Processing math: 75%

Orientation Z(x-y)_A

The point group D3d is a subgroup of Oh. Many materials of relevance have near cubic symmetry with a small D3d distortion. It thus makes sense to label the states in D3d symmetry according to the states they branch from. For d orbitals the eg orbitals in Oh symmetry branch to orbitals that belong to the eg irreducible representation in D3d symmetry. The t2g orbitals in Oh symmetry branch to an orbital that belongs to the a1g irreducible representation and two that belong to the eg irreducible representation. We label the eg orbitals that descend from the eg irreducible representation in Oh symmetry egσ and the eg orbitals that descend from the t2g irreducible representation egπ orbitals. (The mixing is given by the parameter Meg.)

As one can see in the list of supergroups of D3d, there are two different orientations of Oh that are a supergroup of this orientation of D3d. The different orientations of Oh with respect to D3d do however change the definitions of the egπ and egσ orbitals. We include three different representations of the orbitals and potentials for each setting of D3d symmetry. The orientation without additional letter takes the tesseral harmonics as a basis. This basis does not relate to the states in Oh symmetry. The orientation with an additional A or B relate to the two different supergroup representations of the Oh point group.

The parameterization A of the orientation Z(x-y) is related to the orientation 111z of the Oh pointgroup.

Symmetry Operations

In the D3d Point Group, with orientation Z(x-y)_A there are the following symmetry operations

Operator Orientation
E {0,0,0} ,
C3 {0,0,1} , {0,0,1} ,
C2 {1,1,0} , {2+3,1,0} , {1,2+3,0} ,
i {0,0,0} ,
S6 {0,0,1} , {0,0,1} ,
σd {1,1,0} , {2+3,1,0} , {1,2+3,0} ,

Different Settings

Character Table

E(1) C3(2) C2(3) i(1) S6(2) σd(3)
A1g 1 1 1 1 1 1
A2g 1 1 1 1 1 1
Eg 2 1 0 2 1 0
A1u 1 1 1 1 1 1
A2u 1 1 1 1 1 1
Eu 2 1 0 2 1 0

Product Table

A1g A2g Eg A1u A2u Eu
A1g A1g A2g Eg A1u A2u Eu
A2g A2g A1g Eg A2u A1u Eu
Eg Eg Eg A1g+A2g+Eg Eu Eu A1u+A2u+Eu
A1u A1u A2u Eu A1g A2g Eg
A2u A2u A1u Eu A2g A1g Eg
Eu Eu Eu A1u+A2u+Eu Eg Eg A1g+A2g+Eg

Sub Groups with compatible settings

Super Groups with compatible settings

Invariant Potential expanded on renormalized spherical Harmonics

Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the D3d Point group with orientation Z(x-y)_A the form of the expansion coefficients is:

Expansion

Ak,m={A(0,0)k=0m=0A(2,0)k=2m=0(1+i)A(4,3)k=4m=3A(4,0)k=4m=0(1+i)A(4,3)k=4m=3iB(6,6)k=6m=6(1+i)A(6,3)k=6m=3A(6,0)k=6m=0(1+i)A(6,3)k=6m=3iB(6,6)k=6m=6

Input format suitable for Mathematica (Quanty.nb)

Akm_D3d_Z(x-y)_A.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {(-1 + I)*A[4, 3], k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}, {(1 + I)*A[4, 3], k == 4 && m == 3}, {(-I)*B[6, 6], k == 6 && m == -6}, {(-1 + I)*A[6, 3], k == 6 && m == -3}, {A[6, 0], k == 6 && m == 0}, {(1 + I)*A[6, 3], k == 6 && m == 3}, {I*B[6, 6], k == 6 && m == 6}}, 0]

Input format suitable for Quanty

Akm_D3d_Z(x-y)_A.Quanty
Akm = {{0, 0, A(0,0)} , 
       {2, 0, A(2,0)} , 
       {4, 0, A(4,0)} , 
       {4,-3, (-1+1*I)*(A(4,3))} , 
       {4, 3, (1+1*I)*(A(4,3))} , 
       {6, 0, A(6,0)} , 
       {6,-3, (-1+1*I)*(A(6,3))} , 
       {6, 3, (1+1*I)*(A(6,3))} , 
       {6,-6, (-I)*(B(6,6))} , 
       {6, 6, (I)*(B(6,6))} }

One particle coupling on a basis of spherical harmonics

The operator representing the potential in second quantisation is given as: O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l Note the difference between the function Ak,m and the parameter Anl,nl(k,m)

we can express the operator as O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m

The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(0)0Ass(0,0)00000Asd(2,0)5000000000
Y(1)10App(0,0)15App(2,0)0000000003527Apf(2,0)1327Apf(4,0)00(13+i3)Apf(4,3)0
Y(1)000App(0,0)+25App(2,0)000000(13+i3)Apf(4,3)3003537Apf(2,0)+4Apf(4,0)32100(13i3)Apf(4,3)3
Y(1)1000App(0,0)15App(2,0)000000(13+i3)Apf(4,3)003527Apf(2,0)1327Apf(4,0)00
Y(2)20000Add(0,0)27Add(2,0)+121Add(4,0)00(13i3)57Add(4,3)00000000
Y(2)100000Add(0,0)+17Add(2,0)421Add(4,0)00(13+i3)57Add(4,3)0000000
Y(2)0Asd(2,0)500000Add(0,0)+27Add(2,0)+27Add(4,0)000000000
Y(2)10000(13+i3)57Add(4,3)00Add(0,0)+17Add(2,0)421Add(4,0)00000000
Y(2)200000(13i3)57Add(4,3)00Add(0,0)27Add(2,0)+121Add(4,0)0000000
Y(3)300(13i3)Apf(4,3)3000000Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)00(111i11)7Aff(4,3)(1014310i143)73Aff(6,3)001013i733Bff(6,6)
Y(3)2000(13i3)Apf(4,3)000000Aff(0,0)733Aff(4,0)+10143Aff(6,0)00(133i33)14Aff(4,3)+(51435i143)42Aff(6,3)00
Y(3)103527Apf(2,0)1327Apf(4,0)000000000Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)00(133+i33)14Aff(4,3)(51435i143)42Aff(6,3)0
Y(3)0003537Apf(2,0)+4Apf(4,0)321000000(111+i11)7Aff(4,3)(10143+10i143)73Aff(6,3)00Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)00(1014310i143)73Aff(6,3)(111i11)7Aff(4,3)
Y(3)10003527Apf(2,0)1327Apf(4,0)000000(133+i33)14Aff(4,3)+(5143+5i143)42Aff(6,3)00Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)00
Y(3)20(13i3)Apf(4,3)000000000(133i33)14Aff(4,3)(5143+5i143)42Aff(6,3)00Aff(0,0)733Aff(4,0)+10143Aff(6,0)0
Y(3)300(13+i3)Apf(4,3)30000001013i733Bff(6,6)00(10143+10i143)73Aff(6,3)(111+i11)7Aff(4,3)00Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)

Rotation matrix to symmetry adapted functions (choice is not unique)

Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
s1000000000000000
pz0010000000000000
px012012000000000000
py0i20i2000000000000
d3z2r20000001000000000
d(xy)(x+y+z)00001312i23012+i23130000000
d2xyxzyz0000i312+i23012i23i30000000
d(xy)(x+y2z)0000161i601+i6160000000
dyz+xz+xy0000i61+i601i6i60000000
f(xy)\(x2+4xy+y2)00000000012+i20000012+i2
f(x+y+z)\(x24xy+y2+2(x+y)z2\z2)00000000013i300530013i3
f(5(x+y)\(x24xy+y2)12\(x2+y2)\z+8\z3)000000000(16i6)5002300(16i6)5
f(x3+5\x2\z5\y2\z+x\(y210yz4\z2))0000000000(12i2)561230123(12+i2)560
f(x2\(y5z)10xyz+y\(y2+5yz4\z2))0000000000(12i2)56i230i23(12+i2)560
f(x3x2\z+y2\z+x\(y2+2yz4\z2))000000000012i26532053212+i260
f(2xyz+x2\(y+z)+y\(y2yz4\z2))000000000012+i2612i53012i5312i260

One particle coupling on a basis of symmetry adapted functions

After rotation we find

s pz px py d3z2r2 d(xy)(x+y+z) d2xyxzyz d(xy)(x+y2z) dyz+xz+xy f(xy)\(x2+4xy+y2) f(x+y+z)\(x24xy+y2+2(x+y)z2\z2) f(5(x+y)\(x24xy+y2)12\(x2+y2)\z+8\z3) f(x3+5\x2\z5\y2\z+x\(y210yz4\z2)) f(x2\(y5z)10xyz+y\(y2+5yz4\z2)) f(x3x2\z+y2\z+x\(y2+2yz4\z2)) f(2xyz+x2\(y+z)+y\(y2yz4\z2))
sAss(0,0)000Asd(2,0)500000000000
pz0App(0,0)+25App(2,0)00000000335Apf(2,0)49521Apf(4,0)4Apf(4,3)932537Apf(2,0)+8Apf(4,0)9212953Apf(4,3)0000
px00App(0,0)15App(2,0)0000000001537Apf(2,0)+Apf(4,0)3211353Apf(4,3)0335Apf(2,0)+13521Apf(4,0)+Apf(4,3)330
py000App(0,0)15App(2,0)0000000001537Apf(2,0)+Apf(4,0)3211353Apf(4,3)0335Apf(2,0)+13521Apf(4,0)+Apf(4,3)33
d3z2r2Asd(2,0)5000Add(0,0)+27Add(2,0)+27Add(4,0)00000000000
d(xy)(x+y+z)00000Add(0,0)17Add(2,0)263Add(4,0)4957Add(4,3)0172Add(2,0)+5632Add(4,0)+19107Add(4,3)00000000
d2xyxzyz000000Add(0,0)17Add(2,0)263Add(4,0)4957Add(4,3)0172Add(2,0)+5632Add(4,0)+19107Add(4,3)0000000
d(xy)(x+y2z)00000172Add(2,0)+5632Add(4,0)+19107Add(4,3)0Add(0,0)19Add(4,0)+4957Add(4,3)00000000
dyz+xz+xy000000172Add(2,0)+5632Add(4,0)+19107Add(4,3)0Add(0,0)19Add(4,0)+4957Add(4,3)0000000
f(xy)\(x2+4xy+y2)000000000Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)1013733Bff(6,6)000000
f(x+y+z)\(x24xy+y2+2(x+y)z2\z2)0335Apf(2,0)49521Apf(4,0)4Apf(4,3)9300000000Aff(0,0)+1499Aff(4,0)89935Aff(4,3)+160Aff(6,0)1287+80353Aff(6,3)1287+40117733Bff(6,6)2Aff(2,0)352995Aff(4,0)2997Aff(4,3)705Aff(6,0)1287+2073Aff(6,3)1287+201173533Bff(6,6)0000
f(5(x+y)\(x24xy+y2)12\(x2+y2)\z+8\z3)02537Apf(2,0)+8Apf(4,0)9212953Apf(4,3)000000002Aff(2,0)352995Aff(4,0)2997Aff(4,3)705Aff(6,0)1287+2073Aff(6,3)1287+201173533Bff(6,6)Aff(0,0)115Aff(2,0)+1399Aff(4,0)+89935Aff(4,3)+125Aff(6,0)128780353Aff(6,3)1287+50117733Bff(6,6)0000
f(x3+5\x2\z5\y2\z+x\(y210yz4\z2))001537Apf(2,0)+Apf(4,0)3211353Apf(4,3)000000000Aff(0,0)+130Aff(2,0)1799Aff(4,0)+29935Aff(4,3)+25858Aff(6,0)+10143353Aff(6,3)0Aff(2,0)65+4995Aff(4,0)+4997Aff(4,3)358585Aff(6,0)+2014373Aff(6,3)0
f(x2\(y5z)10xyz+y\(y2+5yz4\z2))0001537Apf(2,0)+Apf(4,0)3211353Apf(4,3)000000000Aff(0,0)+130Aff(2,0)1799Aff(4,0)+29935Aff(4,3)+25858Aff(6,0)+10143353Aff(6,3)0Aff(2,0)65+4995Aff(4,0)+4997Aff(4,3)358585Aff(6,0)+2014373Aff(6,3)
f(x3x2\z+y2\z+x\(y2+2yz4\z2))00335Apf(2,0)+13521Apf(4,0)+Apf(4,3)33000000000Aff(2,0)65+4995Aff(4,0)+4997Aff(4,3)358585Aff(6,0)+2014373Aff(6,3)0Aff(0,0)+16Aff(2,0)199Aff(4,0)29935Aff(4,3)115858Aff(6,0)10143353Aff(6,3)0
f(2xyz+x2\(y+z)+y\(y2yz4\z2))000335Apf(2,0)+13521Apf(4,0)+Apf(4,3)33000000000Aff(2,0)65+4995Aff(4,0)+4997Aff(4,3)358585Aff(6,0)+2014373Aff(6,3)0Aff(0,0)+16Aff(2,0)199Aff(4,0)29935Aff(4,3)115858Aff(6,0)10143353Aff(6,3)

Coupling for a single shell

Although the parameters Al,l(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al,l(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l and l.

Click on one of the subsections to expand it or

Potential for s orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={Ea1gk=0m=00True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D3d_Z(x-y)_A.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Ea1g, k == 0 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D3d_Z(x-y)_A.Quanty
Akm = {{0, 0, Ea1g} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(0)0
Y(0)0Ea1g

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

s
sEa1g

Rotation matrix used

Rotation matrix used

Y(0)0
s1

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Ea1g
ψ(θ,ϕ)=11 12π
ψ(ˆx,ˆy,ˆz)=11 12π

Potential for p orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={13(Ea2u+2Eeu)k=0m=05(Ea2uEeu)3k=2m=0

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D3d_Z(x-y)_A.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2u + 2*Eeu)/3, k == 0 && m == 0}, {(5*(Ea2u - Eeu))/3, k == 2 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D3d_Z(x-y)_A.Quanty
Akm = {{0, 0, (1/3)*(Ea2u + (2)*(Eeu))} , 
       {2, 0, (5/3)*(Ea2u + (-1)*(Eeu))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(1)1 Y(1)0 Y(1)1
Y(1)1Eeu00
Y(1)00Ea2u0
Y(1)100Eeu

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

pz px py
pzEa2u00
px0Eeu0
py00Eeu

Rotation matrix used

Rotation matrix used

Y(1)1 Y(1)0 Y(1)1
pz010
px12012
pyi20i2

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Ea2u
ψ(θ,ϕ)=11 123πcos(θ)
ψ(ˆx,ˆy,ˆz)=11 123πz
Eeu
ψ(θ,ϕ)=11 123πsin(θ)cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πx
Eeu
ψ(θ,ϕ)=11 123πsin(θ)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πy

Potential for d orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={15(Ea1g+2(Eegπ+Eegσ))k=0m=0Ea1gEegπ22Megk=2m=0(12i2)75(2Eegπ2Eegσ2Meg)k=4m=315(9Ea1g2Eegπ7Eegσ+102Meg)k=4m=0(12i2)75(2Eegπ2Eegσ2Meg)k=4m=3

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D3d_Z(x-y)_A.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea1g + 2*(Eeg\[Pi] + Eeg\[Sigma]))/5, k == 0 && m == 0}, {Ea1g - Eeg\[Pi] - 2*Sqrt[2]*Meg, k == 2 && m == 0}, {(1/2 - I/2)*Sqrt[7/5]*(2*Eeg\[Pi] - 2*Eeg\[Sigma] - Sqrt[2]*Meg), k == 4 && m == -3}, {(9*Ea1g - 2*Eeg\[Pi] - 7*Eeg\[Sigma] + 10*Sqrt[2]*Meg)/5, k == 4 && m == 0}, {(-1/2 - I/2)*Sqrt[7/5]*(2*Eeg\[Pi] - 2*Eeg\[Sigma] - Sqrt[2]*Meg), k == 4 && m == 3}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D3d_Z(x-y)_A.Quanty
Akm = {{0, 0, (1/5)*(Ea1g + (2)*(EegPi + EegSigma))} , 
       {2, 0, Ea1g + (-1)*(EegPi) + (-2)*((sqrt(2))*(Meg))} , 
       {4, 0, (1/5)*((9)*(Ea1g) + (-2)*(EegPi) + (-7)*(EegSigma) + (10)*((sqrt(2))*(Meg)))} , 
       {4, 3, (-1/2+-1/2*I)*((sqrt(7/5))*((2)*(EegPi) + (-2)*(EegSigma) + (-1)*((sqrt(2))*(Meg))))} , 
       {4,-3, (1/2+-1/2*I)*((sqrt(7/5))*((2)*(EegPi) + (-2)*(EegSigma) + (-1)*((sqrt(2))*(Meg))))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
Y(2)213(2Eegπ+Eegσ+22Meg)00(16i6)(2Eegπ+2Eegσ+2Meg)0
Y(2)1013(Eegπ+2Eegσ22Meg)00(16+i6)(2Eegπ+2Eegσ+2Meg)
Y(2)000Ea1g00
Y(2)1(16+i6)(2Eegπ+2Eegσ+2Meg)0013(Eegπ+2Eegσ22Meg)0
Y(2)20(16+i6)(2Eegπ2Eegσ2Meg)0013(2Eegπ+Eegσ+22Meg)

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

d3z2r2 d(xy)(x+y+z) d2xyxzyz d(xy)(x+y2z) dyz+xz+xy
d3z2r2Ea1g0000
d(xy)(x+y+z)0Eegπ0Meg0
d2xyxzyz00Eegπ0Meg
d(xy)(x+y2z)0Meg0Eegσ0
dyz+xz+xy00Meg0Eegσ

Rotation matrix used

Rotation matrix used

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
d3z2r200100
d(xy)(x+y+z)13 \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} 0 -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} \frac{1}{\sqrt{3}}
d_{2\text{xy}-\text{xz}-\text{yz}} \frac{i}{\sqrt{3}} -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} 0 \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} -\frac{i}{\sqrt{3}}
d_{(x-y)(x+y-2z)} \frac{1}{\sqrt{6}} -\frac{1-i}{\sqrt{6}} 0 \frac{1+i}{\sqrt{6}} \frac{1}{\sqrt{6}}
d_{\text{yz}+\text{xz}+\text{xy}} \frac{i}{\sqrt{6}} \frac{1+i}{\sqrt{6}} 0 -\frac{1-i}{\sqrt{6}} -\frac{i}{\sqrt{6}}

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

\text{Ea1g}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right)
\text{Eeg$\pi $}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{5}{2 \pi }} \sin (\theta ) (\cos (\phi )-\sin (\phi )) (\sin (\theta ) (\sin (\phi )+\cos (\phi ))+\cos (\theta ))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{5}{2 \pi }} (x-y) (x+y+z)
\text{Eeg$\pi $}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{5}{2 \pi }} \sin (\theta ) (\sin (\theta ) \sin (2 \phi )-\cos (\theta ) (\sin (\phi )+\cos (\phi )))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{5}{2 \pi }} (2 x y-x z-y z)
\text{Eeg$\sigma $}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{5}{\pi }} \sin (\theta ) (\cos (\phi )-\sin (\phi )) (\sin (\theta ) (\sin (\phi )+\cos (\phi ))-2 \cos (\theta ))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{5}{\pi }} (x-y) (x+y-2 z)
\text{Eeg$\sigma $}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{5}{\pi }} \sin (\theta ) (\sin (\theta ) \sin (\phi ) \cos (\phi )+\cos (\theta ) (\sin (\phi )+\cos (\phi )))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{5}{\pi }} (x (y+z)+y z)

Potential for f orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

A_{k,m} = \begin{cases} \frac{1}{7} (\text{Ea1u}+\text{Ea2u1}+\text{Ea2u2}+2 \text{Eeu1}+2 \text{Eeu2}) & k=0\land m=0 \\ -\frac{5}{28} \left(5 \text{Ea1u}+\text{Ea2u2}-\text{Eeu1}-5 \text{Eeu2}+4 \sqrt{5} \text{Ma2u}-2 \sqrt{5} \text{Meu}\right) & k=2\land m=0 \\ \frac{\left(\frac{1}{2}-\frac{i}{2}\right) \left(2 \sqrt{5} \text{Ea2u1}-2 \sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}+\sqrt{5} \text{Eeu2}+\text{Ma2u}-4 \text{Meu}\right)}{\sqrt{7}} & k=4\land m=-3 \\ \frac{1}{14} \left(9 \text{Ea1u}+14 \text{Ea2u1}+13 \text{Ea2u2}-34 \text{Eeu1}-2 \text{Eeu2}-4 \sqrt{5} \text{Ma2u}+16 \sqrt{5} \text{Meu}\right) & k=4\land m=0 \\ -\frac{\left(\frac{1}{2}+\frac{i}{2}\right) \left(2 \sqrt{5} \text{Ea2u1}-2 \sqrt{5} \text{Ea2u2}-\sqrt{5} \text{Eeu1}+\sqrt{5} \text{Eeu2}+\text{Ma2u}-4 \text{Meu}\right)}{\sqrt{7}} & k=4\land m=3 \\ \frac{13}{60} i \sqrt{\frac{11}{21}} \left(9 \text{Ea1u}-4 \text{Ea2u1}-5 \text{Ea2u2}-4 \sqrt{5} \text{Ma2u}\right) & k=6\land m=-6 \\ -\frac{\left(\frac{13}{60}-\frac{13 i}{60}\right) \left(4 \sqrt{5} \text{Ea2u1}-4 \sqrt{5} \text{Ea2u2}+9 \sqrt{5} \text{Eeu1}-9 \sqrt{5} \text{Eeu2}+2 \text{Ma2u}+36 \text{Meu}\right)}{\sqrt{21}} & k=6\land m=-3 \\ -\frac{13}{420} \left(3 \text{Ea1u}-32 \text{Ea2u1}-25 \text{Ea2u2}-15 \text{Eeu1}+69 \text{Eeu2}+28 \sqrt{5} \text{Ma2u}+42 \sqrt{5} \text{Meu}\right) & k=6\land m=0 \\ \frac{\left(\frac{13}{60}+\frac{13 i}{60}\right) \left(4 \sqrt{5} \text{Ea2u1}-4 \sqrt{5} \text{Ea2u2}+9 \sqrt{5} \text{Eeu1}-9 \sqrt{5} \text{Eeu2}+2 \text{Ma2u}+36 \text{Meu}\right)}{\sqrt{21}} & k=6\land m=3 \\ -\frac{13}{60} i \sqrt{\frac{11}{21}} \left(9 \text{Ea1u}-4 \text{Ea2u1}-5 \text{Ea2u2}-4 \sqrt{5} \text{Ma2u}\right) & k=6\land m=6 \end{cases}

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D3d_Z(x-y)_A.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea1u + Ea2u1 + Ea2u2 + 2*Eeu1 + 2*Eeu2)/7, k == 0 && m == 0}, {(-5*(5*Ea1u + Ea2u2 - Eeu1 - 5*Eeu2 + 4*Sqrt[5]*Ma2u - 2*Sqrt[5]*Meu))/28, k == 2 && m == 0}, {((1/2 - I/2)*(2*Sqrt[5]*Ea2u1 - 2*Sqrt[5]*Ea2u2 - Sqrt[5]*Eeu1 + Sqrt[5]*Eeu2 + Ma2u - 4*Meu))/Sqrt[7], k == 4 && m == -3}, {(9*Ea1u + 14*Ea2u1 + 13*Ea2u2 - 34*Eeu1 - 2*Eeu2 - 4*Sqrt[5]*Ma2u + 16*Sqrt[5]*Meu)/14, k == 4 && m == 0}, {((-1/2 - I/2)*(2*Sqrt[5]*Ea2u1 - 2*Sqrt[5]*Ea2u2 - Sqrt[5]*Eeu1 + Sqrt[5]*Eeu2 + Ma2u - 4*Meu))/Sqrt[7], k == 4 && m == 3}, {((13*I)/60)*Sqrt[11/21]*(9*Ea1u - 4*Ea2u1 - 5*Ea2u2 - 4*Sqrt[5]*Ma2u), k == 6 && m == -6}, {((-13/60 + (13*I)/60)*(4*Sqrt[5]*Ea2u1 - 4*Sqrt[5]*Ea2u2 + 9*Sqrt[5]*Eeu1 - 9*Sqrt[5]*Eeu2 + 2*Ma2u + 36*Meu))/Sqrt[21], k == 6 && m == -3}, {(-13*(3*Ea1u - 32*Ea2u1 - 25*Ea2u2 - 15*Eeu1 + 69*Eeu2 + 28*Sqrt[5]*Ma2u + 42*Sqrt[5]*Meu))/420, k == 6 && m == 0}, {((13/60 + (13*I)/60)*(4*Sqrt[5]*Ea2u1 - 4*Sqrt[5]*Ea2u2 + 9*Sqrt[5]*Eeu1 - 9*Sqrt[5]*Eeu2 + 2*Ma2u + 36*Meu))/Sqrt[21], k == 6 && m == 3}, {((-13*I)/60)*Sqrt[11/21]*(9*Ea1u - 4*Ea2u1 - 5*Ea2u2 - 4*Sqrt[5]*Ma2u), k == 6 && m == 6}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D3d_Z(x-y)_A.Quanty
Akm = {{0, 0, (1/7)*(Ea1u + Ea2u1 + Ea2u2 + (2)*(Eeu1) + (2)*(Eeu2))} , 
       {2, 0, (-5/28)*((5)*(Ea1u) + Ea2u2 + (-1)*(Eeu1) + (-5)*(Eeu2) + (4)*((sqrt(5))*(Ma2u)) + (-2)*((sqrt(5))*(Meu)))} , 
       {4, 0, (1/14)*((9)*(Ea1u) + (14)*(Ea2u1) + (13)*(Ea2u2) + (-34)*(Eeu1) + (-2)*(Eeu2) + (-4)*((sqrt(5))*(Ma2u)) + (16)*((sqrt(5))*(Meu)))} , 
       {4, 3, (-1/2+-1/2*I)*((1/(sqrt(7)))*((2)*((sqrt(5))*(Ea2u1)) + (-2)*((sqrt(5))*(Ea2u2)) + (-1)*((sqrt(5))*(Eeu1)) + (sqrt(5))*(Eeu2) + Ma2u + (-4)*(Meu)))} , 
       {4,-3, (1/2+-1/2*I)*((1/(sqrt(7)))*((2)*((sqrt(5))*(Ea2u1)) + (-2)*((sqrt(5))*(Ea2u2)) + (-1)*((sqrt(5))*(Eeu1)) + (sqrt(5))*(Eeu2) + Ma2u + (-4)*(Meu)))} , 
       {6, 0, (-13/420)*((3)*(Ea1u) + (-32)*(Ea2u1) + (-25)*(Ea2u2) + (-15)*(Eeu1) + (69)*(Eeu2) + (28)*((sqrt(5))*(Ma2u)) + (42)*((sqrt(5))*(Meu)))} , 
       {6,-3, (-13/60+13/60*I)*((1/(sqrt(21)))*((4)*((sqrt(5))*(Ea2u1)) + (-4)*((sqrt(5))*(Ea2u2)) + (9)*((sqrt(5))*(Eeu1)) + (-9)*((sqrt(5))*(Eeu2)) + (2)*(Ma2u) + (36)*(Meu)))} , 
       {6, 3, (13/60+13/60*I)*((1/(sqrt(21)))*((4)*((sqrt(5))*(Ea2u1)) + (-4)*((sqrt(5))*(Ea2u2)) + (9)*((sqrt(5))*(Eeu1)) + (-9)*((sqrt(5))*(Eeu2)) + (2)*(Ma2u) + (36)*(Meu)))} , 
       {6, 6, (-13/60*I)*((sqrt(11/21))*((9)*(Ea1u) + (-4)*(Ea2u1) + (-5)*(Ea2u2) + (-4)*((sqrt(5))*(Ma2u))))} , 
       {6,-6, (13/60*I)*((sqrt(11/21))*((9)*(Ea1u) + (-4)*(Ea2u1) + (-5)*(Ea2u2) + (-4)*((sqrt(5))*(Ma2u))))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-3}^{(3)}} \frac{1}{18} \left(9 \text{Ea1u}+4 \text{Ea2u1}+5 \text{Ea2u2}+4 \sqrt{5} \text{Ma2u}\right) 0 0 \left(-\frac{1}{18}+\frac{i}{18}\right) \left(2 \sqrt{5} \text{Ea2u1}-2 \sqrt{5} \text{Ea2u2}+\text{Ma2u}\right) 0 0 \frac{1}{18} i \left(-9 \text{Ea1u}+4 \text{Ea2u1}+5 \text{Ea2u2}+4 \sqrt{5} \text{Ma2u}\right)
{Y_{-2}^{(3)}} 0 \frac{1}{6} \left(5 \text{Eeu1}+\text{Eeu2}-2 \sqrt{5} \text{Meu}\right) 0 0 -\frac{1}{6} (-1)^{3/4} \left(\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+4 \text{Meu}\right) 0 0
{Y_{-1}^{(3)}} 0 0 \frac{1}{6} \left(\text{Eeu1}+5 \text{Eeu2}+2 \sqrt{5} \text{Meu}\right) 0 0 \frac{1}{6} (-1)^{3/4} \left(\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+4 \text{Meu}\right) 0
{Y_{0}^{(3)}} \left(-\frac{1}{18}-\frac{i}{18}\right) \left(2 \sqrt{5} \text{Ea2u1}-2 \sqrt{5} \text{Ea2u2}+\text{Ma2u}\right) 0 0 \frac{1}{9} \left(5 \text{Ea2u1}+4 \text{Ea2u2}-4 \sqrt{5} \text{Ma2u}\right) 0 0 \left(\frac{1}{18}-\frac{i}{18}\right) \left(2 \sqrt{5} \text{Ea2u1}-2 \sqrt{5} \text{Ea2u2}+\text{Ma2u}\right)
{Y_{1}^{(3)}} 0 \frac{1}{6} \sqrt[4]{-1} \left(\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+4 \text{Meu}\right) 0 0 \frac{1}{6} \left(\text{Eeu1}+5 \text{Eeu2}+2 \sqrt{5} \text{Meu}\right) 0 0
{Y_{2}^{(3)}} 0 0 -\frac{1}{6} \sqrt[4]{-1} \left(\sqrt{5} \text{Eeu1}-\sqrt{5} \text{Eeu2}+4 \text{Meu}\right) 0 0 \frac{1}{6} \left(5 \text{Eeu1}+\text{Eeu2}-2 \sqrt{5} \text{Meu}\right) 0
{Y_{3}^{(3)}} -\frac{1}{18} i \left(-9 \text{Ea1u}+4 \text{Ea2u1}+5 \text{Ea2u2}+4 \sqrt{5} \text{Ma2u}\right) 0 0 \left(\frac{1}{18}+\frac{i}{18}\right) \left(2 \sqrt{5} \text{Ea2u1}-2 \sqrt{5} \text{Ea2u2}+\text{Ma2u}\right) 0 0 \frac{1}{18} \left(9 \text{Ea1u}+4 \text{Ea2u1}+5 \text{Ea2u2}+4 \sqrt{5} \text{Ma2u}\right)

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} f_{(x+y+z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2+2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.-\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z+8\left\backslash z^3\right.\right)} f_{\left(x^3+\left.5\left\backslash x^2\right.\right\backslash z-\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2-10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} f_{\left(\left.x^2\right\backslash (y-5\backslash z)-10\backslash x\backslash y\backslash z+y\left\backslash \left(y^2+5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} f_{\left(x^3-\left.x^2\right\backslash z+\left.y^2\right\backslash z+x\left\backslash \left(y^2+2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} f_{\left(2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y+z)+y\left\backslash \left(y^2-y\backslash z-4\left\backslash z^2\right.\right)\right.\right)}
f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} \text{Ea1u} 0 0 0 0 0 0
f_{(x+y+z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2+2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} 0 \text{Ea2u1} \text{Ma2u} 0 0 0 0
f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.-\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z+8\left\backslash z^3\right.\right)} 0 \text{Ma2u} \text{Ea2u2} 0 0 0 0
f_{\left(x^3+\left.5\left\backslash x^2\right.\right\backslash z-\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2-10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 0 0 \text{Eeu1} 0 \text{Meu} 0
f_{\left(\left.x^2\right\backslash (y-5\backslash z)-10\backslash x\backslash y\backslash z+y\left\backslash \left(y^2+5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 0 0 0 \text{Eeu1} 0 \text{Meu}
f_{\left(x^3-\left.x^2\right\backslash z+\left.y^2\right\backslash z+x\left\backslash \left(y^2+2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 0 0 \text{Meu} 0 \text{Eeu2} 0
f_{\left(2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y+z)+y\left\backslash \left(y^2-y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 0 0 0 \text{Meu} 0 \text{Eeu2}

Rotation matrix used

Rotation matrix used

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} \frac{1}{2}+\frac{i}{2} 0 0 0 0 0 -\frac{1}{2}+\frac{i}{2}
f_{(x+y+z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2+2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} \frac{1}{3}-\frac{i}{3} 0 0 -\frac{\sqrt{5}}{3} 0 0 -\frac{1}{3}-\frac{i}{3}
f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.-\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z+8\left\backslash z^3\right.\right)} \left(\frac{1}{6}-\frac{i}{6}\right) \sqrt{5} 0 0 \frac{2}{3} 0 0 \left(-\frac{1}{6}-\frac{i}{6}\right) \sqrt{5}
f_{\left(x^3+\left.5\left\backslash x^2\right.\right\backslash z-\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2-10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 \left(\frac{1}{2}-\frac{i}{2}\right) \sqrt{\frac{5}{6}} -\frac{1}{2 \sqrt{3}} 0 \frac{1}{2 \sqrt{3}} \left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{\frac{5}{6}} 0
f_{\left(\left.x^2\right\backslash (y-5\backslash z)-10\backslash x\backslash y\backslash z+y\left\backslash \left(y^2+5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 \left(-\frac{1}{2}-\frac{i}{2}\right) \sqrt{\frac{5}{6}} -\frac{i}{2 \sqrt{3}} 0 -\frac{i}{2 \sqrt{3}} \left(-\frac{1}{2}+\frac{i}{2}\right) \sqrt{\frac{5}{6}} 0
f_{\left(x^3-\left.x^2\right\backslash z+\left.y^2\right\backslash z+x\left\backslash \left(y^2+2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 -\frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{6}} -\frac{\sqrt{\frac{5}{3}}}{2} 0 \frac{\sqrt{\frac{5}{3}}}{2} -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{6}} 0
f_{\left(2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y+z)+y\left\backslash \left(y^2-y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} 0 \frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{6}} -\frac{1}{2} i \sqrt{\frac{5}{3}} 0 -\frac{1}{2} i \sqrt{\frac{5}{3}} \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{6}} 0

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

\text{Ea1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{35}{\pi }} \sin ^3(\theta ) (\sin (3 \phi )+\cos (3 \phi ))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{35}{\pi }} \left(x^3+3 x^2 y-3 x y^2-y^3\right)
\text{Ea2u1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \left(\frac{1}{24}+\frac{i}{24}\right) \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \left(e^{6 i \phi } \sin ^3(\theta )-(1-i) e^{3 i \phi } \cos (\theta ) \left(5 \cos ^2(\theta )-3\right)-i \sin ^3(\theta )\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{12} \sqrt{\frac{35}{\pi }} \left(x^3-3 x^2 y-3 x y^2+y^3-5 z^3+3 z\right)
\text{Ea2u2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \left(\frac{1}{48}+\frac{i}{48}\right) \sqrt{\frac{7}{\pi }} e^{-3 i \phi } \left(5 \left(e^{6 i \phi }-i\right) \sin ^3(\theta )+(2-2 i) e^{3 i \phi } \cos (\theta ) (5 \cos (2 \theta )-1)\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{24} \sqrt{\frac{7}{\pi }} \left(5 x^3-15 x^2 y-15 x y^2+5 y^3+4 z \left(5 z^2-3\right)\right)
\text{Eeu1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) ((5 \cos (2 \theta )+3) \cos (\phi )+5 \sin (2 \theta ) (\sin (2 \phi )-\cos (2 \phi )))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{7}{\pi }} \left(5 x^2 z-10 x y z-5 x z^2+x-5 y^2 z\right)
\text{Eeu1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) ((5 \cos (2 \theta )+3) \sin (\phi )+5 \sin (2 \theta ) (\sin (2 \phi )+\cos (2 \phi )))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{7}{\pi }} \left(-5 x^2 z-10 x y z+5 y^2 z-5 y z^2+y\right)
\text{Eeu2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) ((5 \cos (2 \theta )+3) \cos (\phi )+\sin (2 \theta ) (\cos (2 \phi )-\sin (2 \phi )))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{35}{\pi }} \left(x^2 (-z)+2 x y z-5 x z^2+x+y^2 z\right)
\text{Eeu2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) (\sin (2 \theta ) (\sin (2 \phi )+\cos (2 \phi ))-(5 \cos (2 \theta )+3) \sin (\phi ))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{35}{\pi }} \left(x^2 z+2 x y z-y^2 z-5 y z^2+y\right)

Coupling between two shells

Click on one of the subsections to expand it or

Potential for s-d orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

A_{k,m} = \begin{cases} 0 & k\neq 2\lor m\neq 0 \\ \sqrt{5} \text{Ma1g} & \text{True} \end{cases}

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D3d_Z(x-y)_A.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, Sqrt[5]*Ma1g]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D3d_Z(x-y)_A.Quanty
Akm = {{2, 0, (sqrt(5))*(Ma1g)} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{0}^{(0)}} 0 0 \text{Ma1g} 0 0

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

d_{3z^2-r^2} d_{(x-y)(x+y+z)} d_{2\text{xy}-\text{xz}-\text{yz}} d_{(x-y)(x+y-2z)} d_{\text{yz}+\text{xz}+\text{xy}}
\text{s} \text{Ma1g} 0 0 0 0

Potential for p-f orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

A_{k,m} = \begin{cases} 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -3\land m\neq 0\land m\neq 3) \\ \frac{5 \left(\sqrt{5} \text{Ma2u1}+4 \text{Ma2u2}-4 \text{Meu1}\right)}{\sqrt{21}} & k=2\land m=0 \\ \left(\frac{1}{2}-\frac{i}{2}\right) \sqrt{3} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) & k=4\land m=-3 \\ -\frac{1}{2} \sqrt{\frac{3}{7}} \left(8 \sqrt{5} \text{Ma2u1}+11 \text{Ma2u2}-18 \text{Meu1}\right) & k=4\land m=0 \\ \left(-\frac{1}{2}-\frac{i}{2}\right) \sqrt{3} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) & \text{True} \end{cases}

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D3d_Z(x-y)_A.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || m != 0)) || (m != -3 && m != 0 && m != 3)}, {(5*(Sqrt[5]*Ma2u1 + 4*Ma2u2 - 4*Meu1))/Sqrt[21], k == 2 && m == 0}, {(1/2 - I/2)*Sqrt[3]*(2*Ma2u1 + Sqrt[5]*Ma2u2), k == 4 && m == -3}, {-(Sqrt[3/7]*(8*Sqrt[5]*Ma2u1 + 11*Ma2u2 - 18*Meu1))/2, k == 4 && m == 0}}, (-1/2 - I/2)*Sqrt[3]*(2*Ma2u1 + Sqrt[5]*Ma2u2)]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D3d_Z(x-y)_A.Quanty
Akm = {{2, 0, (5)*((1/(sqrt(21)))*((sqrt(5))*(Ma2u1) + (4)*(Ma2u2) + (-4)*(Meu1)))} , 
       {4, 0, (-1/2)*((sqrt(3/7))*((8)*((sqrt(5))*(Ma2u1)) + (11)*(Ma2u2) + (-18)*(Meu1)))} , 
       {4, 3, (-1/2+-1/2*I)*((sqrt(3))*((2)*(Ma2u1) + (sqrt(5))*(Ma2u2)))} , 
       {4,-3, (1/2+-1/2*I)*((sqrt(3))*((2)*(Ma2u1) + (sqrt(5))*(Ma2u2)))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} 0 0 \frac{2 \sqrt{5} \text{Ma2u1}+5 \text{Ma2u2}-6 \text{Meu1}}{\sqrt{6}} 0 0 \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,3\right] 0
{Y_{0}^{(1)}} \left(\frac{1}{6}+\frac{i}{6}\right) \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) 0 0 \frac{1}{3} \left(2 \text{Ma2u2}-\sqrt{5} \text{Ma2u1}\right) 0 0 \left(-\frac{1}{6}+\frac{i}{6}\right) \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right)
{Y_{1}^{(1)}} 0 \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,1\right] 0 0 \frac{2 \sqrt{5} \text{Ma2u1}+5 \text{Ma2u2}-6 \text{Meu1}}{\sqrt{6}} 0 0

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} f_{(x+y+z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2+2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.-\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z+8\left\backslash z^3\right.\right)} f_{\left(x^3+\left.5\left\backslash x^2\right.\right\backslash z-\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2-10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} f_{\left(\left.x^2\right\backslash (y-5\backslash z)-10\backslash x\backslash y\backslash z+y\left\backslash \left(y^2+5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} f_{\left(x^3-\left.x^2\right\backslash z+\left.y^2\right\backslash z+x\left\backslash \left(y^2+2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} f_{\left(2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y+z)+y\left\backslash \left(y^2-y\backslash z-4\left\backslash z^2\right.\right)\right.\right)}
p_z 0 \text{Ma2u1} \text{Ma2u2} 0 0 0 0
p_x 0 0 0 \left(\frac{1}{12}+\frac{i}{12}\right) \left(\sqrt{15} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,3\right]+i \sqrt{15} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,1\right]-(1-i) \left(2 \sqrt{5} \text{Ma2u1}+5 \text{Ma2u2}-6 \text{Meu1}\right)\right) \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \left(\text{Root}\left[36 \text{\#$1}^4+1$,1\right]+i \text{Root}\left[36 \text{\#$1}^4+1$,3\right]\right) \left(\frac{1}{12}+\frac{i}{12}\right) \left(-\sqrt{3} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,3\right]-i \sqrt{3} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,1\right]-(1-i) \sqrt{5} \left(2 \sqrt{5} \text{Ma2u1}+5 \text{Ma2u2}-6 \text{Meu1}\right)\right) -\frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \left(\text{Root}\left[36 \text{\#$1}^4+1$,1\right]+i \text{Root}\left[36 \text{\#$1}^4+1$,3\right]\right)}{\sqrt{3}}
p_y 0 0 0 \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \left(\text{Root}\left[36 \text{\#$1}^4+1$,1\right]+i \text{Root}\left[36 \text{\#$1}^4+1$,3\right]\right) \left(\frac{1}{12}+\frac{i}{12}\right) \left(\sqrt{15} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,3\right]+i \sqrt{15} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,1\right]-(1-i) \left(2 \sqrt{5} \text{Ma2u1}+5 \text{Ma2u2}-6 \text{Meu1}\right)\right) \frac{\left(\frac{1}{4}+\frac{i}{4}\right) \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \left(\text{Root}\left[36 \text{\#$1}^4+1$,1\right]+i \text{Root}\left[36 \text{\#$1}^4+1$,3\right]\right)}{\sqrt{3}} \left(\frac{1}{12}+\frac{i}{12}\right) \left(-\sqrt{3} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,3\right]-i \sqrt{3} \left(2 \text{Ma2u1}+\sqrt{5} \text{Ma2u2}\right) \text{Root}\left[36 \text{\#$1}^4+1$,1\right]-(1-i) \sqrt{5} \left(2 \sqrt{5} \text{Ma2u1}+5 \text{Ma2u2}-6 \text{Meu1}\right)\right)

Table of several point groups

Return to Main page on Point Groups

Nonaxial groups C1 Cs Ci
Cn groups C2 C3 C4 C5 C6 C7 C8
Dn groups D2 D3 D4 D5 D6 D7 D8
Cnv groups C2v C3v C4v C5v C6v C7v C8v
Cnh groups C2h C3h C4h C5h C6h
Dnh groups D2h D3h D4h D5h D6h D7h D8h
Dnd groups D2d D3d D4d D5d D6d D7d D8d
Sn groups S2 S4 S6 S8 S10 S12
Cubic groups T Th Td O Oh I Ih
Linear groups C\inftyv D\inftyh

Print/export