Differences
This shows you the differences between two versions of the page.
physics_chemistry:point_groups:oh:orientation_0sqrt2-1z [2018/03/21 18:48] – created Stefano Agrestini | physics_chemistry:point_groups:oh:orientation_0sqrt2-1z [2018/09/06 12:49] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation 0sqrt2-1z ====== | ====== Orientation 0sqrt2-1z ====== | ||
+ | |||
+ | ===== Symmetry Operations ===== | ||
### | ### | ||
- | alligned paragraph text | + | |
+ | In the Oh Point Group, with orientation 0sqrt2-1z there are the following symmetry operations | ||
### | ### | ||
- | ===== Example ===== | + | ### |
+ | |||
+ | {{: | ||
### | ### | ||
- | description text | + | |
### | ### | ||
- | ==== Input ==== | + | ^ Operator ^ Orientation ^ |
- | <code Quanty | + | ^ E | {0,0,0} , | |
- | -- some example code | + | ^ C3 | {0,0,1} , {0,0,−1} , {−√6,−√2,1} , {0,−2√2,−1} , {−√6,√2,−1} , {√6,√2,−1} , {0,2√2,1} , {√6,−√2,1} , | |
+ | ^ C2 | {1,0,0} , {1,√3,0} , {1,−√3,0} , {0,1,√2} , {√3,1,−2√2} , {−√3,1,−2√2} , | | ||
+ | ^ C4 | {0,−√2,1} , {0,√2,−1} , {−√3,1,√2} , {√3,1,√2} , {√3,−1,−√2} , {−√3,−1,−√2} , | | ||
+ | ^ C2 | {0,−√2,1} , {−√3,1,√2} , {√3,1,√2} , | | ||
+ | ^ i | {0,0,0} , | | ||
+ | ^ S4 | {0,−√2,1} , {0,√2,−1} , {−√3,1,√2} , {√3,1,√2} , {√3,−1,−√2} , {−√3,−1,−√2} , | | ||
+ | ^ S6 | {0,0,1} , {0,0,−1} , {−√6,−√2,1} , {0,−2√2,−1} , {−√6,√2,−1} , {√6,√2,−1} , {0,2√2,1} , {√6,−√2,1} , | | ||
+ | ^ σh | {0,−√2,1} , {−√3,1,√2} , {√3,1,√2} , | | ||
+ | ^ σd | {1,0,0} , {1,√3,0} , {1,−√3,0} , {0,1,√2} , {√3,1,−2√2} , {−√3,1,−2√2} , | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Different Settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Character Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ E(1) ^ C3(8) ^ C2(6) ^ C4(6) ^ C2(3) ^ i(1) ^ S4(6) ^ S6(8) ^ σh(3) ^ σd(6) ^ | ||
+ | ^ A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ||
+ | ^ A2g | 1 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | 1 | −1 | | ||
+ | ^ Eg | 2 | −1 | 0 | 0 | 2 | 2 | 0 | −1 | 2 | 0 | | ||
+ | ^ T1g | 3 | 0 | −1 | 1 | −1 | 3 | 1 | 0 | −1 | −1 | | ||
+ | ^ T2g | 3 | 0 | 1 | −1 | −1 | 3 | −1 | 0 | −1 | 1 | | ||
+ | ^ A1u | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | | ||
+ | ^ A2u | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | | ||
+ | ^ Eu | 2 | −1 | 0 | 0 | 2 | −2 | 0 | 1 | −2 | 0 | | ||
+ | ^ T1u | 3 | 0 | −1 | 1 | −1 | −3 | −1 | 0 | 1 | 1 | | ||
+ | ^ T2u | 3 | 0 | 1 | −1 | −1 | −3 | 1 | 0 | 1 | −1 | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Product Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ A1g ^ A2g ^ Eg ^ T1g ^ T2g ^ A1u ^ A2u ^ Eu ^ T1u ^ T2u ^ | ||
+ | ^ A1g | A1g | A2g | Eg | T1g | T2g | A1u | A2u | Eu | T1u | T2u | | ||
+ | ^ A2g | A2g | A1g | Eg | T2g | T1g | A2u | A1u | Eu | T2u | T1u | | ||
+ | ^ Eg | Eg | Eg | A1g+A2g+Eg | T1g+T2g | T1g+T2g | Eu | Eu | A1u+A2u+Eu | T1u+T2u | T1u+T2u | | ||
+ | ^ T1g | T1g | T2g | T1g+T2g | A1g+Eg+T1g+T2g | A2g+Eg+T1g+T2g | T1u | T2u | T1u+T2u | A1u+Eu+T1u+T2u | A2u+Eu+T1u+T2u | | ||
+ | ^ T2g | T2g | T1g | T1g+T2g | A2g+Eg+T1g+T2g | A1g+Eg+T1g+T2g | T2u | T1u | T1u+T2u | A2u+Eu+T1u+T2u | A1u+Eu+T1u+T2u | | ||
+ | ^ A1u | A1u | A2u | Eu | T1u | T2u | A1g | A2g | Eg | T1g | T2g | | ||
+ | ^ A2u | A2u | A1u | Eu | T2u | T1u | A2g | A1g | Eg | T2g | T1g | | ||
+ | ^ Eu | Eu | Eu | A1u+A2u+Eu | T1u+T2u | T1u+T2u | Eg | Eg | A1g+A2g+Eg | T1g+T2g | T1g+T2g | | ||
+ | ^ T1u | T1u | T2u | T1u+T2u | A1u+Eu+T1u+T2u | A2u+Eu+T1u+T2u | T1g | T2g | T1g+T2g | A1g+Eg+T1g+T2g | A2g+Eg+T1g+T2g | | ||
+ | ^ T2u | T2u | T1u | T1u+T2u | A2u+Eu+T1u+T2u | A1u+Eu+T1u+T2u | T2g | T1g | T1g+T2g | A2g+Eg+T1g+T2g | A1g+Eg+T1g+T2g | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Sub Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Super Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Invariant Potential expanded on renormalized spherical Harmonics ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | Any potential (function) can be written as a sum over spherical harmonics. | ||
+ | V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) | ||
+ | Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) | ||
+ | The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Oh Point group with orientation 0sqrt2-1z the form of the expansion coefficients is: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Expansion ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | -i \sqrt{\frac{10}{7}} A(4,0) & k=4\land (m=-3\lor m=3) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty | ||
+ | |||
+ | Akm[k_, | ||
</ | </ | ||
- | ==== Result ==== | + | ### |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Input format suitable for Quanty |
- | {{indexmenu> | + | |
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, A(0,0)} , | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 3, (-I)*((sqrt(10/ | ||
+ | {6, 0, A(6,0)} , | ||
+ | | ||
+ | {6, 3, (1/ | ||
+ | | ||
+ | {6, 6, (-1/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | O=∑n″ | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. | ||
+ | A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle | ||
+ | Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m) | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'} | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-1}^{(1)}} |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | -\frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) | 0 | | ||
+ | ^ {Y_{0}^{(1)}} |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | \frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) | | ||
+ | ^ {Y_{1}^{(1)}} |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | | ||
+ | ^ {Y_{-2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | \frac{5}{21} i \sqrt{2} \text{Add}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | -\frac{5}{21} i \sqrt{2} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{0}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{1}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{5}{21} i \sqrt{2} \text{Add}(4,0) | 0 | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{2}^{(2)}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{5}{21} i \sqrt{2} \text{Add}(4,0) | 0 | 0 | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ {Y_{-3}^{(3)}} |\color{darkred}{ 0 }| 0 | -\frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | 0 | \frac{1}{11} i \sqrt{10} \text{Aff}(4,0)+\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 | 0 | \frac{35}{156} \text{Aff}(6,0) | | ||
+ | ^ {Y_{-2}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | \frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | \frac{2}{33} i \sqrt{5} \text{Aff}(4,0)-\frac{35}{572} i \sqrt{5} \text{Aff}(6,0) | 0 | 0 | | ||
+ | ^ {Y_{-1}^{(3)}} |\color{darkred}{ 0 }| -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | \frac{35}{572} i \sqrt{5} \text{Aff}(6,0)-\frac{2}{33} i \sqrt{5} \text{Aff}(4,0) | 0 | | ||
+ | ^ {Y_{0}^{(3)}} |\color{darkred}{ 0 }| 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{11} i \sqrt{10} \text{Aff}(4,0)-\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | -\frac{1}{11} i \sqrt{10} \text{Aff}(4,0)-\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) | | ||
+ | ^ {Y_{1}^{(3)}} |\color{darkred}{ 0 }| 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{35}{572} i \sqrt{5} \text{Aff}(6,0)-\frac{2}{33} i \sqrt{5} \text{Aff}(4,0) | 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | | ||
+ | ^ {Y_{2}^{(3)}} |\color{darkred}{ 0 }| \frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \frac{2}{33} i \sqrt{5} \text{Aff}(4,0)-\frac{35}{572} i \sqrt{5} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | | ||
+ | ^ {Y_{3}^{(3)}} |\color{darkred}{ 0 }| 0 | -\frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{35}{156} \text{Aff}(6,0) | 0 | 0 | \frac{1}{11} i \sqrt{10} \text{Aff}(4,0)+\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ \text{s} | 1 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ p_x |\color{darkred}{ 0 }| \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_y |\color{darkred}{ 0 }| \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_z |\color{darkred}{ 0 }| 0 | 1 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{\text{xy}+\sqrt{2}\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{6}} | \frac{1}{\sqrt{3}} | 0 | -\frac{1}{\sqrt{3}} | -\frac{i}{\sqrt{6}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} | 0 | -\frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{xz}-\sqrt{2}\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} | 0 | \frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{\sqrt{3}} | \frac{i}{\sqrt{6}} | 0 | \frac{i}{\sqrt{6}} | -\frac{1}{\sqrt{3}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 1 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \frac{i \sqrt{2}}{3} | 0 | 0 | \frac{\sqrt{5}}{3} | 0 | 0 | \frac{i \sqrt{2}}{3} | | ||
+ | ^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 | \frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 | | ||
+ | ^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | -\frac{i}{2 \sqrt{3}} | 0 | -\frac{i}{2 \sqrt{3}} | -\frac{\sqrt{\frac{5}{3}}}{2} | 0 | | ||
+ | ^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{3} i \sqrt{\frac{5}{2}} | 0 | 0 | \frac{2}{3} | 0 | 0 | -\frac{1}{3} i \sqrt{\frac{5}{2}} | | ||
+ | ^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{i}{2 \sqrt{3}} | \frac{\sqrt{\frac{5}{3}}}{2} | 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | \frac{i}{2 \sqrt{3}} | 0 | | ||
+ | ^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | -\frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 | \frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 | | ||
+ | ^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| -\frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of symmetry adapted functions ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | After rotation we find | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ p_x ^ p_y ^ p_z ^ d_{\text{xy}+\sqrt{2}\text{xz}} ^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} ^ d_{\text{xz}-\sqrt{2}\text{xy}} ^ d_{-x^2+y^2+\sqrt{2}\text{yz}} ^ d_{3z^2-r^2} ^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} ^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} ^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} ^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} ^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} ^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} ^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} ^ | ||
+ | ^ \text{s} | \text{Ass}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ p_x |\color{darkred}{ 0 }| \text{App}(0,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_y |\color{darkred}{ 0 }| 0 | \text{App}(0,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 | 0 | | ||
+ | ^ p_z |\color{darkred}{ 0 }| 0 | 0 | \text{App}(0,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 | | ||
+ | ^ d_{\text{xy}+\sqrt{2}\text{xz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) | 0 | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) | 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{\text{xz}-\sqrt{2}\text{xy}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ d_{3z^2-r^2} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| | ||
+ | ^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| \text{Aff}(0,0)+\frac{6}{11} \text{Aff}(4,0)+\frac{45}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} |\color{darkred}{ 0 }| 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 | | ||
+ | ^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) | 0 | 0 | | ||
+ | ^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) | 0 | | ||
+ | ^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} |\color{darkred}{ 0 }| 0 | 0 | 0 |\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }|\color{darkred}{ 0 }| 0 | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Coupling for a single shell ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ea1g} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ea1g} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ | ||
+ | ^ \text{s} | \text{Ea1g} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ \text{s} | 1 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea1g} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Et1u} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \text{Et1u} | 0 | 0 | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \text{Et1u} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | 0 | 0 | \text{Et1u} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_x ^ p_y ^ p_z ^ | ||
+ | ^ p_x | \text{Et1u} | 0 | 0 | | ||
+ | ^ p_y | 0 | \text{Et1u} | 0 | | ||
+ | ^ p_z | 0 | 0 | \text{Et1u} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | | ||
+ | ^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | | ||
+ | ^ p_z | 0 | 1 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: | | ||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: | | ||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | i \sqrt{\frac{14}{5}} (\text{Eeg}-\text{Et2g}) & k=4\land (m=-3\lor m=3) \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {4, 0, (-7/5)*(Eeg + (-1)*(Et2g))} , | ||
+ | | ||
+ | {4, 3, (I)*((sqrt(14/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | \frac{1}{3} (\text{Eeg}+2 \text{Et2g}) | 0 | 0 | -\frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) | 0 | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | \frac{1}{3} (2 \text{Eeg}+\text{Et2g}) | 0 | 0 | \frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) | | ||
+ | ^ {Y_{0}^{(2)}} | 0 | 0 | \text{Et2g} | 0 | 0 | | ||
+ | ^ {Y_{1}^{(2)}} | \frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) | 0 | 0 | \frac{1}{3} (2 \text{Eeg}+\text{Et2g}) | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | 0 | -\frac{1}{3} i \sqrt{2} (\text{Eeg}-\text{Et2g}) | 0 | 0 | \frac{1}{3} (\text{Eeg}+2 \text{Et2g}) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{\text{xy}+\sqrt{2}\text{xz}} ^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} ^ d_{\text{xz}-\sqrt{2}\text{xy}} ^ d_{-x^2+y^2+\sqrt{2}\text{yz}} ^ d_{3z^2-r^2} ^ | ||
+ | ^ d_{\text{xy}+\sqrt{2}\text{xz}} | \text{Eeg} | 0 | 0 | 0 | 0 | | ||
+ | ^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | 0 | \text{Eeg} | 0 | 0 | 0 | | ||
+ | ^ d_{\text{xz}-\sqrt{2}\text{xy}} | 0 | 0 | \text{Et2g} | 0 | 0 | | ||
+ | ^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | 0 | 0 | 0 | \text{Et2g} | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 0 | 0 | \text{Et2g} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ d_{\text{xy}+\sqrt{2}\text{xz}} | \frac{i}{\sqrt{6}} | \frac{1}{\sqrt{3}} | 0 | -\frac{1}{\sqrt{3}} | -\frac{i}{\sqrt{6}} | | ||
+ | ^ d_{-x^2+y^2-2\sqrt{2}\text{yz}} | -\frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} | 0 | -\frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} | | ||
+ | ^ d_{\text{xz}-\sqrt{2}\text{xy}} | \frac{i}{\sqrt{3}} | -\frac{1}{\sqrt{6}} | 0 | \frac{1}{\sqrt{6}} | -\frac{i}{\sqrt{3}} | | ||
+ | ^ d_{-x^2+y^2+\sqrt{2}\text{yz}} | -\frac{1}{\sqrt{3}} | \frac{i}{\sqrt{6}} | 0 | \frac{i}{\sqrt{6}} | -\frac{1}{\sqrt{3}} | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Eeg} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} \sin (\theta ) \cos (\phi ) \left(\sin (\theta ) \sin (\phi )+\sqrt{2} \cos (\theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} x \left(y+\sqrt{2} z\right) | ::: | | ||
+ | ^ ^\text{Eeg} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{5}{\pi }} \sin (\theta ) \left(\sin (\theta ) \cos (2 \phi )+2 \sqrt{2} \cos (\theta ) \sin (\phi )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(x^2-y \left(y-2 \sqrt{2} z\right)\right) | ::: | | ||
+ | ^ ^\text{Et2g} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} \sin (\theta ) \cos (\phi ) \left(\sqrt{2} \sin (\theta ) \sin (\phi )-\cos (\theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{5}{\pi }} x \left(\sqrt{2} y-z\right) | ::: | | ||
+ | ^ ^\text{Et2g} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{5}{\pi }} \sin (\theta ) \left(\sqrt{2} \sin (\theta ) \cos (2 \phi )-2 \cos (\theta ) \sin (\phi )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(y \left(\sqrt{2} y+2 z\right)-\sqrt{2} x^2\right) | ::: | | ||
+ | ^ ^\text{Et2g} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | -i \sqrt{\frac{5}{14}} (2 \text{Ea2u}-3 \text{Et1u}+\text{Et2u}) & k=4\land (m=-3\lor m=3) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/7)*(Ea2u + (3)*(Et1u + Et2u))} , | ||
+ | {4, 0, (1/ | ||
+ | | ||
+ | {4, 3, (-I)*((sqrt(5/ | ||
+ | {6, 0, (26/ | ||
+ | | ||
+ | {6, 3, (13/ | ||
+ | | ||
+ | {6, 6, (-13/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-3}^{(3)}} | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}+9 \text{Et2u}) | 0 | 0 | \frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) | 0 | 0 | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) | | ||
+ | ^ {Y_{-2}^{(3)}} | 0 | \frac{1}{6} (5 \text{Et1u}+\text{Et2u}) | 0 | 0 | -\frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 | 0 | | ||
+ | ^ {Y_{-1}^{(3)}} | 0 | 0 | \frac{1}{6} (\text{Et1u}+5 \text{Et2u}) | 0 | 0 | \frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 | | ||
+ | ^ {Y_{0}^{(3)}} | -\frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) | 0 | 0 | \frac{1}{9} (5 \text{Ea2u}+4 \text{Et1u}) | 0 | 0 | -\frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) | | ||
+ | ^ {Y_{1}^{(3)}} | 0 | \frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 | 0 | \frac{1}{6} (\text{Et1u}+5 \text{Et2u}) | 0 | 0 | | ||
+ | ^ {Y_{2}^{(3)}} | 0 | 0 | -\frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) | 0 | 0 | \frac{1}{6} (5 \text{Et1u}+\text{Et2u}) | 0 | | ||
+ | ^ {Y_{3}^{(3)}} | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) | 0 | 0 | \frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) | 0 | 0 | \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}+9 \text{Et2u}) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} ^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} ^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} ^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} ^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} ^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} ^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} ^ | ||
+ | ^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} | \text{Ea2u} | 0 | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} | 0 | \text{Et1u} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} | 0 | 0 | \text{Et1u} | 0 | 0 | 0 | 0 | | ||
+ | ^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} | 0 | 0 | 0 | \text{Et1u} | 0 | 0 | 0 | | ||
+ | ^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} | 0 | 0 | 0 | 0 | \text{Et2u} | 0 | 0 | | ||
+ | ^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} | 0 | 0 | 0 | 0 | 0 | \text{Et2u} | 0 | | ||
+ | ^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} | 0 | 0 | 0 | 0 | 0 | 0 | \text{Et2u} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} | \frac{i \sqrt{2}}{3} | 0 | 0 | \frac{\sqrt{5}}{3} | 0 | 0 | \frac{i \sqrt{2}}{3} | | ||
+ | ^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} | 0 | -\frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 | \frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 | | ||
+ | ^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} | 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | -\frac{i}{2 \sqrt{3}} | 0 | -\frac{i}{2 \sqrt{3}} | -\frac{\sqrt{\frac{5}{3}}}{2} | 0 | | ||
+ | ^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} | -\frac{1}{3} i \sqrt{\frac{5}{2}} | 0 | 0 | \frac{2}{3} | 0 | 0 | -\frac{1}{3} i \sqrt{\frac{5}{2}} | | ||
+ | ^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} | 0 | -\frac{i}{2 \sqrt{3}} | \frac{\sqrt{\frac{5}{3}}}{2} | 0 | -\frac{\sqrt{\frac{5}{3}}}{2} | \frac{i}{2 \sqrt{3}} | 0 | | ||
+ | ^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} | 0 | -\frac{1}{2 \sqrt{3}} | \frac{1}{2} i \sqrt{\frac{5}{3}} | 0 | \frac{1}{2} i \sqrt{\frac{5}{3}} | -\frac{1}{2 \sqrt{3}} | 0 | | ||
+ | ^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} | -\frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ea2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{24} \sqrt{\frac{35}{\pi }} \left(2 \sqrt{2} \sin ^3(\theta ) \sin (3 \phi )+\cos (\theta ) (5 \cos (2 \theta )-1)\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{12} \sqrt{\frac{35}{\pi }} \left(3 \sqrt{2} x^2 y-\sqrt{2} y^3+5 z^3-3 z\right) | ::: | | ||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sqrt{2} \sin (2 \theta ) \sin (\phi )+5 \cos (2 \theta )+3\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{8} \sqrt{\frac{7}{\pi }} x \left(10 \sqrt{2} y z+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \left(5 \sqrt{2} \sin (2 \theta ) \cos (2 \phi )+(5 \cos (2 \theta )+3) \sin (\phi )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{7}{\pi }} \left(-5 \sqrt{2} x^2 z+5 \sqrt{2} y^2 z-5 y z^2+y\right) | ::: | | ||
+ | ^ ^\text{Et1u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{24} \sqrt{\frac{7}{\pi }} \left(-5 \sqrt{2} \sin ^3(\theta ) \sin (3 \phi )+3 \cos (\theta )+5 \cos (3 \theta )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{24} \sqrt{\frac{7}{\pi }} \left(-15 \sqrt{2} x^2 y+5 \sqrt{2} y^3+4 z \left(5 z^2-3\right)\right) | ::: | | ||
+ | ^ ^\text{Et2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \cos (\phi ) \left(-2 \sqrt{2} \sin (2 \theta ) \sin (\phi )+5 \cos (2 \theta )+3\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{8} \sqrt{\frac{35}{\pi }} x \left(2 \sqrt{2} y z-5 z^2+1\right) | ::: | | ||
+ | ^ ^\text{Et2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \left((5 \cos (2 \theta )+3) \sin (\phi )-\sqrt{2} \sin (2 \theta ) \cos (2 \phi )\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{8} \sqrt{\frac{35}{\pi }} \left(\sqrt{2} x^2 z-\sqrt{2} y^2 z-5 y z^2+y\right) | ::: | | ||
+ | ^ ^\text{Et2u} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 4\lor (m\neq -3\land m\neq 0\land m\neq 3) \\ | ||
+ | -i \sqrt{\frac{15}{2}} \text{Mt1u} & k=4\land (m=-3\lor m=3) \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Oh_0sqrt2-1z.Quanty> | ||
+ | |||
+ | Akm = {{4, 0, (1/ | ||
+ | | ||
+ | {4, 3, (-I)*((sqrt(15/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | 0 | 0 | -\frac{\text{Mt1u}}{\sqrt{6}} | 0 | 0 | -i \sqrt{\frac{5}{6}} \text{Mt1u} | 0 | | ||
+ | ^ {Y_{0}^{(1)}} | \frac{1}{3} i \sqrt{\frac{5}{2}} \text{Mt1u} | 0 | 0 | \frac{2 \text{Mt1u}}{3} | 0 | 0 | \frac{1}{3} i \sqrt{\frac{5}{2}} \text{Mt1u} | | ||
+ | ^ {Y_{1}^{(1)}} | 0 | -i \sqrt{\frac{5}{6}} \text{Mt1u} | 0 | 0 | -\frac{\text{Mt1u}}{\sqrt{6}} | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} ^ f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} ^ f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} ^ f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} ^ f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} ^ f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} ^ f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} ^ | ||
+ | ^ p_x | 0 | \text{Mt1u} | 0 | 0 | 0 | 0 | 0 | | ||
+ | ^ p_y | 0 | 0 | \text{Mt1u} | 0 | 0 | 0 | 0 | | ||
+ | ^ p_z | 0 | 0 | 0 | \text{Mt1u} | 0 | 0 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |