Processing math: 18%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

physics_chemistry:point_groups:oh:orientation_0sqrt2-1z [2018/03/21 18:48] – created Stefano Agrestiniphysics_chemistry:point_groups:oh:orientation_0sqrt2-1z [2018/09/06 12:49] (current) Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation 0sqrt2-1z ====== ====== Orientation 0sqrt2-1z ======
 +
 +===== Symmetry Operations =====
  
 ### ###
-alligned paragraph text+ 
 +In the Oh Point Group, with orientation 0sqrt2-1z there are the following symmetry operations 
 ### ###
  
-===== Example =====+### 
 + 
 +{{:physics_chemistry:pointgroup:oh_0sqrt2-1z.png}}
  
 ### ###
-description text+
 ### ###
  
-==== Input ==== +^ Operator ^ Orientation ^ 
-<code Quanty Example.Quanty> +^ E | {0,0,0} , | 
--- some example code+^ C3 | {0,0,1} , {0,0,1} , {6,2,1} , {0,22,1} , {6,2,1} , {6,2,1} , {0,22,1} , {6,2,1} , | 
 +^ C2 | {1,0,0} , {1,3,0} , {1,3,0} , {0,1,2} , {3,1,22} , {3,1,22} , | 
 +^ C4 | {0,2,1} , {0,2,1} , {3,1,2} , {3,1,2} , {3,1,2} , {3,1,2} , | 
 +^ C2 | {0,2,1} , {3,1,2} , {3,1,2} , | 
 +^ i | {0,0,0} , | 
 +^ S4 | {0,2,1} , {0,2,1} , {3,1,2} , {3,1,2} , {3,1,2} , {3,1,2} , | 
 +^ S6 | {0,0,1} , {0,0,1} , {6,2,1} , {0,22,1} , {6,2,1} , {6,2,1} , {0,22,1} , {6,2,1} , | 
 +^ σh | {0,2,1} , {3,1,2} , {3,1,2} , | 
 +^ σd | {1,0,0} , {1,3,0} , {1,3,0} , {0,1,2} , {3,1,22} , {3,1,22} , | 
 + 
 +### 
 + 
 +===== Different Settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt2-1z|Point Group Oh with orientation 0sqrt2-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt21z|Point Group Oh with orientation 0sqrt21z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_11-1z|Point Group Oh with orientation 11-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_111z|Point Group Oh with orientation 111z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt20-1z|Point Group Oh with orientation sqrt20-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt201z|Point Group Oh with orientation sqrt201z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_xyz|Point Group Oh with orientation XYZ]] 
 + 
 +### 
 + 
 +===== Character Table ===== 
 + 
 +### 
 + 
 +  ^  E(1)  ^  C3(8)  ^  C2(6)  ^  C4(6)  ^  C2(3)  ^  i(1)  ^  S4(6)  ^  S6(8)  ^  σh(3)  ^  σd(6)  ^ 
 +^ A1g1111111111
 +^ A2g1111111111
 +^ Eg2100220120
 +^ T1g3011131011
 +^ T2g3011131011
 +^ A1u1111111111
 +^ A2u1111111111
 +^ Eu2100220120
 +^ T1u3011131011
 +^ T2u3011131011
 + 
 +### 
 + 
 +===== Product Table ===== 
 + 
 +### 
 + 
 +  ^  A1g  ^  A2g  ^  Eg  ^  T1g  ^  T2g  ^  A1u  ^  A2u  ^  Eu  ^  T1u  ^  T2u  ^ 
 +^ A1g  | A1g  | A2g  | Eg  | T1g  | T2g  | A1u  | A2u  | Eu  | T1u  | T2u  | 
 +^ A2g  | A2g  | A1g  | Eg  | T2g  | T1g  | A2u  | A1u  | Eu  | T2u  | T1u  | 
 +^ Eg  | Eg  | Eg  | A1g+A2g+Eg  | T1g+T2g  | T1g+T2g  | Eu  | Eu  | A1u+A2u+Eu  | T1u+T2u  | T1u+T2u  | 
 +^ T1g  | T1g  | T2g  | T1g+T2g  | A1g+Eg+T1g+T2g  | A2g+Eg+T1g+T2g  | T1u  | T2u  | T1u+T2u  | A1u+Eu+T1u+T2u  | A2u+Eu+T1u+T2u  | 
 +^ T2g  | T2g  | T1g  | T1g+T2g  | A2g+Eg+T1g+T2g  | A1g+Eg+T1g+T2g  | T2u  | T1u  | T1u+T2u  | A2u+Eu+T1u+T2u  | A1u+Eu+T1u+T2u  | 
 +^ A1u  | A1u  | A2u  | Eu  | T1u  | T2u  | A1g  | A2g  | Eg  | T1g  | T2g  | 
 +^ A2u  | A2u  | A1u  | Eu  | T2u  | T1u  | A2g  | A1g  | Eg  | T2g  | T1g  | 
 +^ Eu  | Eu  | Eu  | A1u+A2u+Eu  | T1u+T2u  | T1u+T2u  | Eg  | Eg  | A1g+A2g+Eg  | T1g+T2g  | T1g+T2g  | 
 +^ T1u  | T1u  | T2u  | T1u+T2u  | A1u+Eu+T1u+T2u  | A2u+Eu+T1u+T2u  | T1g  | T2g  | T1g+T2g  | A1g+Eg+T1g+T2g  | A2g+Eg+T1g+T2g  | 
 +^ T2u  | T2u  | T1u  | T1u+T2u  | A2u+Eu+T1u+T2u  | A1u+Eu+T1u+T2u  | T2g  | T1g  | T1g+T2g  | A2g+Eg+T1g+T2g  | A1g+Eg+T1g+T2g  | 
 + 
 +### 
 + 
 +===== Sub Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] 
 +  * [[physics_chemistry:point_groups:c2:orientation_x|Point Group C2 with orientation X]] 
 +  * [[physics_chemistry:point_groups:c3v:orientation_zx|Point Group C3v with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:c3:orientation_z|Point Group C3 with orientation Z]] 
 +  * [[physics_chemistry:point_groups:ci:orientation_|Point Group Ci with orientation ]] 
 +  * [[physics_chemistry:point_groups:cs:orientation_x|Point Group Cs with orientation X]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx|Point Group D3d with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx_a|Point Group D3d with orientation Zx_A]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx_b|Point Group D3d with orientation Zx_B]] 
 +  * [[physics_chemistry:point_groups:d3:orientation_zx|Point Group D3 with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:s6:orientation_z|Point Group S6 with orientation Z]] 
 + 
 +### 
 + 
 +===== Super Groups with compatible settings ===== 
 + 
 +### 
 + 
 + 
 +### 
 + 
 +===== Invariant Potential expanded on renormalized spherical Harmonics ===== 
 + 
 +### 
 + 
 +Any potential (function) can be written as a sum over spherical harmonics. 
 +V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) 
 +Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) 
 +The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Oh Point group with orientation 0sqrt2-1z the form of the expansion coefficients is: 
 + 
 +### 
 + 
 +==== Expansion ==== 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + A(0,0) & k=0\land m=0 \\ 
 + -i \sqrt{\frac{10}{7}} A(4,0) & k=4\land (m=-3\lor m=3) \\ 
 + A(4,0) & k=4\land m=0 \\ 
 + -\frac{1}{8} \sqrt{\frac{77}{3}} A(6,0) & k=6\land (m=-6\lor m=6) \\ 
 + \frac{1}{4} i \sqrt{\frac{35}{6}} A(6,0) & k=6\land (m=-3\lor m=3) \\ 
 + A(6,0) & k=6\land m=0 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +==== Input format suitable for Mathematica (Quanty.nb) ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb
 + 
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(-I)*Sqrt[10/7]*A[4, 0], k == 4 && (m == -3 || m == 3)}, {A[4, 0], k == 4 && m == 0}, {-(Sqrt[77/3]*A[6, 0])/8, k == 6 && (m == -6 || m == 6)}, {(I/4)*Sqrt[35/6]*A[6, 0], k == 6 && (m == -3 || m == 3)}, {A[6, 0], k == 6 && m == 0}}, 0] 
 </code> </code>
  
-==== Result ==== +###
-<WRAP center box 100%> +
-text produced as output +
-</WRAP>+
  
-===== Table of contents ===== +==== Input format suitable for Quanty ====
-{{indexmenu>.#1}}+
  
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty>
 +
 +Akm = {{0, 0, A(0,0)} , 
 +       {4, 0, A(4,0)} , 
 +       {4,-3, (-I)*((sqrt(10/7))*(A(4,0)))} , 
 +       {4, 3, (-I)*((sqrt(10/7))*(A(4,0)))} , 
 +       {6, 0, A(6,0)} , 
 +       {6,-3, (1/4*I)*((sqrt(35/6))*(A(6,0)))} , 
 +       {6, 3, (1/4*I)*((sqrt(35/6))*(A(6,0)))} , 
 +       {6,-6, (-1/8)*((sqrt(77/3))*(A(6,0)))} , 
 +       {6, 6, (-1/8)*((sqrt(77/3))*(A(6,0)))} }
 +
 +</code>
 +
 +###
 +
 +==== One particle coupling on a basis of spherical harmonics ====
 +
 +###
 +
 +The operator representing the potential in second quantisation is given as:
 +O=n
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
 + A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle
 +Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +we can express the operator as 
 + O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
 +
 +###
 +
 +
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{0}^{(0)}} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{-1}^{(1)}} |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | -\frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) | 0 |
 +^ {Y_{0}^{(1)}} |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | \frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) |
 +^ {Y_{1}^{(1)}} |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
 +^ {Y_{-2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | \frac{5}{21} i \sqrt{2} \text{Add}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{-1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | -\frac{5}{21} i \sqrt{2} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{0}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{5}{21} i \sqrt{2} \text{Add}(4,0) | 0 | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{5}{21} i \sqrt{2} \text{Add}(4,0) | 0 | 0 | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ {Y_{-3}^{(3)}} |\color{darkred}{ 0 }| 0 | -\frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | 0 | \frac{1}{11} i \sqrt{10} \text{Aff}(4,0)+\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 | 0 | \frac{35}{156} \text{Aff}(6,0) |
 +^ {Y_{-2}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | \frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | \frac{2}{33} i \sqrt{5} \text{Aff}(4,0)-\frac{35}{572} i \sqrt{5} \text{Aff}(6,0) | 0 | 0 |
 +^ {Y_{-1}^{(3)}} |\color{darkred}{ 0 }| -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | \frac{35}{572} i \sqrt{5} \text{Aff}(6,0)-\frac{2}{33} i \sqrt{5} \text{Aff}(4,0) | 0 |
 +^ {Y_{0}^{(3)}} |\color{darkred}{ 0 }| 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{11} i \sqrt{10} \text{Aff}(4,0)-\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{1}{11} i \sqrt{10} \text{Aff}(4,0)-\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) |
 +^ {Y_{1}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{35}{572} i \sqrt{5} \text{Aff}(6,0)-\frac{2}{33} i \sqrt{5} \text{Aff}(4,0) | 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
 +^ {Y_{2}^{(3)}} |\color{darkred}{ 0 }| \frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \frac{2}{33} i \sqrt{5} \text{Aff}(4,0)-\frac{35}{572} i \sqrt{5} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
 +^ {Y_{3}^{(3)}} |\color{darkred}{ 0 }| 0 | -\frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{35}{156} \text{Aff}(6,0) | 0 | 0 | \frac{1}{11} i \sqrt{10} \text{Aff}(4,0)+\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
 +
 +
 +###
 +
 +==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
 +
 +###
 +
 +
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
 +
 +###
 +
 +
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ \text{s} | 1 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ p_x |\color{darkred}{ 0 }| \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ p_y |\color{darkred}{ 0 }| \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ p_z |\color{darkred}{ 0 }| 0 | 1 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ d_{\text{xy}+\sqrt{2}\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{6}} | \frac{1}{\sqrt{3}} | 0 | -\frac{1}{\sqrt{3}} | -\frac{i}{\sqrt{6}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} | 0 | -\frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{xz}-\sqrt{2}\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} | 0 | \frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{\sqrt{3}} | \frac{i}{\sqrt{6}} | 0 | \frac{i}{\sqrt{6}} | -\frac{1}{\sqrt{3}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 1 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i \sqrt{2}}{3} | 0 | 0 | \frac{\sqrt{5}}{3} | 0 | 0 | \frac{i \sqrt{2}}{3} |
 +^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 | \frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 |
 +^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | -\frac{i}{2 \sqrt{3}} | 0 | -\frac{i}{2 \sqrt{3}} | -\frac{\sqrt{\frac{5}{3}}}{2} | 0 |
 +^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{3} i \sqrt{\frac{5}{2}} | 0 | 0 | \frac{2}{3} | 0 | 0 | -\frac{1}{3} i \sqrt{\frac{5}{2}} |
 +^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{i}{2 \sqrt{3}} | \frac{\sqrt{\frac{5}{3}}}{2} | 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | \frac{i}{2 \sqrt{3}} | 0 |
 +^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 | \frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 |
 +^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +==== One particle coupling on a basis of symmetry adapted functions ====
 +
 +###
 +
 +After rotation we find
 +
 +###
 +
 +
 +
 +###
 +
 +    ^  \text{s}   ^  p_x   ^  p_y   ^  p_z   ^  d_{\text{xy}+\sqrt{2}\text{xz}}   ^  d_{-x^2+y^2-2\sqrt{2}\text{yz}}   ^  d_{\text{xz}-\sqrt{2}\text{xy}}   ^  d_{-x^2+y^2+\sqrt{2}\text{yz}}   ^  d_{3z^2-r^2}   ^  f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.}   ^  f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.}   ^  f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.}   ^  f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.}   ^  f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.}   ^  f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)}   ^  f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.}   ^
 +^ \text{s} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ p_x |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 | 0 | 0 |
 +^ p_y |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 | 0 |
 +^ p_z |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 |
 +^ d_{\text{xy}+\sqrt{2}\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{\text{xz}-\sqrt{2}\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|
 +^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)+\frac{6}{11} \text{Aff}(4,0)+\frac{45}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
 +^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} |\color{darkred}{ 0 }| 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
 +^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 |
 +^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) | 0 | 0 |
 +^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) | 0 |
 +^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) |
 +
 +
 +###
 +
 +===== Coupling for a single shell =====
 +
 +
 +
 +###
 +
 +Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
 +
 +###
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Ea1g} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Ea1g, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty>
 +
 +Akm = {{0, 0, Ea1g} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ {Y_{0}^{(0)}} | \text{Ea1g} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  \text{s}   ^
 +^ \text{s} | \text{Ea1g} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ \text{s} | 1 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ea1g} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_0_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Et1u} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Et1u, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty>
 +
 +Akm = {{0, 0, Et1u} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ {Y_{-1}^{(1)}} | \text{Et1u} | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | \text{Et1u} | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | \text{Et1u} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  p_x   ^  p_y   ^  p_z   ^
 +^ p_x | \text{Et1u} | 0 | 0 |
 +^ p_y | 0 | \text{Et1u} | 0 |
 +^ p_z | 0 | 0 | \text{Et1u} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |
 +^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |
 +^ p_z | 0 | 1 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_1_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: |
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_1_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: |
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_1_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{5} (2 \text{Eeg}+3 \text{Et2g}) & k=0\land m=0 \\
 + i \sqrt{\frac{14}{5}} (\text{Eeg}-\text{Et2g}) & k=4\land (m=-3\lor m=3) \\
 + -\frac{7}{5} (\text{Eeg}-\text{Et2g}) & k=4\land m=0
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(2*Eeg + 3*Et2g)/5, k == 0 && m == 0}, {I*Sqrt[14/5]*(Eeg - Et2g), k == 4 && (m == -3 || m == 3)}, {(-7*(Eeg - Et2g))/5, k == 4 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty>
 +
 +Akm = {{0, 0, (1/5)*((2)*(Eeg) + (3)*(Et2g))} , 
 +       {4, 0, (-7/5)*(Eeg + (-1)*(Et2g))} , 
 +       {4,-3, (I)*((sqrt(14/5))*(Eeg + (-1)*(Et2g)))} , 
 +       {4, 3, (I)*((sqrt(14/5))*(Eeg + (-1)*(Et2g)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-2}^{(2)}} | \frac{1}{3} (\text{Eeg}+2 \text{Et2g}) | 0 | 0 | -\frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | \frac{1}{3} (2 \text{Eeg}+\text{Et2g}) | 0 | 0 | \frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) |
 +^ {Y_{0}^{(2)}} | 0 | 0 | \text{Et2g} | 0 | 0 |
 +^ {Y_{1}^{(2)}} | \frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) | 0 | 0 | \frac{1}{3} (2 \text{Eeg}+\text{Et2g}) | 0 |
 +^ {Y_{2}^{(2)}} | 0 | -\frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) | 0 | 0 | \frac{1}{3} (\text{Eeg}+2 \text{Et2g}) |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}+\sqrt{2}\text{xz}}   ^  d_{-x^2+y^2-2\sqrt{2}\text{yz}}   ^  d_{\text{xz}-\sqrt{2}\text{xy}}   ^  d_{-x^2+y^2+\sqrt{2}\text{yz}}   ^  d_{3z^2-r^2}   ^
 +^ d_{\text{xy}+\sqrt{2}\text{xz}} | \text{Eeg} | 0 | 0 | 0 | 0 |
 +^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | 0 | \text{Eeg} | 0 | 0 | 0 |
 +^ d_{\text{xz}-\sqrt{2}\text{xy}} | 0 | 0 | \text{Et2g} | 0 | 0 |
 +^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | 0 | 0 | 0 | \text{Et2g} | 0 |
 +^ d_{3z^2-r^2} | 0 | 0 | 0 | 0 | \text{Et2g} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ d_{\text{xy}+\sqrt{2}\text{xz}} | \frac{i}{\sqrt{6}} | \frac{1}{\sqrt{3}} | 0 | -\frac{1}{\sqrt{3}} | -\frac{i}{\sqrt{6}} |
 +^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | -\frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} | 0 | -\frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} |
 +^ d_{\text{xz}-\sqrt{2}\text{xy}} | \frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} | 0 | \frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} |
 +^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | -\frac{1}{\sqrt{3}} | \frac{i}{\sqrt{6}} | 0 | \frac{i}{\sqrt{6}} | -\frac{1}{\sqrt{3}} |
 +^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Eeg} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_2_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} \sin (\theta ) \cos (\phi ) \left(\sin (\theta ) \sin (\phi )+\sqrt{2} \cos (\theta )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} x \left(y+\sqrt{2} z\right) | ::: |
 +^ ^\text{Eeg} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_2_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{5}{\pi }} \sin (\theta ) \left(\sin (\theta ) \cos (2 \phi )+2 \sqrt{2} \cos (\theta ) \sin (\phi )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(x^2-y \left(y-2 \sqrt{2} z\right)\right) | ::: |
 +^ ^\text{Et2g} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_2_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} \sin (\theta ) \cos (\phi ) \left(\sqrt{2} \sin (\theta ) \sin (\phi )-\cos (\theta )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} x \left(\sqrt{2} y-z\right) | ::: |
 +^ ^\text{Et2g} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_2_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{5}{\pi }} \sin (\theta ) \left(\sqrt{2} \sin (\theta ) \cos (2 \phi )-2 \cos (\theta ) \sin (\phi )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(y \left(\sqrt{2} y+2 z\right)-\sqrt{2} x^2\right) | ::: |
 +^ ^\text{Et2g} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_2_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for f orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{7} (\text{Ea2u}+3 (\text{Et1u}+\text{Et2u})) & k=0\land m=0 \\
 + -i \sqrt{\frac{5}{14}} (2 \text{Ea2u}-3 \text{Et1u}+\text{Et2u}) & k=4\land (m=-3\lor m=3) \\
 + \frac{1}{2} (2 \text{Ea2u}-3 \text{Et1u}+\text{Et2u}) & k=4\land m=0 \\
 + -\frac{13}{60} \sqrt{\frac{11}{21}} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) & k=6\land (m=-6\lor m=6) \\
 + \frac{13 i (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u})}{6 \sqrt{210}} & k=6\land (m=-3\lor m=3) \\
 + \frac{26}{105} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) & k=6\land m=0
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Ea2u + 3*(Et1u + Et2u))/7, k == 0 && m == 0}, {(-I)*Sqrt[5/14]*(2*Ea2u - 3*Et1u + Et2u), k == 4 && (m == -3 || m == 3)}, {(2*Ea2u - 3*Et1u + Et2u)/2, k == 4 && m == 0}, {(-13*Sqrt[11/21]*(4*Ea2u + 5*Et1u - 9*Et2u))/60, k == 6 && (m == -6 || m == 6)}, {(((13*I)/6)*(4*Ea2u + 5*Et1u - 9*Et2u))/Sqrt[210], k == 6 && (m == -3 || m == 3)}, {(26*(4*Ea2u + 5*Et1u - 9*Et2u))/105, k == 6 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty>
 +
 +Akm = {{0, 0, (1/7)*(Ea2u + (3)*(Et1u + Et2u))} , 
 +       {4, 0, (1/2)*((2)*(Ea2u) + (-3)*(Et1u) + Et2u)} , 
 +       {4,-3, (-I)*((sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u))} , 
 +       {4, 3, (-I)*((sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u))} , 
 +       {6, 0, (26/105)*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u))} , 
 +       {6,-3, (13/6*I)*((1/(sqrt(210)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
 +       {6, 3, (13/6*I)*((1/(sqrt(210)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
 +       {6,-6, (-13/60)*((sqrt(11/21))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
 +       {6, 6, (-13/60)*((sqrt(11/21))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-3}^{(3)}} | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}+9 \text{Et2u}) | 0 | 0 | \frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) | 0 | 0 | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) |
 +^ {Y_{-2}^{(3)}} | 0 | \frac{1}{6} (5 \text{Et1u}+\text{Et2u}) | 0 | 0 | -\frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 | 0 |
 +^ {Y_{-1}^{(3)}} | 0 | 0 | \frac{1}{6} (\text{Et1u}+5 \text{Et2u}) | 0 | 0 | \frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 |
 +^ {Y_{0}^{(3)}} | -\frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) | 0 | 0 | \frac{1}{9} (5 \text{Ea2u}+4 \text{Et1u}) | 0 | 0 | -\frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) |
 +^ {Y_{1}^{(3)}} | 0 | \frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 | 0 | \frac{1}{6} (\text{Et1u}+5 \text{Et2u}) | 0 | 0 |
 +^ {Y_{2}^{(3)}} | 0 | 0 | -\frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 | 0 | \frac{1}{6} (5 \text{Et1u}+\text{Et2u}) | 0 |
 +^ {Y_{3}^{(3)}} | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) | 0 | 0 | \frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) | 0 | 0 | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}+9 \text{Et2u}) |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.}   ^  f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.}   ^  f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.}   ^  f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.}   ^  f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.}   ^  f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)}   ^  f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.}   ^
 +^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} | \text{Ea2u} | 0 | 0 | 0 | 0 | 0 | 0 |
 +^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} | 0 | \text{Et1u} | 0 | 0 | 0 | 0 | 0 |
 +^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} | 0 | 0 | \text{Et1u} | 0 | 0 | 0 | 0 |
 +^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} | 0 | 0 | 0 | \text{Et1u} | 0 | 0 | 0 |
 +^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} | 0 | 0 | 0 | 0 | \text{Et2u} | 0 | 0 |
 +^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} | 0 | 0 | 0 | 0 | 0 | \text{Et2u} | 0 |
 +^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} | 0 | 0 | 0 | 0 | 0 | 0 | \text{Et2u} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} | \frac{i \sqrt{2}}{3} | 0 | 0 | \frac{\sqrt{5}}{3} | 0 | 0 | \frac{i \sqrt{2}}{3} |
 +^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} | 0 | -\frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 | \frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 |
 +^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} | 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | -\frac{i}{2 \sqrt{3}} | 0 | -\frac{i}{2 \sqrt{3}} | -\frac{\sqrt{\frac{5}{3}}}{2} | 0 |
 +^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} | -\frac{1}{3} i \sqrt{\frac{5}{2}} | 0 | 0 | \frac{2}{3} | 0 | 0 | -\frac{1}{3} i \sqrt{\frac{5}{2}} |
 +^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} | 0 | -\frac{i}{2 \sqrt{3}} | \frac{\sqrt{\frac{5}{3}}}{2} | 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | \frac{i}{2 \sqrt{3}} | 0 |
 +^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} | 0 | -\frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 | \frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 |
 +^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} | -\frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Ea2u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_3_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{24} \sqrt{\frac{35}{\pi }} \left(2 \sqrt{2} \sin ^3(\theta ) \sin (3 \phi )+\cos (\theta ) (5 \cos (2 \theta )-1)\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{12} \sqrt{\frac{35}{\pi }} \left(3 \sqrt{2} x^2 y-\sqrt{2} y^3+5 z^3-3 z\right) | ::: |
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_3_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sqrt{2} \sin (2 \theta ) \sin (\phi )+5 \cos (2 \theta )+3\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{8} \sqrt{\frac{7}{\pi }} x \left(10 \sqrt{2} y z+5 z^2-1\right) | ::: |
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_3_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \left(5 \sqrt{2} \sin (2 \theta ) \cos (2 \phi )+(5 \cos (2 \theta )+3) \sin (\phi )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{7}{\pi }} \left(-5 \sqrt{2} x^2 z+5 \sqrt{2} y^2 z-5 y z^2+y\right) | ::: |
 +^ ^\text{Et1u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_3_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{24} \sqrt{\frac{7}{\pi }} \left(-5 \sqrt{2} \sin ^3(\theta ) \sin (3 \phi )+3 \cos (\theta )+5 \cos (3 \theta )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{24} \sqrt{\frac{7}{\pi }} \left(-15 \sqrt{2} x^2 y+5 \sqrt{2} y^3+4 z \left(5 z^2-3\right)\right) | ::: |
 +^ ^\text{Et2u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_3_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \cos (\phi ) \left(-2 \sqrt{2} \sin (2 \theta ) \sin (\phi )+5 \cos (2 \theta )+3\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{8} \sqrt{\frac{35}{\pi }} x \left(2 \sqrt{2} y z-5 z^2+1\right) | ::: |
 +^ ^\text{Et2u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_3_6.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \left((5 \cos (2 \theta )+3) \sin (\phi )-\sqrt{2} \sin (2 \theta ) \cos (2 \phi )\right) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{8} \sqrt{\frac{35}{\pi }} \left(\sqrt{2} x^2 z-\sqrt{2} y^2 z-5 y z^2+y\right) | ::: |
 +^ ^\text{Et2u} | {{:physics_chemistry:pointgroup:oh_0sqrt2-1z_orb_3_7.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +===== Coupling between two shells =====
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for p-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 4\lor (m\neq -3\land m\neq 0\land m\neq 3) \\
 + -i \sqrt{\frac{15}{2}} \text{Mt1u} & k=4\land (m=-3\lor m=3) \\
 + \frac{\sqrt{21} \text{Mt1u}}{2} & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 4 || (m != -3 && m != 0 && m != 3)}, {(-I)*Sqrt[15/2]*Mt1u, k == 4 && (m == -3 || m == 3)}}, (Sqrt[21]*Mt1u)/2]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_Oh_0sqrt2-1z.Quanty>
 +
 +Akm = {{4, 0, (1/2)*((sqrt(21))*(Mt1u))} , 
 +       {4,-3, (-I)*((sqrt(15/2))*(Mt1u))} , 
 +       {4, 3, (-I)*((sqrt(15/2))*(Mt1u))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | 0 | -\frac{\text{Mt1u}}{\sqrt{6}} | 0 | 0 | -i \sqrt{\frac{5}{6}} \text{Mt1u} | 0 |
 +^ {Y_{0}^{(1)}} | \frac{1}{3} i \sqrt{\frac{5}{2}} \text{Mt1u} | 0 | 0 | \frac{2 \text{Mt1u}}{3} | 0 | 0 | \frac{1}{3} i \sqrt{\frac{5}{2}} \text{Mt1u} |
 +^ {Y_{1}^{(1)}} | 0 | -i \sqrt{\frac{5}{6}} \text{Mt1u} | 0 | 0 | -\frac{\text{Mt1u}}{\sqrt{6}} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.}   ^  f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.}   ^  f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.}   ^  f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.}   ^  f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.}   ^  f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)}   ^  f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.}   ^
 +^ p_x | 0 | \text{Mt1u} | 0 | 0 | 0 | 0 | 0 |
 +^ p_y | 0 | 0 | \text{Mt1u} | 0 | 0 | 0 | 0 |
 +^ p_z | 0 | 0 | 0 | \text{Mt1u} | 0 | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +
 +===== Table of several point groups =====
 +
 +###
 +
 +[[physics_chemistry:point_groups|Return to Main page on Point Groups]]
 +
 +###
 +
 +###
 +
 +^Nonaxial groups      | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | |
 +^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub>
 +^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub>
 +^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub>
 +^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | | 
 +^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub>
 +^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub>
 +^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> |  | 
 +^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub>
 +^Linear groups      | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|\inftyv]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|\inftyh]]</sub> | | | | | |
 +
 +###
Print/export