{3z-r} | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | \sqrt{\frac{2}{3}} | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{\sin (\theta ) (\sin (\phi )+\cos (\phi ))+\cos (\theta )}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{x+y+z}{2 \sqrt{\pi }} | ::: | | ||
+ | ^ ^\text{Eeu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{2 \pi }} \sin (\theta ) (\cos (\phi )-\sin (\phi )) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{2 \pi }} (x-y) | ::: | | ||
+ | ^ ^\text{Eeu} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{\sin (\theta ) (\sin (\phi )+\cos (\phi ))-2 \cos (\theta )}{2 \sqrt{2 \pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{x+y-2 z}{2 \sqrt{2 \pi }} | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | $$A_{k,m} = \begin{cases} | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Quanty** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/5)*(Ea1g + (2)*(Eeg\[Pi] + Eeg\[Sigma]))} , | ||
+ | {2, 1, (1/ | ||
+ | | ||
+ | {2, 2, (1/ | ||
+ | | ||
+ | {4, 0, (-7/ | ||
+ | | ||
+ | {4, 1, (1/ | ||
+ | {4, 2, (-I)*((1/ | ||
+ | | ||
+ | | ||
+ | {4, 3, (1/ | ||
+ | | ||
+ | {4, 4, (-1/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | \frac{1}{6} (\text{Ea1g}+2 \text{Eeg$\pi $}+3 \text{Eeg$\sigma $}) | \left(\frac{1}{12}+\frac{i}{12}\right) \left(2 \text{Ea1g}-2 \text{Eeg$\pi $}-3 \sqrt{2} \text{Meg}\right) | \frac{i \text{Meg}}{\sqrt{3}} | \left(\frac{1}{12}-\frac{i}{12}\right) \left(2 \text{Ea1g}-2 \text{Eeg$\pi $}+3 \sqrt{2} \text{Meg}\right) | \frac{1}{6} (-\text{Ea1g}-2 \text{Eeg$\pi $}+3 \text{Eeg$\sigma $}) | | ||
+ | ^ {Y_{-1}^{(2)}} | \left(-\frac{1}{12}+\frac{i}{12}\right) \left(-2 \text{Ea1g}+2 \text{Eeg$\pi $}+3 \sqrt{2} \text{Meg}\right) | \frac{1}{3} (\text{Ea1g}+2 \text{Eeg$\pi $}) | \text{Meg} \text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | ^ {Y_{0}^{(2)}} | -\frac{i \text{Meg}}{\sqrt{3}} | \frac{(-1)^{3/4} \text{Meg}}{\sqrt{6}} | \text{Eeg$\sigma $} | \frac{\sqrt[4]{-1} \text{Meg}}{\sqrt{6}} | \frac{i \text{Meg}}{\sqrt{3}} | | ||
+ | ^ {Y_{1}^{(2)}} | \left(\frac{1}{12}+\frac{i}{12}\right) \left(2 \text{Ea1g}-2 \text{Eeg$\pi $}+3 \sqrt{2} \text{Meg}\right) | \frac{1}{3} i (\text{Ea1g}-\text{Eeg$\pi $}) | \text{Meg} \text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | ^ {Y_{2}^{(2)}} | \frac{1}{6} (-\text{Ea1g}-2 \text{Eeg$\pi $}+3 \text{Eeg$\sigma $}) | \left(\frac{1}{12}+\frac{i}{12}\right) \left(-2 \text{Ea1g}+2 \text{Eeg$\pi $}-3 \sqrt{2} \text{Meg}\right) | -\frac{i \text{Meg}}{\sqrt{3}} | \left(\frac{1}{12}-\frac{i}{12}\right) \left(-2 \text{Ea1g}+2 \text{Eeg$\pi $}+3 \sqrt{2} \text{Meg}\right) | \frac{1}{6} (\text{Ea1g}+2 \text{Eeg$\pi $}+3 \text{Eeg$\sigma $}) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{\text{yz}+\text{xz}+\text{xy}} ^ d_{\text{yz}-\text{xz}} ^ d_{2\text{xy}-\text{xz}-\text{yz}} ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ | ||
+ | ^ d_{\text{yz}+\text{xz}+\text{xy}} | \text{Ea1g} | 0 | 0 | 0 | \frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Meg} \left(\sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|$,1\right]-i \sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|$,3\right]+(1+i)\right)}{\sqrt{2}} | | ||
+ | ^ d_{\text{yz}-\text{xz}} | 0 | \text{Eeg$\pi $} | 0 | \text{Meg} | \left(-\frac{1}{2}-\frac{i}{2}\right) \text{Meg} \left(\text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | ^ d_{2\text{xy}-\text{xz}-\text{yz}} | 0 | 0 | \text{Eeg$\pi $} | 0 | \left(\frac{1}{6}+\frac{i}{6}\right) \text{Meg} \left(i \sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | ^ d_{x^2-y^2} | 0 | \text{Meg} | 0 | \text{Eeg$\sigma $} | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | \text{Meg} | 0 | \text{Eeg$\sigma $} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ d_{\text{yz}+\text{xz}+\text{xy}} | \frac{i}{\sqrt{6}} | \frac{1+i}{\sqrt{6}} | 0 | -\frac{1-i}{\sqrt{6}} | -\frac{i}{\sqrt{6}} | | ||
+ | ^ d_{\text{yz}-\text{xz}} | 0 | -\frac{1}{2}+\frac{i}{2} | 0 | \frac{1}{2}+\frac{i}{2} | 0 | | ||
+ | ^ d_{2\text{xy}-\text{xz}-\text{yz}} | \frac{i}{\sqrt{3}} | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | 0 | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} | -\frac{i}{\sqrt{3}} | | ||
+ | ^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea1g} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} \sin (\theta ) (\sin (\theta ) \sin (\phi ) \cos (\phi )+\cos (\theta ) (\sin (\phi )+\cos (\phi ))) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} (x (y+z)+y z) | ::: | | ||
+ | ^ ^\text{Eeg$\pi $} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{2 \pi }} \sin (2 \theta ) (\sin (\phi )-\cos (\phi )) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{2 \pi }} z (y-x) | ::: | | ||
+ | ^ ^\text{Eeg$\pi $} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{2 \pi }} \sin (\theta ) (\sin (\theta ) \sin (2 \phi )-\cos (\theta ) (\sin (\phi )+\cos (\phi ))) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{2 \pi }} (2 x y-x z-y z) | ::: | | ||
+ | ^ ^\text{Eeg$\sigma $} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: | | ||
+ | ^ ^\text{Eeg$\sigma $} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/7)*(Ea1u + Ea2u1 + Ea2u2 + (2)*(Eeu1 + Eeu2))} , | ||
+ | | ||
+ | {2, 1, (5/ | ||
+ | | ||
+ | {2, 2, (5/ | ||
+ | {4, 0, (1/ | ||
+ | | ||
+ | {4, 1, (1/ | ||
+ | {4, 2, (-1/ | ||
+ | | ||
+ | | ||
+ | {4, 3, (1/ | ||
+ | | ||
+ | {4, 4, (-1/ | ||
+ | {6, 0, (-13/ | ||
+ | {6, 1, (-13/ | ||
+ | | ||
+ | | ||
+ | {6, 2, (13/ | ||
+ | | ||
+ | {6, 3, (13/ | ||
+ | | ||
+ | {6, 4, (13/ | ||
+ | | ||
+ | {6, 5, (13/ | ||
+ | {6, 6, (-13/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-3}^{(3)}} | \frac{1}{24} (3 \text{Ea1u}+5 \text{Ea2u2}+10 \text{Eeu1}+6 \text{Eeu2}) | \frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(-\text{Ea1u}+\text{Eeu2}+\sqrt{5} (\text{Meu}-\text{Ma2u})\right)}{\sqrt{6}} | \frac{i \left(\sqrt{5} \text{Ea1u}+\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+2 \text{Meu}\right)}{8 \sqrt{3}} | \left(\frac{1}{12}-\frac{i}{12}\right) \left(\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}+3 \text{Meu}\right) | \frac{1}{8} \sqrt{\frac{5}{3}} (-\text{Ea1u}+\text{Ea2u2}+2 \text{Eeu1}-2 \text{Eeu2}) | \frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(-\text{Ea1u}+\text{Eeu2}+\sqrt{5} (\text{Ma2u}+\text{Meu})\right)}{\sqrt{6}} | -\frac{1}{24} i \left(3 \text{Ea1u}-5 \text{Ea2u2}+5 \text{Eeu1}-3 \text{Eeu2}+6 \sqrt{5} \text{Meu}\right) | | ||
+ | ^ {Y_{-2}^{(3)}} | -\frac{\left(\frac{1}{4}-\frac{i}{4}\right) \left(\text{Ea1u}-\text{Eeu2}+\sqrt{5} (\text{Ma2u}-\text{Meu})\right)}{\sqrt{6}} | \frac{1}{6} (\text{Ea1u}+3 \text{Ea2u1}+2 \text{Eeu2}) | -\frac{1}{12} \sqrt[4]{-1} \left(\sqrt{5} \text{Ea1u}-\sqrt{5} \text{Eeu2}+3 (\text{Ma2u}+\text{Meu})\right) | \frac{i \text{Ma2u}}{\sqrt{6}} | \frac{1}{12} (-1)^{3/4} \left(-\sqrt{5} \text{Ea1u}+\sqrt{5} \text{Eeu2}+3 \text{Ma2u}-3 \text{Meu}\right) | \frac{1}{6} (\text{Ea1u}-3 \text{Ea2u1}+2 \text{Eeu2}) | \frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(\text{Ea1u}-\text{Eeu2}-\sqrt{5} (\text{Ma2u}+\text{Meu})\right)}{\sqrt{6}} | | ||
+ | ^ {Y_{-1}^{(3)}} | -\frac{i \left(\sqrt{5} \text{Ea1u}+\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+2 \text{Meu}\right)}{8 \sqrt{3}} | \frac{1}{12} (-1)^{3/4} \left(\sqrt{5} \text{Ea1u}-\sqrt{5} \text{Eeu2}+3 (\text{Ma2u}+\text{Meu})\right) | \frac{1}{24} (5 \text{Ea1u}+3 \text{Ea2u2}+6 \text{Eeu1}+10 \text{Eeu2}) | \frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(-\text{Ea2u2}+\text{Eeu1}+\sqrt{5} \text{Meu}\right)}{\sqrt{3}} | \frac{1}{24} i \left(5 \text{Ea1u}-3 \text{Ea2u2}+3 \text{Eeu1}-5 \text{Eeu2}-6 \sqrt{5} \text{Meu}\right) | \frac{1}{12} (-1)^{3/4} \left(\sqrt{5} \text{Ea1u}-\sqrt{5} \text{Eeu2}-3 \text{Ma2u}+3 \text{Meu}\right) | \frac{1}{8} \sqrt{\frac{5}{3}} (-\text{Ea1u}+\text{Ea2u2}+2 \text{Eeu1}-2 \text{Eeu2}) | | ||
+ | ^ {Y_{0}^{(3)}} | \left(\frac{1}{12}+\frac{i}{12}\right) \left(\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}+3 \text{Meu}\right) | -\frac{i \text{Ma2u}}{\sqrt{6}} | \frac{\left(\frac{1}{4}-\frac{i}{4}\right) \left(-\text{Ea2u2}+\text{Eeu1}+\sqrt{5} \text{Meu}\right)}{\sqrt{3}} | \frac{1}{3} (\text{Ea2u2}+2 \text{Eeu1}) | \frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(\text{Ea2u2}-\text{Eeu1}-\sqrt{5} \text{Meu}\right)}{\sqrt{3}} | \frac{i \text{Ma2u}}{\sqrt{6}} | \left(-\frac{1}{12}+\frac{i}{12}\right) \left(\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}+3 \text{Meu}\right) | | ||
+ | ^ {Y_{1}^{(3)}} | \frac{1}{8} \sqrt{\frac{5}{3}} (-\text{Ea1u}+\text{Ea2u2}+2 \text{Eeu1}-2 \text{Eeu2}) | \frac{1}{12} \sqrt[4]{-1} \left(\sqrt{5} \text{Ea1u}-\sqrt{5} \text{Eeu2}-3 \text{Ma2u}+3 \text{Meu}\right) | \frac{1}{24} i \left(-5 \text{Ea1u}+3 \text{Ea2u2}-3 \text{Eeu1}+5 \text{Eeu2}+6 \sqrt{5} \text{Meu}\right) | -\frac{\left(\frac{1}{4}-\frac{i}{4}\right) \left(-\text{Ea2u2}+\text{Eeu1}+\sqrt{5} \text{Meu}\right)}{\sqrt{3}} | \frac{1}{24} (5 \text{Ea1u}+3 \text{Ea2u2}+6 \text{Eeu1}+10 \text{Eeu2}) | \frac{1}{12} \sqrt[4]{-1} \left(\sqrt{5} \text{Ea1u}-\sqrt{5} \text{Eeu2}+3 (\text{Ma2u}+\text{Meu})\right) | \frac{i \left(\sqrt{5} \text{Ea1u}+\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+2 \text{Meu}\right)}{8 \sqrt{3}} | | ||
+ | ^ {Y_{2}^{(3)}} | \frac{\left(\frac{1}{4}-\frac{i}{4}\right) \left(-\text{Ea1u}+\text{Eeu2}+\sqrt{5} (\text{Ma2u}+\text{Meu})\right)}{\sqrt{6}} | \frac{1}{6} (\text{Ea1u}-3 \text{Ea2u1}+2 \text{Eeu2}) | \frac{1}{12} \sqrt[4]{-1} \left(-\sqrt{5} \text{Ea1u}+\sqrt{5} \text{Eeu2}+3 \text{Ma2u}-3 \text{Meu}\right) | -\frac{i \text{Ma2u}}{\sqrt{6}} | -\frac{1}{12} (-1)^{3/4} \left(\sqrt{5} \text{Ea1u}-\sqrt{5} \text{Eeu2}+3 (\text{Ma2u}+\text{Meu})\right) | \frac{1}{6} (\text{Ea1u}+3 \text{Ea2u1}+2 \text{Eeu2}) | \frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(\text{Ea1u}-\text{Eeu2}+\sqrt{5} (\text{Ma2u}-\text{Meu})\right)}{\sqrt{6}} | | ||
+ | ^ {Y_{3}^{(3)}} | \frac{1}{24} i \left(3 \text{Ea1u}-5 \text{Ea2u2}+5 \text{Eeu1}-3 \text{Eeu2}+6 \sqrt{5} \text{Meu}\right) | -\frac{\left(\frac{1}{4}-\frac{i}{4}\right) \left(-\text{Ea1u}+\text{Eeu2}+\sqrt{5} (\text{Ma2u}+\text{Meu})\right)}{\sqrt{6}} | \frac{1}{8} \sqrt{\frac{5}{3}} (-\text{Ea1u}+\text{Ea2u2}+2 \text{Eeu1}-2 \text{Eeu2}) | \left(-\frac{1}{12}-\frac{i}{12}\right) \left(\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}+3 \text{Meu}\right) | -\frac{i \left(\sqrt{5} \text{Ea1u}+\sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+2 \text{Meu}\right)}{8 \sqrt{3}} | \frac{\left(\frac{1}{4}-\frac{i}{4}\right) \left(\text{Ea1u}-\text{Eeu2}+\sqrt{5} (\text{Ma2u}-\text{Meu})\right)}{\sqrt{6}} | \frac{1}{24} (3 \text{Ea1u}+5 \text{Ea2u2}+10 \text{Eeu1}+6 \text{Eeu2}) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x^3+y^3+z^3} ^ f_{x^3-y^3} ^ f_{2z^3-x^3-y^3} ^ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} ^ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} ^ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} ^ | ||
+ | ^ f_{\text{xyz}} | \text{Ea2u1} | \text{Ma2u} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{x^3+y^3+z^3} | \text{Ma2u} | \text{Ea2u2} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{x^3-y^3} | 0 | 0 | \text{Eeu1} | 0 | 0 | \text{Meu} | 0 | | ||
+ | ^ f_{2z^3-x^3-y^3} | 0 | 0 | 0 | \text{Eeu1} | 0 | 0 | \text{Meu} | | ||
+ | ^ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} | 0 | 0 | 0 | 0 | \text{Ea1u} | 0 | 0 | | ||
+ | ^ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} | 0 | 0 | \text{Meu} | 0 | 0 | \text{Eeu2} | 0 | | ||
+ | ^ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} | 0 | 0 | 0 | \text{Meu} | 0 | 0 | \text{Eeu2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x^3+y^3+z^3} | \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} | 0 | -\frac{1}{4}-\frac{i}{4} | \frac{1}{\sqrt{3}} | \frac{1}{4}-\frac{i}{4} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} | | ||
+ | ^ f_{x^3-y^3} | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | | ||
+ | ^ f_{2z^3-x^3-y^3} | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} | 0 | \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} | \sqrt{\frac{2}{3}} | -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} | | ||
+ | ^ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} | -\frac{1}{4}-\frac{i}{4} | \frac{1}{\sqrt{6}} | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} | \frac{1}{\sqrt{6}} | \frac{1}{4}-\frac{i}{4} | | ||
+ | ^ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} | \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} | \frac{1}{\sqrt{3}} | \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} | \frac{1}{\sqrt{3}} | -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} | | ||
+ | ^ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} | \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea2u1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: | | ||
+ | ^ ^\text{Ea2u2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\left(\frac{1}{32}+\frac{i}{32}\right) \sqrt{\frac{7}{3 \pi }} e^{-3 i \phi } \left(5 e^{6 i \phi } \sin ^3(\theta )+(2-2 i) e^{3 i \phi } \cos (\theta ) (5 \cos (2 \theta )-1)-3 e^{2 i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)+3 i e^{4 i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)-5 i \sin ^3(\theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{3 \pi }} \left(5 x^3-15 x^2 y-3 x \left(5 y^2+5 z^2-1\right)+5 y^3+y \left(3-15 z^2\right)+4 z \left(5 z^2-3\right)\right) | ::: | | ||
+ | ^ ^\text{Eeu1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{7}{2 \pi }} \sin (\theta ) (\cos (\phi )-\sin (\phi )) \left(5 \sin ^2(\theta ) \sin (2 \phi )-5 \cos (2 \theta )-1\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{2 \pi }} (x-y) \left(5 x^2+20 x y+5 y^2-15 z^2+3\right) | ::: | | ||
+ | ^ ^\text{Eeu1} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\left(-\frac{1}{32}-\frac{i}{32}\right) \sqrt{\frac{7}{6 \pi }} e^{-3 i \phi } \left(5 e^{6 i \phi } \sin ^3(\theta )-(4-4 i) e^{3 i \phi } \cos (\theta ) (5 \cos (2 \theta )-1)-3 e^{2 i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)+3 i e^{4 i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)-5 i \sin ^3(\theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{6 \pi }} \left(-5 x^3+15 x^2 y+3 x \left(5 y^2+5 z^2-1\right)-5 y^3+3 y \left(5 z^2-1\right)+8 z \left(5 z^2-3\right)\right) | ::: | | ||
+ | ^ ^\text{Ea1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{35}{\pi }} \sin (\theta ) (\cos (\phi )-\sin (\phi )) \left(-\sin ^2(\theta ) \sin (2 \phi )+\sin (2 \theta ) (\sin (\phi )+\cos (\phi ))-2 \cos ^2(\theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{35}{\pi }} (x-y) \left(x^2+4 x (y-z)+y^2-4 y z+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eeu2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{35}{2 \pi }} \sin (\theta ) (\cos (\phi )-\sin (\phi )) \left(\sin ^2(\theta ) \sin (2 \phi )+2 \sin (2 \theta ) (\sin (\phi )+\cos (\phi ))+2 \cos ^2(\theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{35}{2 \pi }} (x-y) \left(x^2+4 x (y+2 z)+y^2+8 y z+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eeu2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{8} \sqrt{\frac{105}{2 \pi }} \sin (\theta ) (\sin (\phi )+\cos (\phi )) \left(\sin ^2(\theta ) \sin (2 \phi )-2 \cos ^2(\theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{105}{2 \pi }} (x+y) \left(x^2-4 x y+y^2+5 z^2-1\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k=0\land m=0 \\ | ||
+ | i \sqrt{\frac{5}{6}} \text{Ma1g} & k=2\land m=-2 \\ | ||
+ | (1+i) \sqrt{\frac{5}{6}} \text{Ma1g} & k=2\land m=-1 \\ | ||
+ | | ||
+ | -i \sqrt{\frac{5}{6}} \text{Ma1g} & k=2\land m=2 | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty> | ||
+ | |||
+ | Akm = {{2, 1, (-1+1*I)*((sqrt(5/ | ||
+ | | ||
+ | {2, 2, (-I)*((sqrt(5/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | -\frac{i \text{Ma1g}}{\sqrt{6}} | \frac{(1-i) \text{Ma1g}}{\sqrt{6}} | 0 | -\frac{(1+i) \text{Ma1g}}{\sqrt{6}} | \frac{i \text{Ma1g}}{\sqrt{6}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{\text{yz}+\text{xz}+\text{xy}} ^ d_{\text{yz}-\text{xz}} ^ d_{2\text{xy}-\text{xz}-\text{yz}} ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ | ||
+ | ^ \text{s} | \text{Ma1g} | 0 | 0 | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 2\land k\neq 4)\lor (k\neq 4\land m\neq -2\land m\neq -1\land m\neq 1\land m\neq 2)\lor (m\neq -4\land m\neq -3\land m\neq -2\land m\neq -1\land m\neq 0\land m\neq 1\land m\neq 2\land m\neq 3\land m\neq 4) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | i \sqrt{\frac{6}{7}} (\text{Ma2u1}-\text{Meu2}) & k=4\land m=-2 \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | -i \sqrt{\frac{6}{7}} (\text{Ma2u1}-\text{Meu2}) & k=4\land m=2 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3d_111.Quanty> | ||
+ | |||
+ | Akm = {{2, 1, (-1/ | ||
+ | | ||
+ | {2, 2, (-1/ | ||
+ | | ||
+ | {4, 0, (-1/ | ||
+ | | ||
+ | {4, 1, (1/ | ||
+ | {4, 2, (-I)*((sqrt(6/ | ||
+ | | ||
+ | | ||
+ | {4, 3, (1/ | ||
+ | | ||
+ | {4, 4, (-1/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | -\frac{i (\text{Ma2u1}+2 \text{Meu2})}{3 \sqrt{2}} | (\text{Ma2u1}+\text{Meu2}) \text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | ^ {Y_{0}^{(1)}} | \left(-\frac{1}{6}-\frac{i}{6}\right) (\text{Ma2u1}-\text{Meu2}) | -\frac{i \text{Ma2u1}}{\sqrt{6}} | (\text{Ma2u1}+3 \text{Meu2}) \text{Root}\left[900 \text{$\#$1}^4+1\$|, | ||
+ | ^ {Y_{1}^{(1)}} | \frac{2 \text{Ma2u1}-3 \sqrt{5} \text{Meu1}+\text{Meu2}}{6 \sqrt{2}} | \frac{\sqrt[4]{-1} (\text{Ma2u1}-\text{Meu2})}{\sqrt{6}} | \frac{i (\text{Ma2u1}-2 \text{Meu2})}{\sqrt{30}} | \frac{\left(\frac{1}{3}-\frac{i}{3}\right) (2 \text{Ma2u1}+\text{Meu2})}{\sqrt{10}} | \frac{2 \sqrt{5} \text{Ma2u1}-15 \text{Meu1}+\sqrt{5} \text{Meu2}}{10 \sqrt{6}} | (\text{Ma2u1}+\text{Meu2}) \text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x^3+y^3+z^3} ^ f_{x^3-y^3} ^ f_{2z^3-x^3-y^3} ^ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} ^ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} ^ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} ^ | ||
+ | ^ p_{x+y+z} | \left(\frac{1}{6}+\frac{i}{6}\right) \left(\text{Ma2u1} \left(i \sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | ^ p_{x-y} | \frac{\left(\frac{1}{2}+\frac{i}{2}\right) (\text{Ma2u1}+\text{Meu2}) \left(\text{Root}\left[36 \text{$\#$1}^4+1\$|$,1\right]+i \text{Root}\left[36 \text{$\#$1}^4+1\$|$,3\right]\right)}{\sqrt{2}} | \frac{(2 \text{Ma2u1}+\text{Meu2}) \left((15+15 i) \text{Root}\left[2025 \text{$\#$1}^4+1\$|$,1\right]+i \sqrt{10}\right)}{30 \sqrt{3}} | \text{Meu1} | \frac{(2 \text{Ma2u1}+\text{Meu2}) \left((15+15 i) \text{Root}\left[2025 \text{$\#$1}^4+1\$|$,1\right]+i \sqrt{10}\right)}{15 \sqrt{6}} | \frac{\left(\frac{1}{6}+\frac{i}{6}\right) (\text{Ma2u1}+\text{Meu2}) \left(i \sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|$,1\right]+\sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|$,3\right]+(-1+i)\right)}{\sqrt{2}} | \left(\frac{1}{6}+\frac{i}{6}\right) \left(\text{Ma2u1} \left(i \sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|, | ||
+ | ^ p_{3z-r} | \frac{\left(\frac{1}{6}-\frac{i}{6}\right) (\text{Ma2u1}+\text{Meu2}) \left(\sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|$,1\right]-i \sqrt{3} \text{Root}\left[36 \text{$\#$1}^4+1\$|$,3\right]+(1+i)\right)}{\sqrt{2}} | \left(\frac{1}{180}-\frac{i}{180}\right) \left(\text{Ma2u1} \left(-4 \text{Root}\left[\text{$\#$1}^4+25\$|, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |