Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
physics_chemistry:point_groups:d3d:orientation_zx [2018/04/05 00:05] – Maurits W. Haverkort | physics_chemistry:point_groups:d3d:orientation_zx [2018/09/06 13:01] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Zx ====== | ====== Orientation Zx ====== | ||
### | ### | ||
- | The point group D3d is a subgroup of Oh. Many materials of relavance | + | The point group D3d is a subgroup of Oh. Many materials of relevance |
- | As one can see in the list of supergroups of D3d, there are two different orientations of Oh that are a supergroup of this orientation of D3d. The different orientations of Oh with respect to D3d do however change the definitions of the eg\[Pi] and eg\[Sigma] | + | As one can see in the list of supergroups of D3d, there are two different orientations of Oh that are a supergroup of this orientation of D3d. The different orientations of Oh with respect to D3d do however change the definitions of the eg$\pi$ and eg$\sigma$ |
### | ### | ||
Line 387: | Line 389: | ||
### | ### | ||
- | ^ ^Ea1g | {{: | + | ^ ^Ea1g | {{: |
|ψ(θ,ϕ)=√11 |12√π | ::: | | |ψ(θ,ϕ)=√11 |12√π | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√π | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√π | ::: | | ||
Line 478: | Line 480: | ||
### | ### | ||
- | ^ ^Eeu | {{: | + | ^ ^Eeu | {{: |
|ψ(θ,ϕ)=√11 |12√3πsin(θ)sin(ϕ) | ::: | | |ψ(θ,ϕ)=√11 |12√3πsin(θ)sin(ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√3πy | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√3πy | ::: | | ||
- | ^ ^Ea2u | {{: | + | ^ ^Ea2u | {{: |
|ψ(θ,ϕ)=√11 |12√3πcos(θ) | ::: | | |ψ(θ,ϕ)=√11 |12√3πcos(θ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√3πz | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√3πz | ::: | | ||
- | ^ ^Eeu | {{: | + | ^ ^Eeu | {{: |
|ψ(θ,ϕ)=√11 |12√3πsin(θ)cos(ϕ) | ::: | | |ψ(θ,ϕ)=√11 |12√3πsin(θ)cos(ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√3πx | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√3πx | ::: | | ||
Line 586: | Line 588: | ||
### | ### | ||
- | ^ ^Eeg2 | {{: | + | ^ ^Eeg2 | {{: |
|ψ(θ,ϕ)=√11 |14√15πsin2(θ)sin(2ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√15πsin2(θ)sin(2ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√15πxy | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√15πxy | ::: | | ||
- | ^ ^Eeg1 | {{: | + | ^ ^Eeg1 | {{: |
|ψ(θ,ϕ)=√11 |14√15πsin(2θ)sin(ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√15πsin(2θ)sin(ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√15πyz | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√15πyz | ::: | | ||
- | ^ ^Ea1g | {{: | + | ^ ^Ea1g | {{: |
|ψ(θ,ϕ)=√11 |18√5π(3cos(2θ)+1) | ::: | | |ψ(θ,ϕ)=√11 |18√5π(3cos(2θ)+1) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |14√5π(3z2−1) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |14√5π(3z2−1) | ::: | | ||
- | ^ ^Eeg1 | {{: | + | ^ ^Eeg1 | {{: |
|ψ(θ,ϕ)=√11 |14√15πsin(2θ)cos(ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√15πsin(2θ)cos(ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√15πxz | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√15πxz | ::: | | ||
- | ^ ^Eeg2 | {{: | + | ^ ^Eeg2 | {{: |
|ψ(θ,ϕ)=√11 |14√15πsin2(θ)cos(2ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√15πsin2(θ)cos(2ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |14√15π(x2−y2) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |14√15π(x2−y2) | ::: | | ||
Line 714: | Line 716: | ||
### | ### | ||
- | ^ ^Ea2uA | {{: | + | ^ ^Ea2uA | {{: |
|ψ(θ,ϕ)=√11 |14√352πsin3(θ)sin(3ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√352πsin3(θ)sin(3ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |−14√352πy(y2−3x2) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |−14√352πy(y2−3x2) | ::: | | ||
- | ^ ^Eeu2 | {{: | + | ^ ^Eeu2 | {{: |
|ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)sin(2ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)sin(2ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |12√105πxyz | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |12√105πxyz | ::: | | ||
- | ^ ^Eeu1 | {{: | + | ^ ^Eeu1 | {{: |
|ψ(θ,ϕ)=√11 |18√212πsin(θ)(5cos(2θ)+3)sin(ϕ) | ::: | | |ψ(θ,ϕ)=√11 |18√212πsin(θ)(5cos(2θ)+3)sin(ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |14√212πy(5z2−1) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |14√212πy(5z2−1) | ::: | | ||
- | ^ ^Ea2uB | {{: | + | ^ ^Ea2uB | {{: |
|ψ(θ,ϕ)=√11 |116√7π(3cos(θ)+5cos(3θ)) | ::: | | |ψ(θ,ϕ)=√11 |116√7π(3cos(θ)+5cos(3θ)) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |14√7πz(5z2−3) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |14√7πz(5z2−3) | ::: | | ||
- | ^ ^Eeu1 | {{: | + | ^ ^Eeu1 | {{: |
|ψ(θ,ϕ)=√11 |116√212π(sin(θ)+5sin(3θ))cos(ϕ) | ::: | | |ψ(θ,ϕ)=√11 |116√212π(sin(θ)+5sin(3θ))cos(ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |14√212πx(5z2−1) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |14√212πx(5z2−1) | ::: | | ||
- | ^ ^Eeu2 | {{: | + | ^ ^Eeu2 | {{: |
|ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)cos(2ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√105πsin2(θ)cos(θ)cos(2ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |14√105πz(x2−y2) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |14√105πz(x2−y2) | ::: | | ||
- | ^ ^Ea1u | {{: | + | ^ ^Ea1u | {{: |
|ψ(θ,ϕ)=√11 |14√352πsin3(θ)cos(3ϕ) | ::: | | |ψ(θ,ϕ)=√11 |14√352πsin3(θ)cos(3ϕ) | ::: | | ||
|ψ(ˆx,ˆy,ˆz)=√11 |14√352πx(x2−3y2) | ::: | | |ψ(ˆx,ˆy,ˆz)=√11 |14√352πx(x2−3y2) | ::: | |