+Table of Contents
Orientation
Symmetry Operations
In the Ci Point Group, with orientation there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
i | {0,0,0} , |
Different Settings
Character Table
E(1) | i(1) | |
---|---|---|
Ag | 1 | 1 |
Au | 1 | −1 |
Product Table
Ag | Au | |
---|---|---|
Ag | Ag | Au |
Au | Au | Ag |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Ci Point group with orientation the form of the expansion coefficients is:
Expansion
Ak,m={A(0,0)k=0∧m=0A(2,2)−iB(2,2)k=2∧m=−2−A(2,1)+iB(2,1)k=2∧m=−1A(2,0)k=2∧m=0A(2,1)+iB(2,1)k=2∧m=1A(2,2)+iB(2,2)k=2∧m=2A(4,4)−iB(4,4)k=4∧m=−4−A(4,3)+iB(4,3)k=4∧m=−3A(4,2)−iB(4,2)k=4∧m=−2−A(4,1)+iB(4,1)k=4∧m=−1A(4,0)k=4∧m=0A(4,1)+iB(4,1)k=4∧m=1A(4,2)+iB(4,2)k=4∧m=2A(4,3)+iB(4,3)k=4∧m=3A(4,4)+iB(4,4)k=4∧m=4A(6,6)−iB(6,6)k=6∧m=−6−A(6,5)+iB(6,5)k=6∧m=−5A(6,4)−iB(6,4)k=6∧m=−4−A(6,3)+iB(6,3)k=6∧m=−3A(6,2)−iB(6,2)k=6∧m=−2−A(6,1)+iB(6,1)k=6∧m=−1A(6,0)k=6∧m=0A(6,1)+iB(6,1)k=6∧m=1A(6,2)+iB(6,2)k=6∧m=2A(6,3)+iB(6,3)k=6∧m=3A(6,4)+iB(6,4)k=6∧m=4A(6,5)+iB(6,5)k=6∧m=5A(6,6)+iB(6,6)k=6∧m=6
Input format suitable for Mathematica (Quanty.nb)
- Akm_Ci.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 2] - I*B[2, 2], k == 2 && m == -2}, {-A[2, 1] + I*B[2, 1], k == 2 && m == -1}, {A[2, 0], k == 2 && m == 0}, {A[2, 1] + I*B[2, 1], k == 2 && m == 1}, {A[2, 2] + I*B[2, 2], k == 2 && m == 2}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {-A[4, 3] + I*B[4, 3], k == 4 && m == -3}, {A[4, 2] - I*B[4, 2], k == 4 && m == -2}, {-A[4, 1] + I*B[4, 1], k == 4 && m == -1}, {A[4, 0], k == 4 && m == 0}, {A[4, 1] + I*B[4, 1], k == 4 && m == 1}, {A[4, 2] + I*B[4, 2], k == 4 && m == 2}, {A[4, 3] + I*B[4, 3], k == 4 && m == 3}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {-A[6, 5] + I*B[6, 5], k == 6 && m == -5}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {-A[6, 3] + I*B[6, 3], k == 6 && m == -3}, {A[6, 2] - I*B[6, 2], k == 6 && m == -2}, {-A[6, 1] + I*B[6, 1], k == 6 && m == -1}, {A[6, 0], k == 6 && m == 0}, {A[6, 1] + I*B[6, 1], k == 6 && m == 1}, {A[6, 2] + I*B[6, 2], k == 6 && m == 2}, {A[6, 3] + I*B[6, 3], k == 6 && m == 3}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}, {A[6, 5] + I*B[6, 5], k == 6 && m == 5}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]
Input format suitable for Quanty
- Akm_Ci.Quanty
Akm = {{0, 0, A(0,0)} , {2, 0, A(2,0)} , {2,-1, (-1)*(A(2,1)) + (I)*(B(2,1))} , {2, 1, A(2,1) + (I)*(B(2,1))} , {2,-2, A(2,2) + (-I)*(B(2,2))} , {2, 2, A(2,2) + (I)*(B(2,2))} , {4, 0, A(4,0)} , {4,-1, (-1)*(A(4,1)) + (I)*(B(4,1))} , {4, 1, A(4,1) + (I)*(B(4,1))} , {4,-2, A(4,2) + (-I)*(B(4,2))} , {4, 2, A(4,2) + (I)*(B(4,2))} , {4,-3, (-1)*(A(4,3)) + (I)*(B(4,3))} , {4, 3, A(4,3) + (I)*(B(4,3))} , {4,-4, A(4,4) + (-I)*(B(4,4))} , {4, 4, A(4,4) + (I)*(B(4,4))} , {6, 0, A(6,0)} , {6,-1, (-1)*(A(6,1)) + (I)*(B(6,1))} , {6, 1, A(6,1) + (I)*(B(6,1))} , {6,-2, A(6,2) + (-I)*(B(6,2))} , {6, 2, A(6,2) + (I)*(B(6,2))} , {6,-3, (-1)*(A(6,3)) + (I)*(B(6,3))} , {6, 3, A(6,3) + (I)*(B(6,3))} , {6,-4, A(6,4) + (-I)*(B(6,4))} , {6, 4, A(6,4) + (I)*(B(6,4))} , {6,-5, (-1)*(A(6,5)) + (I)*(B(6,5))} , {6, 5, A(6,5) + (I)*(B(6,5))} , {6,-6, A(6,6) + (-I)*(B(6,6))} , {6, 6, A(6,6) + (I)*(B(6,6))} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m)
we can express the operator as O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter.
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y(0)0 | Ass(0,0) | 0 | 0 | 0 | Asd(2,2)+iBsd(2,2)√5 | −Asd(2,1)+iBsd(2,1)√5 | Asd(2,0)√5 | −−Asd(2,1)+iBsd(2,1)√5 | Asd(2,2)−iBsd(2,2)√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Y(1)−1 | 0 | App(0,0)−15App(2,0) | 15√3(−App(2,1)+iBpp(2,1)) | −15√6(App(2,2)−iBpp(2,2)) | 0 | 0 | 0 | 0 | 0 | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | Apf(4,1)+iBpf(4,1)3√7−√635(Apf(2,1)+iBpf(2,1)) | 35√27Apf(2,0)−13√27Apf(4,0) | 13√1021(−Apf(4,1)+iBpf(4,1))−3(−Apf(2,1)+iBpf(2,1))5√7 | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | 13(−Apf(4,3)+iBpf(4,3)) | −2(Apf(4,4)−iBpf(4,4))3√3 |
Y(1)0 | 0 | −15√3(App(2,1)+iBpp(2,1)) | App(0,0)+25App(2,0) | −15√3(−App(2,1)+iBpp(2,1)) | 0 | 0 | 0 | 0 | 0 | −Apf(4,3)+iBpf(4,3)3√3 | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | −25√67(Apf(2,1)+iBpf(2,1))−13√57(Apf(4,1)+iBpf(4,1)) | 35√37Apf(2,0)+4Apf(4,0)3√21 | −25√67(−Apf(2,1)+iBpf(2,1))−13√57(−Apf(4,1)+iBpf(4,1)) | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | −−Apf(4,3)+iBpf(4,3)3√3 |
Y(1)1 | 0 | −15√6(App(2,2)+iBpp(2,2)) | 15√3(App(2,1)+iBpp(2,1)) | App(0,0)−15App(2,0) | 0 | 0 | 0 | 0 | 0 | −2(Apf(4,4)+iBpf(4,4))3√3 | 13(Apf(4,3)+iBpf(4,3)) | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 13√1021(Apf(4,1)+iBpf(4,1))−3(Apf(2,1)+iBpf(2,1))5√7 | 35√27Apf(2,0)−13√27Apf(4,0) | −Apf(4,1)+iBpf(4,1)3√7−√635(−Apf(2,1)+iBpf(2,1)) | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 |
Y(2)−2 | Asd(2,2)−iBsd(2,2)√5 | 0 | 0 | 0 | Add(0,0)−27Add(2,0)+121Add(4,0) | 17√6(−Add(2,1)+iBdd(2,1))−121√5(−Add(4,1)+iBdd(4,1)) | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | −13√57(−Add(4,3)+iBdd(4,3)) | 13√107(Add(4,4)−iBdd(4,4)) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Y(2)−1 | −Asd(2,1)+iBsd(2,1)√5 | 0 | 0 | 0 | 121√5(Add(4,1)+iBdd(4,1))−17√6(Add(2,1)+iBdd(2,1)) | Add(0,0)+17Add(2,0)−421Add(4,0) | 17(−Add(2,1)+iBdd(2,1))+17√103(−Add(4,1)+iBdd(4,1)) | −17√6(Add(2,2)−iBdd(2,2))−221√10(Add(4,2)−iBdd(4,2)) | 13√57(−Add(4,3)+iBdd(4,3)) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Y(2)0 | Asd(2,0)√5 | 0 | 0 | 0 | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 17(−Add(2,1)−iBdd(2,1))−17√103(Add(4,1)+iBdd(4,1)) | Add(0,0)+27Add(2,0)+27Add(4,0) | 17(Add(2,1)−iBdd(2,1))−17√103(−Add(4,1)+iBdd(4,1)) | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Y(2)1 | Asd(2,1)+iBsd(2,1)√5 | 0 | 0 | 0 | 13√57(Add(4,3)+iBdd(4,3)) | −17√6(Add(2,2)+iBdd(2,2))−221√10(Add(4,2)+iBdd(4,2)) | 17(Add(2,1)+iBdd(2,1))+17√103(Add(4,1)+iBdd(4,1)) | Add(0,0)+17Add(2,0)−421Add(4,0) | 121√5(−Add(4,1)+iBdd(4,1))−17√6(−Add(2,1)+iBdd(2,1)) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Y(2)2 | Asd(2,2)+iBsd(2,2)√5 | 0 | 0 | 0 | 13√107(Add(4,4)+iBdd(4,4)) | −13√57(Add(4,3)+iBdd(4,3)) | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 17√6(Add(2,1)+iBdd(2,1))−121√5(Add(4,1)+iBdd(4,1)) | Add(0,0)−27Add(2,0)+121Add(4,0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Y(3)−3 | 0 | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 | −Apf(4,3)+iBpf(4,3)3√3 | −2(Apf(4,4)−iBpf(4,4))3√3 | 0 | 0 | 0 | 0 | 0 | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | 13(−Aff(2,1)+iBff(2,1))−111√103(−Aff(4,1)+iBff(4,1))+5429√7(−Aff(6,1)+iBff(6,1)) | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) | 10143√73(−Aff(6,3)+iBff(6,3))−111√7(−Aff(4,3)+iBff(4,3)) | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) | 513√1433(−Aff(6,5)+iBff(6,5)) | −1013√733(Aff(6,6)−iBff(6,6)) |
Y(3)−2 | 0 | √635(−Apf(2,1)+iBpf(2,1))−−Apf(4,1)+iBpf(4,1)3√7 | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | 13(Apf(4,3)−iBpf(4,3)) | 0 | 0 | 0 | 0 | 0 | 13(−Aff(2,1)−iBff(2,1))+111√103(Aff(4,1)+iBff(4,1))−5429√7(Aff(6,1)+iBff(6,1)) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | −Aff(2,1)+iBff(2,1)√15+433√2(−Aff(4,1)+iBff(4,1))−5143√353(−Aff(6,1)+iBff(6,1)) | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | −133√14(−Aff(4,3)+iBff(4,3))−5143√42(−Aff(6,3)+iBff(6,3)) | 133√70(Aff(4,4)−iBff(4,4))+10143√14(Aff(6,4)−iBff(6,4)) | −513√1433(−Aff(6,5)+iBff(6,5)) |
Y(3)−1 | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 25√67(−Apf(2,1)+iBpf(2,1))+13√57(−Apf(4,1)+iBpf(4,1)) | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | 0 | 0 | 0 | 0 | 0 | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | −Aff(2,1)+iBff(2,1)√15−433√2(Aff(4,1)+iBff(4,1))+5143√353(Aff(6,1)+iBff(6,1)) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 115√2(−Aff(2,1)+iBff(2,1))+111√53(−Aff(4,1)+iBff(4,1))+25429√14(−Aff(6,1)+iBff(6,1)) | −25√23(Aff(2,2)−iBff(2,2))−233√10(Aff(4,2)−iBff(4,2))−10143√353(Aff(6,2)−iBff(6,2)) | 133√14(−Aff(4,3)+iBff(4,3))+5143√42(−Aff(6,3)+iBff(6,3)) | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) |
Y(3)0 | 0 | 3(Apf(2,1)+iBpf(2,1))5√7−13√1021(Apf(4,1)+iBpf(4,1)) | 35√37Apf(2,0)+4Apf(4,0)3√21 | 3(−Apf(2,1)+iBpf(2,1))5√7−13√1021(−Apf(4,1)+iBpf(4,1)) | 0 | 0 | 0 | 0 | 0 | 111√7(Aff(4,3)+iBff(4,3))−10143√73(Aff(6,3)+iBff(6,3)) | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | −115√2(Aff(2,1)+iBff(2,1))−111√53(Aff(4,1)+iBff(4,1))−25429√14(Aff(6,1)+iBff(6,1)) | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | −115√2(−Aff(2,1)+iBff(2,1))−111√53(−Aff(4,1)+iBff(4,1))−25429√14(−Aff(6,1)+iBff(6,1)) | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | 111√7(−Aff(4,3)+iBff(4,3))−10143√73(−Aff(6,3)+iBff(6,3)) |
Y(3)1 | 0 | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 25√67(Apf(2,1)+iBpf(2,1))+13√57(Apf(4,1)+iBpf(4,1)) | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 0 | 0 | 0 | 0 | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 133√14(Aff(4,3)+iBff(4,3))+5143√42(Aff(6,3)+iBff(6,3)) | −25√23(Aff(2,2)+iBff(2,2))−233√10(Aff(4,2)+iBff(4,2))−10143√353(Aff(6,2)+iBff(6,2)) | 115√2(Aff(2,1)+iBff(2,1))+111√53(Aff(4,1)+iBff(4,1))+25429√14(Aff(6,1)+iBff(6,1)) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | −−Aff(2,1)+iBff(2,1)√15−433√2(−Aff(4,1)+iBff(4,1))+5143√353(−Aff(6,1)+iBff(6,1)) | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) |
Y(3)2 | 0 | 13(−Apf(4,3)−iBpf(4,3)) | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | √635(Apf(2,1)+iBpf(2,1))−Apf(4,1)+iBpf(4,1)3√7 | 0 | 0 | 0 | 0 | 0 | −513√1433(Aff(6,5)+iBff(6,5)) | 133√70(Aff(4,4)+iBff(4,4))+10143√14(Aff(6,4)+iBff(6,4)) | −133√14(Aff(4,3)+iBff(4,3))−5143√42(Aff(6,3)+iBff(6,3)) | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | Aff(2,1)+iBff(2,1)√15+433√2(Aff(4,1)+iBff(4,1))−5143√353(Aff(6,1)+iBff(6,1)) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 13(Aff(2,1)−iBff(2,1))+111√103(−Aff(4,1)+iBff(4,1))−5429√7(−Aff(6,1)+iBff(6,1)) |
Y(3)3 | 0 | −2(Apf(4,4)+iBpf(4,4))3√3 | Apf(4,3)+iBpf(4,3)3√3 | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | 0 | 0 | 0 | 0 | 0 | −1013√733(Aff(6,6)+iBff(6,6)) | 513√1433(Aff(6,5)+iBff(6,5)) | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 10143√73(Aff(6,3)+iBff(6,3))−111√7(Aff(4,3)+iBff(4,3)) | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | 13(Aff(2,1)+iBff(2,1))−111√103(Aff(4,1)+iBff(4,1))+5429√7(Aff(6,1)+iBff(6,1)) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
px | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
py | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pz | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dx2−y2 | 0 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d3z2−r2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dyz | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxz | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxy | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fxyz | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 |
fx(5x2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √54 | 0 | −√34 | 0 | √34 | 0 | −√54 |
fy(5y2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√54 | 0 | −i√34 | 0 | −i√34 | 0 | −i√54 |
fz(5z2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
fx(y2−z2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −√34 | 0 | −√54 | 0 | √54 | 0 | √34 |
fy(z2−x2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√34 | 0 | i√54 | 0 | i√54 | 0 | −i√34 |
fz(x2−y2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 1√2 | 0 |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
s | px | py | pz | dx2−y2 | d3z2−r2 | dyz | dxz | dxy | fxyz | fx(5x2−r2) | fy(5y2−r2) | fz(5z2−r2) | fx(y2−z2) | fy(z2−x2) | fz(x2−y2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | Ass(0,0) | 0 | 0 | 0 | √25Asd(2,2) | Asd(2,0)√5 | √25Bsd(2,1) | −√25Asd(2,1) | −√25Bsd(2,2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
px | 0 | App(0,0)−15App(2,0)+15√6App(2,2) | −15√6Bpp(2,2) | −15√6App(2,1) | 0 | 0 | 0 | 0 | 0 | √635Bpf(2,1)−Bpf(4,1)3√7+13Bpf(4,3) | −310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4) | 35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4) | 35√27Apf(2,1)−23√521Apf(4,1) | −3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2 | √635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2 | −√635Apf(2,1)+Apf(4,1)3√7−13Apf(4,3) |
py | 0 | −15√6Bpp(2,2) | App(0,0)−15App(2,0)−15√6App(2,2) | 15√6Bpp(2,1) | 0 | 0 | 0 | 0 | 0 | −√635Apf(2,1)+Apf(4,1)3√7+13Apf(4,3) | 35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4) | −310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4) | 23√521Bpf(4,1)−35√27Bpf(2,1) | −√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2 | 3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2 | −√635Bpf(2,1)+Bpf(4,1)3√7+13Bpf(4,3) |
pz | 0 | −15√6App(2,1) | 15√6Bpp(2,1) | App(0,0)+25App(2,0) | 0 | 0 | 0 | 0 | 0 | −√635Bpf(2,2)−23√27Bpf(4,2) | 35√27Apf(2,1)+12√521Apf(4,1)−16√53Apf(4,3) | −35√27Bpf(2,1)−12√521Bpf(4,1)−16√53Bpf(4,3) | 35√37Apf(2,0)+4Apf(4,0)3√21 | √635Apf(2,1)+5Apf(4,1)6√7+16Apf(4,3) | √635Bpf(2,1)+5Bpf(4,1)6√7−16Bpf(4,3) | √635Apf(2,2)+23√27Apf(4,2) |
dx2−y2 | √25Asd(2,2) | 0 | 0 | 0 | Add(0,0)−27Add(2,0)+121Add(4,0)+13√107Add(4,4) | 17√103Add(4,2)−27√2Add(2,2) | −17√6Bdd(2,1)+121√5Bdd(4,1)+13√57Bdd(4,3) | −17√6Add(2,1)+121√5Add(4,1)−13√57Add(4,3) | −13√107Bdd(4,4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d3z2−r2 | Asd(2,0)√5 | 0 | 0 | 0 | 17√103Add(4,2)−27√2Add(2,2) | Add(0,0)+27Add(2,0)+27Add(4,0) | \frac{1}{7} \sqrt{2} \text{Bdd}(2,1)+\frac{2}{7} \sqrt{\frac{5}{3}} \text{Bdd}(4,1) | -\frac{1}{7} \sqrt{2} \text{Add}(2,1)-\frac{2}{7} \sqrt{\frac{5}{3}} \text{Add}(4,1) | \frac{2}{7} \sqrt{2} \text{Bdd}(2,2)-\frac{1}{7} \sqrt{\frac{10}{3}} \text{Bdd}(4,2) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | \sqrt{\frac{2}{5}} \text{Bsd}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{7} \sqrt{6} \text{Bdd}(2,1)+\frac{1}{21} \sqrt{5} \text{Bdd}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) | \frac{1}{7} \sqrt{2} \text{Bdd}(2,1)+\frac{2}{7} \sqrt{\frac{5}{3}} \text{Bdd}(4,1) | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)-\frac{2}{21} \sqrt{10} \text{Add}(4,2) | -\frac{1}{7} \sqrt{6} \text{Bdd}(2,2)-\frac{2}{21} \sqrt{10} \text{Bdd}(4,2) | -\frac{1}{7} \sqrt{6} \text{Add}(2,1)+\frac{1}{21} \sqrt{5} \text{Add}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Add}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | -\sqrt{\frac{2}{5}} \text{Asd}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{7} \sqrt{6} \text{Add}(2,1)+\frac{1}{21} \sqrt{5} \text{Add}(4,1)-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Add}(4,3) | -\frac{1}{7} \sqrt{2} \text{Add}(2,1)-\frac{2}{7} \sqrt{\frac{5}{3}} \text{Add}(4,1) | -\frac{1}{7} \sqrt{6} \text{Bdd}(2,2)-\frac{2}{21} \sqrt{10} \text{Bdd}(4,2) | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)+\frac{2}{21} \sqrt{10} \text{Add}(4,2) | \frac{1}{7} \sqrt{6} \text{Bdd}(2,1)-\frac{1}{21} \sqrt{5} \text{Bdd}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xy}} | -\sqrt{\frac{2}{5}} \text{Bsd}(2,2) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) | \frac{2}{7} \sqrt{2} \text{Bdd}(2,2)-\frac{1}{7} \sqrt{\frac{10}{3}} \text{Bdd}(4,2) | -\frac{1}{7} \sqrt{6} \text{Add}(2,1)+\frac{1}{21} \sqrt{5} \text{Add}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Add}(4,3) | \frac{1}{7} \sqrt{6} \text{Bdd}(2,1)-\frac{1}{21} \sqrt{5} \text{Bdd}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{\text{xyz}} | \color{darkred}{ 0 } | \sqrt{\frac{6}{35}} \text{Bpf}(2,1)-\frac{\text{Bpf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Bpf}(4,3) | -\sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{\text{Apf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Apf}(4,3) | -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} \text{Bpf}(4,2) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)-\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)-\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{\text{Bff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{5}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)+\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | \frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{\text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)-\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) | \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | -\frac{7}{66} \sqrt{5} \text{Bff}(4,1)-\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Bff}(6,1)-\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | -\frac{7}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) | -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) |
f_{x\left(5x^2-r^2\right)} | \color{darkred}{ 0 } | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)-\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Apf}(4,1)-\frac{1}{6} \sqrt{\frac{5}{3}} \text{Apf}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{\text{Bff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{5}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)+\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)+\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}+\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{5 \sqrt{6}}-\frac{1}{11} \sqrt{10} \text{Bff}(4,2)-\frac{5}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Bff}(6,6) | \frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{1}{22} \sqrt{5} \text{Aff}(4,1)+\frac{1}{22} \sqrt{35} \text{Aff}(4,3)+\frac{25}{143} \sqrt{\frac{7}{6}} \text{Aff}(6,1)-\frac{5}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{3}{22} \sqrt{3} \text{Aff}(4,1)+\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{70} \text{Aff}(6,1)+\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) |
f_{y\left(5y^2-r^2\right)} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)-\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,1)-\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bpf}(4,1)-\frac{1}{6} \sqrt{\frac{5}{3}} \text{Bpf}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{\text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)-\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) | \frac{\text{Bff}(2,2)}{5 \sqrt{6}}-\frac{1}{11} \sqrt{10} \text{Bff}(4,2)-\frac{5}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Bff}(6,6) | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)-\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}-\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,1)}{5 \sqrt{6}}-\frac{1}{22} \sqrt{5} \text{Bff}(4,1)+\frac{1}{22} \sqrt{35} \text{Bff}(4,3)-\frac{25}{143} \sqrt{\frac{7}{6}} \text{Bff}(6,1)-\frac{5}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,3) | -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,1)}{3 \sqrt{10}}+\frac{3}{22} \sqrt{3} \text{Bff}(4,1)-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)-\frac{5}{429} \sqrt{70} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) |
f_{z\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)-\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | \frac{2}{3} \sqrt{\frac{5}{21}} \text{Bpf}(4,1)-\frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,1) | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) | \frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{1}{22} \sqrt{5} \text{Aff}(4,1)+\frac{1}{22} \sqrt{35} \text{Aff}(4,3)+\frac{25}{143} \sqrt{\frac{7}{6}} \text{Aff}(6,1)-\frac{5}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) | -\frac{\text{Bff}(2,1)}{5 \sqrt{6}}-\frac{1}{22} \sqrt{5} \text{Bff}(4,1)+\frac{1}{22} \sqrt{35} \text{Bff}(4,3)-\frac{25}{143} \sqrt{\frac{7}{6}} \text{Bff}(6,1)-\frac{5}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,3) | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | \frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{5 \text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{21} \text{Aff}(4,3)+\frac{25}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)+\frac{5}{143} \sqrt{7} \text{Aff}(6,3) | \frac{\text{Bff}(2,1)}{3 \sqrt{10}}+\frac{5 \text{Bff}(4,1)}{22 \sqrt{3}}+\frac{1}{22} \sqrt{21} \text{Bff}(4,3)+\frac{25}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{5}{143} \sqrt{7} \text{Bff}(6,3) | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) |
f_{x\left(y^2-z^2\right)} | \color{darkred}{ 0 } | -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)+\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | \sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{5 \text{Apf}(4,1)}{6 \sqrt{7}}+\frac{1}{6} \text{Apf}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{7}{66} \sqrt{5} \text{Bff}(4,1)-\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Bff}(6,1)-\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | \frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{5 \text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{21} \text{Aff}(4,3)+\frac{25}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)+\frac{5}{143} \sqrt{7} \text{Aff}(6,3) | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | \frac{\text{Aff}(2,1)}{\sqrt{6}}+\frac{1}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)-\frac{5}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)+\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) |
f_{y\left(z^2-x^2\right)} | \color{darkred}{ 0 } | \sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} | \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | \sqrt{\frac{6}{35}} \text{Bpf}(2,1)+\frac{5 \text{Bpf}(4,1)}{6 \sqrt{7}}-\frac{1}{6} \text{Bpf}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{7}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) | \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,1)}{3 \sqrt{10}}+\frac{5 \text{Bff}(4,1)}{22 \sqrt{3}}+\frac{1}{22} \sqrt{21} \text{Bff}(4,3)+\frac{25}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{5}{143} \sqrt{7} \text{Bff}(6,3) | \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)-\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)-\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,1)}{\sqrt{6}}-\frac{1}{66} \sqrt{5} \text{Bff}(4,1)+\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{14}{3}} \text{Bff}(6,1)+\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | -\sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{\text{Apf}(4,1)}{3 \sqrt{7}}-\frac{1}{3} \text{Apf}(4,3) | -\sqrt{\frac{6}{35}} \text{Bpf}(2,1)+\frac{\text{Bpf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Bpf}(4,3) | \sqrt{\frac{6}{35}} \text{Apf}(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) | -\frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{3}{22} \sqrt{3} \text{Aff}(4,1)+\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{70} \text{Aff}(6,1)+\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) | -\frac{\text{Bff}(2,1)}{3 \sqrt{10}}+\frac{3}{22} \sqrt{3} \text{Bff}(4,1)-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)-\frac{5}{429} \sqrt{70} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) | \frac{\text{Aff}(2,1)}{\sqrt{6}}+\frac{1}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)-\frac{5}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)+\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) | -\frac{\text{Bff}(2,1)}{\sqrt{6}}-\frac{1}{66} \sqrt{5} \text{Bff}(4,1)+\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{14}{3}} \text{Bff}(6,1)+\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4) |
Coupling for a single shell
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for s-d orbital mixing
Potential for p-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |