Processing math: 83%

Orientation 0sqrt2-1z

Symmetry Operations

In the Oh Point Group, with orientation 0sqrt2-1z there are the following symmetry operations

Operator Orientation
E {0,0,0} ,
C3 {0,0,1} , {0,0,1} , {6,2,1} , {0,22,1} , {6,2,1} , {6,2,1} , {0,22,1} , {6,2,1} ,
C2 {1,0,0} , {1,3,0} , {1,3,0} , {0,1,2} , {3,1,22} , {3,1,22} ,
C4 {0,2,1} , {0,2,1} , {3,1,2} , {3,1,2} , {3,1,2} , {3,1,2} ,
C2 {0,2,1} , {3,1,2} , {3,1,2} ,
i {0,0,0} ,
S4 {0,2,1} , {0,2,1} , {3,1,2} , {3,1,2} , {3,1,2} , {3,1,2} ,
S6 {0,0,1} , {0,0,1} , {6,2,1} , {0,22,1} , {6,2,1} , {6,2,1} , {0,22,1} , {6,2,1} ,
σh {0,2,1} , {3,1,2} , {3,1,2} ,
σd {1,0,0} , {1,3,0} , {1,3,0} , {0,1,2} , {3,1,22} , {3,1,22} ,

Different Settings

Character Table

E(1) C3(8) C2(6) C4(6) C2(3) i(1) S4(6) S6(8) σh(3) σd(6)
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 1 1 1 1 1 1
Eg 2 1 0 0 2 2 0 1 2 0
T1g 3 0 1 1 1 3 1 0 1 1
T2g 3 0 1 1 1 3 1 0 1 1
A1u 1 1 1 1 1 1 1 1 1 1
A2u 1 1 1 1 1 1 1 1 1 1
Eu 2 1 0 0 2 2 0 1 2 0
T1u 3 0 1 1 1 3 1 0 1 1
T2u 3 0 1 1 1 3 1 0 1 1

Product Table

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u
A1g A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u
A2g A2g A1g Eg T2g T1g A2u A1u Eu T2u T1u
Eg Eg Eg A1g+A2g+Eg T1g+T2g T1g+T2g Eu Eu A1u+A2u+Eu T1u+T2u T1u+T2u
T1g T1g T2g T1g+T2g A1g+Eg+T1g+T2g A2g+Eg+T1g+T2g T1u T2u T1u+T2u A1u+Eu+T1u+T2u A2u+Eu+T1u+T2u
T2g T2g T1g T1g+T2g A2g+Eg+T1g+T2g A1g+Eg+T1g+T2g T2u T1u T1u+T2u A2u+Eu+T1u+T2u A1u+Eu+T1u+T2u
A1u A1u A2u Eu T1u T2u A1g A2g Eg T1g T2g
A2u A2u A1u Eu T2u T1u A2g A1g Eg T2g T1g
Eu Eu Eu A1u+A2u+Eu T1u+T2u T1u+T2u Eg Eg A1g+A2g+Eg T1g+T2g T1g+T2g
T1u T1u T2u T1u+T2u A1u+Eu+T1u+T2u A2u+Eu+T1u+T2u T1g T2g T1g+T2g A1g+Eg+T1g+T2g A2g+Eg+T1g+T2g
T2u T2u T1u T1u+T2u A2u+Eu+T1u+T2u A1u+Eu+T1u+T2u T2g T1g T1g+T2g A2g+Eg+T1g+T2g A1g+Eg+T1g+T2g

Sub Groups with compatible settings

Super Groups with compatible settings

Invariant Potential expanded on renormalized spherical Harmonics

Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Oh Point group with orientation 0sqrt2-1z the form of the expansion coefficients is:

Expansion

Ak,m={A(0,0)k=0m=0i107A(4,0)k=4(m=3m=3)A(4,0)k=4m=018773A(6,0)k=6(m=6m=6)14i356A(6,0)k=6(m=3m=3)A(6,0)k=6m=0

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_0sqrt2-1z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(-I)*Sqrt[10/7]*A[4, 0], k == 4 && (m == -3 || m == 3)}, {A[4, 0], k == 4 && m == 0}, {-(Sqrt[77/3]*A[6, 0])/8, k == 6 && (m == -6 || m == 6)}, {(I/4)*Sqrt[35/6]*A[6, 0], k == 6 && (m == -3 || m == 3)}, {A[6, 0], k == 6 && m == 0}}, 0]

Input format suitable for Quanty

Akm_Oh_0sqrt2-1z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {4, 0, A(4,0)} , 
       {4,-3, (-I)*((sqrt(10/7))*(A(4,0)))} , 
       {4, 3, (-I)*((sqrt(10/7))*(A(4,0)))} , 
       {6, 0, A(6,0)} , 
       {6,-3, (1/4*I)*((sqrt(35/6))*(A(6,0)))} , 
       {6, 3, (1/4*I)*((sqrt(35/6))*(A(6,0)))} , 
       {6,-6, (-1/8)*((sqrt(77/3))*(A(6,0)))} , 
       {6, 6, (-1/8)*((sqrt(77/3))*(A(6,0)))} }

One particle coupling on a basis of spherical harmonics

The operator representing the potential in second quantisation is given as: O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l Note the difference between the function Ak,m and the parameter Anl,nl(k,m)

we can express the operator as O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m

The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(0)0Ass(0,0)000000000000000
Y(1)10App(0,0)0000000001327Apf(4,0)0013i107Apf(4,0)0
Y(1)000App(0,0)00000013i1021Apf(4,0)004Apf(4,0)3210013i1021Apf(4,0)
Y(1)1000App(0,0)00000013i107Apf(4,0)001327Apf(4,0)00
Y(2)20000Add(0,0)+121Add(4,0)00521i2Add(4,0)00000000
Y(2)100000Add(0,0)421Add(4,0)00521i2Add(4,0)0000000
Y(2)0000000Add(0,0)+27Add(4,0)000000000
Y(2)10000521i2Add(4,0)00Add(0,0)421Add(4,0)00000000
Y(2)200000521i2Add(4,0)00Add(0,0)+121Add(4,0)0000000
Y(3)30013i1021Apf(4,0)000000Aff(0,0)+111Aff(4,0)5429Aff(6,0)00111i10Aff(4,0)+35858i52Aff(6,0)0035156Aff(6,0)
Y(3)200013i107Apf(4,0)000000Aff(0,0)733Aff(4,0)+10143Aff(6,0)00233i5Aff(4,0)35572i5Aff(6,0)00
Y(3)101327Apf(4,0)000000000Aff(0,0)+133Aff(4,0)25143Aff(6,0)0035572i5Aff(6,0)233i5Aff(4,0)0
Y(3)0004Apf(4,0)321000000111i10Aff(4,0)35858i52Aff(6,0)00Aff(0,0)+211Aff(4,0)+100429Aff(6,0)00111i10Aff(4,0)35858i52Aff(6,0)
Y(3)10001327Apf(4,0)00000035572i5Aff(6,0)233i5Aff(4,0)00Aff(0,0)+133Aff(4,0)25143Aff(6,0)00
Y(3)2013i107Apf(4,0)000000000233i5Aff(4,0)35572i5Aff(6,0)00Aff(0,0)733Aff(4,0)+10143Aff(6,0)0
Y(3)30013i1021Apf(4,0)00000035156Aff(6,0)00111i10Aff(4,0)+35858i52Aff(6,0)00Aff(0,0)+111Aff(4,0)5429Aff(6,0)

Rotation matrix to symmetry adapted functions (choice is not unique)

Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
s1000000000000000
px012012000000000000
py0i20i2000000000000
pz0010000000000000
dxy+2xz0000i613013i60000000
dx2+y222yz000016i30i3160000000
dxz2xy0000i316016i30000000
dx2+y2+2yz000013i60i6130000000
d3z2r20000001000000000
f3\2x2\y2y33z+5\z3000000000i23005300i23
fx\(1+10\2\y\z+5\z2)000000000012i53123012312i530
fy5\2x2\z+5\2y2\z5y\z20000000000532i230i235320
f15\2x2\y+5\2y3+4z\(3+5\z2)00000000013i5200230013i52
fx\(1+2\2\y\z5\z2)0000000000i235320532i230
f(y+2x2\z2y2\z5y\z2)000000000012312i53012i531230
fx\(x23\y2)000000000120000012

One particle coupling on a basis of symmetry adapted functions

After rotation we find

s px py pz dxy+2xz dx2+y222yz dxz2xy dx2+y2+2yz d3z2r2 f3\2x2\y2y33z+5\z3 fx\(1+10\2\y\z+5\z2) fy5\2x2\z+5\2y2\z5y\z2 f15\2x2\y+5\2y3+4z\(3+5\z2) fx\(1+2\2\y\z5\z2) f(y+2x2\z2y2\z5y\z2) fx\(x23\y2)
sAss(0,0)000000000000000
px0App(0,0)000000002Apf(4,0)2100000
py00App(0,0)000000002Apf(4,0)210000
pz000App(0,0)000000002Apf(4,0)21000
dxy+2xz0000Add(0,0)37Add(4,0)00000000000
dx2+y222yz00000Add(0,0)37Add(4,0)0000000000
dxz2xy000000Add(0,0)+27Add(4,0)000000000
dx2+y2+2yz0000000Add(0,0)+27Add(4,0)00000000
d3z2r200000000Add(0,0)+27Add(4,0)0000000
f3\2x2\y2y33z+5\z3000000000Aff(0,0)+611Aff(4,0)+45143Aff(6,0)000000
fx\(1+10\2\y\z+5\z2)02Apf(4,0)2100000000Aff(0,0)311Aff(4,0)+75572Aff(6,0)00000
fy5\2x2\z+5\2y2\z5y\z2002Apf(4,0)2100000000Aff(0,0)311Aff(4,0)+75572Aff(6,0)0000
f15\2x2\y+5\2y3+4z\(3+5\z2)0002Apf(4,0)2100000000Aff(0,0)311Aff(4,0)+75572Aff(6,0)000
fx\(1+2\2\y\z5\z2)0000000000000Aff(0,0)+111Aff(4,0)135572Aff(6,0)00
f(y+2x2\z2y2\z5y\z2)00000000000000Aff(0,0)+111Aff(4,0)135572Aff(6,0)0
fx\(x23\y2)000000000000000Aff(0,0)+111Aff(4,0)135572Aff(6,0)

Coupling for a single shell

Although the parameters Al,l(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al,l(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l and l.

Click on one of the subsections to expand it or

Potential for s orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={Ea1gk=0m=00True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_0sqrt2-1z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Ea1g, k == 0 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_0sqrt2-1z.Quanty
Akm = {{0, 0, Ea1g} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(0)0
Y(0)0Ea1g

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

s
sEa1g

Rotation matrix used

Rotation matrix used

Y(0)0
s1

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Ea1g
ψ(θ,ϕ)=11 12π
ψ(ˆx,ˆy,ˆz)=11 12π

Potential for p orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={Et1uk=0m=00True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_0sqrt2-1z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Et1u, k == 0 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_0sqrt2-1z.Quanty
Akm = {{0, 0, Et1u} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(1)1 Y(1)0 Y(1)1
Y(1)1Et1u00
Y(1)00Et1u0
Y(1)100Et1u

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

px py pz
pxEt1u00
py0Et1u0
pz00Et1u

Rotation matrix used

Rotation matrix used

Y(1)1 Y(1)0 Y(1)1
px12012
pyi20i2
pz010

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Et1u
ψ(θ,ϕ)=11 123πsin(θ)cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πx
Et1u
ψ(θ,ϕ)=11 123πsin(θ)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πy
Et1u
ψ(θ,ϕ)=11 123πcos(θ)
ψ(ˆx,ˆy,ˆz)=11 123πz

Potential for d orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={15(2Eeg+3Et2g)k=0m=0i145(EegEt2g)k=4(m=3m=3)75(EegEt2g)k=4m=0

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_0sqrt2-1z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(2*Eeg + 3*Et2g)/5, k == 0 && m == 0}, {I*Sqrt[14/5]*(Eeg - Et2g), k == 4 && (m == -3 || m == 3)}, {(-7*(Eeg - Et2g))/5, k == 4 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_0sqrt2-1z.Quanty
Akm = {{0, 0, (1/5)*((2)*(Eeg) + (3)*(Et2g))} , 
       {4, 0, (-7/5)*(Eeg + (-1)*(Et2g))} , 
       {4,-3, (I)*((sqrt(14/5))*(Eeg + (-1)*(Et2g)))} , 
       {4, 3, (I)*((sqrt(14/5))*(Eeg + (-1)*(Et2g)))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
Y(2)213(Eeg+2Et2g)0013i2(EegEt2g)0
Y(2)1013(2Eeg+Et2g)0013i2(EegEt2g)
Y(2)000Et2g00
Y(2)113i2(EegEt2g)0013(2Eeg+Et2g)0
Y(2)2013i2(EegEt2g)0013(Eeg+2Et2g)

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

dxy+2xz dx2+y222yz dxz2xy dx2+y2+2yz d3z2r2
dxy+2xzEeg0000
dx2+y222yz0Eeg000
dxz2xy00Et2g00
dx2+y2+2yz000Et2g0
d3z2r20000Et2g

Rotation matrix used

Rotation matrix used

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
dxy+2xzi613013i6
dx2+y222yz16i30i316
dxz2xyi316016i3
dx2+y2+2yz13i60i613
d3z2r200100

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eeg
ψ(θ,ϕ)=11 125πsin(θ)cos(ϕ)(sin(θ)sin(ϕ)+2cos(θ))
ψ(ˆx,ˆy,ˆz)=11 125πx(y+2z)
Eeg
ψ(θ,ϕ)=11 145πsin(θ)(sin(θ)cos(2ϕ)+22cos(θ)sin(ϕ))
ψ(ˆx,ˆy,ˆz)=11 145π(x2y(y22z))
Et2g
ψ(θ,ϕ)=11 125πsin(θ)cos(ϕ)(2sin(θ)sin(ϕ)cos(θ))
ψ(ˆx,ˆy,ˆz)=11 125πx(2yz)
Et2g
ψ(θ,ϕ)=11 145πsin(θ)(2sin(θ)cos(2ϕ)2cos(θ)sin(ϕ))
ψ(ˆx,ˆy,ˆz)=11 145π(y(2y+2z)2x2)
Et2g
ψ(θ,ϕ)=11 185π(3cos(2θ)+1)
ψ(ˆx,ˆy,ˆz)=11 145π(3z21)

Potential for f orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={17(Ea2u+3(Et1u+Et2u))k=0m=0i514(2Ea2u3Et1u+Et2u)k=4(m=3m=3)12(2Ea2u3Et1u+Et2u)k=4m=013601121(4Ea2u+5Et1u9Et2u)k=6(m=6m=6)13i(4Ea2u+5Et1u9Et2u)6210k=6(m=3m=3)26105(4Ea2u+5Et1u9Et2u)k=6m=0

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_0sqrt2-1z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2u + 3*(Et1u + Et2u))/7, k == 0 && m == 0}, {(-I)*Sqrt[5/14]*(2*Ea2u - 3*Et1u + Et2u), k == 4 && (m == -3 || m == 3)}, {(2*Ea2u - 3*Et1u + Et2u)/2, k == 4 && m == 0}, {(-13*Sqrt[11/21]*(4*Ea2u + 5*Et1u - 9*Et2u))/60, k == 6 && (m == -6 || m == 6)}, {(((13*I)/6)*(4*Ea2u + 5*Et1u - 9*Et2u))/Sqrt[210], k == 6 && (m == -3 || m == 3)}, {(26*(4*Ea2u + 5*Et1u - 9*Et2u))/105, k == 6 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_0sqrt2-1z.Quanty
Akm = {{0, 0, (1/7)*(Ea2u + (3)*(Et1u + Et2u))} , 
       {4, 0, (1/2)*((2)*(Ea2u) + (-3)*(Et1u) + Et2u)} , 
       {4,-3, (-I)*((sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u))} , 
       {4, 3, (-I)*((sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u))} , 
       {6, 0, (26/105)*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u))} , 
       {6,-3, (13/6*I)*((1/(sqrt(210)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
       {6, 3, (13/6*I)*((1/(sqrt(210)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
       {6,-6, (-13/60)*((sqrt(11/21))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
       {6, 6, (-13/60)*((sqrt(11/21))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(3)3118(4Ea2u+5Et1u+9Et2u)0019i10(Ea2uEt1u)00118(4Ea2u+5Et1u9Et2u)
Y(3)2016(5Et1u+Et2u)0 0 -\frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) 0 0
{Y_{-1}^{(3)}} 0 0 \frac{1}{6} (\text{Et1u}+5 \text{Et2u}) 0 0 \frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) 0
{Y_{0}^{(3)}} -\frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) 0 0 \frac{1}{9} (5 \text{Ea2u}+4 \text{Et1u}) 0 0 -\frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u})
{Y_{1}^{(3)}} 0 \frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) 0 0 \frac{1}{6} (\text{Et1u}+5 \text{Et2u}) 0 0
{Y_{2}^{(3)}} 0 0 -\frac{1}{6} i \sqrt{5} (\text{Et1u}-\text{Et2u}) 0 0 \frac{1}{6} (5 \text{Et1u}+\text{Et2u}) 0
{Y_{3}^{(3)}} \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) 0 0 \frac{1}{9} i \sqrt{10} (\text{Ea2u}-\text{Et1u}) 0 0 \frac{1}{18} (4 \text{Ea2u}+5 \text{Et1u}+9 \text{Et2u})

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.}
f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} \text{Ea2u} 0 0 0 0 0 0
f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} 0 \text{Et1u} 0 0 0 0 0
f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} 0 0 \text{Et1u} 0 0 0 0
f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} 0 0 0 \text{Et1u} 0 0 0
f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} 0 0 0 0 \text{Et2u} 0 0
f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} 0 0 0 0 0 \text{Et2u} 0
f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} 0 0 0 0 0 0 \text{Et2u}

Rotation matrix used

Rotation matrix used

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} \frac{i \sqrt{2}}{3} 0 0 \frac{\sqrt{5}}{3} 0 0 \frac{i \sqrt{2}}{3}
f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} 0 -\frac{1}{2} i \sqrt{\frac{5}{3}} -\frac{1}{2 \sqrt{3}} 0 \frac{1}{2 \sqrt{3}} \frac{1}{2} i \sqrt{\frac{5}{3}} 0
f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} 0 -\frac{\sqrt{\frac{5}{3}}}{2} -\frac{i}{2 \sqrt{3}} 0 -\frac{i}{2 \sqrt{3}} -\frac{\sqrt{\frac{5}{3}}}{2} 0
f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} -\frac{1}{3} i \sqrt{\frac{5}{2}} 0 0 \frac{2}{3} 0 0 -\frac{1}{3} i \sqrt{\frac{5}{2}}
f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} 0 -\frac{i}{2 \sqrt{3}} \frac{\sqrt{\frac{5}{3}}}{2} 0 -\frac{\sqrt{\frac{5}{3}}}{2} \frac{i}{2 \sqrt{3}} 0
f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} 0 -\frac{1}{2 \sqrt{3}} \frac{1}{2} i \sqrt{\frac{5}{3}} 0 \frac{1}{2} i \sqrt{\frac{5}{3}} -\frac{1}{2 \sqrt{3}} 0
f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} -\frac{1}{\sqrt{2}} 0 0 0 0 0 \frac{1}{\sqrt{2}}

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

\text{Ea2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{24} \sqrt{\frac{35}{\pi }} \left(2 \sqrt{2} \sin ^3(\theta ) \sin (3 \phi )+\cos (\theta ) (5 \cos (2 \theta )-1)\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{12} \sqrt{\frac{35}{\pi }} \left(3 \sqrt{2} x^2 y-\sqrt{2} y^3+5 z^3-3 z\right)
\text{Et1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sqrt{2} \sin (2 \theta ) \sin (\phi )+5 \cos (2 \theta )+3\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{8} \sqrt{\frac{7}{\pi }} x \left(10 \sqrt{2} y z+5 z^2-1\right)
\text{Et1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \left(5 \sqrt{2} \sin (2 \theta ) \cos (2 \phi )+(5 \cos (2 \theta )+3) \sin (\phi )\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{7}{\pi }} \left(-5 \sqrt{2} x^2 z+5 \sqrt{2} y^2 z-5 y z^2+y\right)
\text{Et1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{24} \sqrt{\frac{7}{\pi }} \left(-5 \sqrt{2} \sin ^3(\theta ) \sin (3 \phi )+3 \cos (\theta )+5 \cos (3 \theta )\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{24} \sqrt{\frac{7}{\pi }} \left(-15 \sqrt{2} x^2 y+5 \sqrt{2} y^3+4 z \left(5 z^2-3\right)\right)
\text{Et2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \cos (\phi ) \left(-2 \sqrt{2} \sin (2 \theta ) \sin (\phi )+5 \cos (2 \theta )+3\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{8} \sqrt{\frac{35}{\pi }} x \left(2 \sqrt{2} y z-5 z^2+1\right)
\text{Et2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \left((5 \cos (2 \theta )+3) \sin (\phi )-\sqrt{2} \sin (2 \theta ) \cos (2 \phi )\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{8} \sqrt{\frac{35}{\pi }} \left(\sqrt{2} x^2 z-\sqrt{2} y^2 z-5 y z^2+y\right)
\text{Et2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right)

Coupling between two shells

Click on one of the subsections to expand it or

Potential for p-f orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

A_{k,m} = \begin{cases} 0 & k\neq 4\lor (m\neq -3\land m\neq 0\land m\neq 3) \\ -i \sqrt{\frac{15}{2}} \text{Mt1u} & k=4\land (m=-3\lor m=3) \\ \frac{\sqrt{21} \text{Mt1u}}{2} & \text{True} \end{cases}

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_0sqrt2-1z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 4 || (m != -3 && m != 0 && m != 3)}, {(-I)*Sqrt[15/2]*Mt1u, k == 4 && (m == -3 || m == 3)}}, (Sqrt[21]*Mt1u)/2]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_0sqrt2-1z.Quanty
Akm = {{4, 0, (1/2)*((sqrt(21))*(Mt1u))} , 
       {4,-3, (-I)*((sqrt(15/2))*(Mt1u))} , 
       {4, 3, (-I)*((sqrt(15/2))*(Mt1u))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} 0 0 -\frac{\text{Mt1u}}{\sqrt{6}} 0 0 -i \sqrt{\frac{5}{6}} \text{Mt1u} 0
{Y_{0}^{(1)}} \frac{1}{3} i \sqrt{\frac{5}{2}} \text{Mt1u} 0 0 \frac{2 \text{Mt1u}}{3} 0 0 \frac{1}{3} i \sqrt{\frac{5}{2}} \text{Mt1u}
{Y_{1}^{(1)}} 0 -i \sqrt{\frac{5}{6}} \text{Mt1u} 0 0 -\frac{\text{Mt1u}}{\sqrt{6}} 0 0

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

f_{\left.3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} f_{-x\left\backslash \left(-1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} f_{y-\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z+\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} f_{\left.-15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} f_{-x\left\backslash \left(1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.} f_{-\left(y+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.\right)} f_{-x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.}
p_x 0 \text{Mt1u} 0 0 0 0 0
p_y 0 0 \text{Mt1u} 0 0 0 0
p_z 0 0 0 \text{Mt1u} 0 0 0

Table of several point groups

Return to Main page on Point Groups

Nonaxial groups C1 Cs Ci
Cn groups C2 C3 C4 C5 C6 C7 C8
Dn groups D2 D3 D4 D5 D6 D7 D8
Cnv groups C2v C3v C4v C5v C6v C7v C8v
Cnh groups C2h C3h C4h C5h C6h
Dnh groups D2h D3h D4h D5h D6h D7h D8h
Dnd groups D2d D3d D4d D5d D6d D7d D8d
Sn groups S2 S4 S6 S8 S10 S12
Cubic groups T Th Td O Oh I Ih
Linear groups C\inftyv D\inftyh

Print/export