Loading [MathJax]/jax/output/CommonHTML/jax.js

Orientation Z

Symmetry Operations

In the S6 Point Group, with orientation Z there are the following symmetry operations

Operator Orientation
E {0,0,0} ,
C3 {0,0,1} , {0,0,1} ,
i {0,0,0} ,
S6 {0,0,1} , {0,0,1} ,

Different Settings

Character Table

E(1) C3(2) i(1) S6(2)
Ag 1 1 1 1
Eg 2 1 2 1
Au 1 1 1 1
Eu 2 1 2 1

Product Table

Ag Eg Au Eu
Ag Ag Eg Au Eu
Eg Eg 2Ag+Eg Eu 2Au+Eu
Au Au Eu Ag Eg
Eu Eu 2Au+Eu Eg 2Ag+Eg

Sub Groups with compatible settings

Super Groups with compatible settings

Invariant Potential expanded on renormalized spherical Harmonics

Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the S6 Point group with orientation Z the form of the expansion coefficients is:

Expansion

Ak,m={A(0,0)k=0m=0A(2,0)k=2m=0A(4,3)+iB(4,3)k=4m=3A(4,0)k=4m=0A(4,3)+iB(4,3)k=4m=3A(6,6)iB(6,6)k=6m=6A(6,3)+iB(6,3)k=6m=3A(6,0)k=6m=0A(6,3)+iB(6,3)k=6m=3A(6,6)+iB(6,6)k=6m=6

Input format suitable for Mathematica (Quanty.nb)

Akm_S6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {-A[4, 3] + I*B[4, 3], k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}, {A[4, 3] + I*B[4, 3], k == 4 && m == 3}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {-A[6, 3] + I*B[6, 3], k == 6 && m == -3}, {A[6, 0], k == 6 && m == 0}, {A[6, 3] + I*B[6, 3], k == 6 && m == 3}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]

Input format suitable for Quanty

Akm_S6_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {2, 0, A(2,0)} , 
       {4, 0, A(4,0)} , 
       {4,-3, (-1)*(A(4,3)) + (I)*(B(4,3))} , 
       {4, 3, A(4,3) + (I)*(B(4,3))} , 
       {6, 0, A(6,0)} , 
       {6,-3, (-1)*(A(6,3)) + (I)*(B(6,3))} , 
       {6, 3, A(6,3) + (I)*(B(6,3))} , 
       {6,-6, A(6,6) + (-I)*(B(6,6))} , 
       {6, 6, A(6,6) + (I)*(B(6,6))} }

One particle coupling on a basis of spherical harmonics

The operator representing the potential in second quantisation is given as: O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l Note the difference between the function Ak,m and the parameter Anl,nl(k,m)

we can express the operator as O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m

The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(0)0Ass(0,0)00000Asd(2,0)5000000000
Y(1)10App(0,0)15App(2,0)0000000003527Apf(2,0)1327Apf(4,0)0013(Apf(4,3)+iBpf(4,3))0
Y(1)000App(0,0)+25App(2,0)000000Apf(4,3)+iBpf(4,3)33003537Apf(2,0)+4Apf(4,0)32100Apf(4,3)+iBpf(4,3)33
Y(1)1000App(0,0)15App(2,0)00000013(Apf(4,3)+iBpf(4,3))003527Apf(2,0)1327Apf(4,0)00
Y(2)20000Add(0,0)27Add(2,0)+121Add(4,0)001357(Add(4,3)+iBdd(4,3))00000000
Y(2)100000Add(0,0)+17Add(2,0)421Add(4,0)001357(Add(4,3)+iBdd(4,3))0000000
Y(2)0Asd(2,0)500000Add(0,0)+27Add(2,0)+27Add(4,0)000000000
Y(2)100001357(Add(4,3)+iBdd(4,3))00Add(0,0)+17Add(2,0)421Add(4,0)00000000
Y(2)2000001357(Add(4,3)+iBdd(4,3))00Add(0,0)27Add(2,0)+121Add(4,0)0000000
Y(3)300Apf(4,3)+iBpf(4,3)33000000Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)001014373(Aff(6,3)+iBff(6,3))1117(Aff(4,3)+iBff(4,3))001013733(Aff(6,6)iBff(6,6))
Y(3)200013(Apf(4,3)iBpf(4,3))000000Aff(0,0)733Aff(4,0)+10143Aff(6,0)0013314(Aff(4,3)+iBff(4,3))514342(Aff(6,3)+iBff(6,3))00
Y(3)103527Apf(2,0)1327Apf(4,0)000000000Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)0013314(Aff(4,3)+iBff(4,3))+514342(Aff(6,3)+iBff(6,3))0
Y(3)0003537Apf(2,0)+4Apf(4,0)3210000001117(Aff(4,3)+iBff(4,3))1014373(Aff(6,3)+iBff(6,3))00Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)001117(Aff(4,3)+iBff(4,3))1014373(Aff(6,3)+iBff(6,3))
Y(3)10003527Apf(2,0)1327Apf(4,0)00000013314(Aff(4,3)+iBff(4,3))+514342(Aff(6,3)+iBff(6,3))00Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)00
Y(3)2013(Apf(4,3)iBpf(4,3))00000000013314(Aff(4,3)+iBff(4,3))514342(Aff(6,3)+iBff(6,3))00Aff(0,0)733Aff(4,0)+10143Aff(6,0)0
Y(3)300Apf(4,3)+iBpf(4,3)330000001013733(Aff(6,6)+iBff(6,6))001014373(Aff(6,3)+iBff(6,3))1117(Aff(4,3)+iBff(4,3))00Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)

Rotation matrix to symmetry adapted functions (choice is not unique)

Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
s1000000000000000
py0i20i2000000000000
pz0010000000000000
px012012000000000000
dxy0000i2000i20000000
dyz00000i20i200000000
d3z2r20000001000000000
dxz000001201200000000
dx2y2000012000120000000
fy(3x2y2)000000000i200000i2
fxyz0000000000i2000i20
fy(5z2r2)00000000000i20i200
fz(5z23r2)0000000000001000
fx(5z2r2)000000000001201200
fz(x2y2)000000000012000120
fx(x23y2)000000000120000012

One particle coupling on a basis of symmetry adapted functions

After rotation we find

s py pz px dxy dyz d3z2r2 dxz dx2y2 fy(3x2y2) fxyz fy(5z2r2) fz(5z23r2) fx(5z2r2) fz(x2y2) fx(x23y2)
sAss(0,0)00000Asd(2,0)5000000000
py0App(0,0)15App(2,0)0000000013Apf(4,3)3527Apf(2,0)1327Apf(4,0)0013Bpf(4,3)0
pz00App(0,0)+25App(2,0)0000001323Bpf(4,3)003537Apf(2,0)+4Apf(4,0)321001323Apf(4,3)
px000App(0,0)15App(2,0)00000013Bpf(4,3)003527Apf(2,0)1327Apf(4,0)13Apf(4,3)0
dxy0000Add(0,0)27Add(2,0)+121Add(4,0)1357Add(4,3)01357Bdd(4,3)00000000
dyz00001357Add(4,3)Add(0,0)+17Add(2,0)421Add(4,0)001357Bdd(4,3)0000000
d3z2r2Asd(2,0)500000Add(0,0)+27Add(2,0)+27Add(4,0)000000000
dxz00001357Bdd(4,3)00Add(0,0)+17Add(2,0)421Add(4,0)1357Add(4,3)0000000
dx2y2000001357Bdd(4,3)01357Add(4,3)Add(0,0)27Add(2,0)+121Add(4,0)0000000
fy(3x2y2)001323Bpf(4,3)000000Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)1013733Aff(6,6)0010143143Bff(6,3)11114Bff(4,3)001013733Bff(6,6)
fxyz013Apf(4,3)013Bpf(4,3)000000Aff(0,0)733Aff(4,0)+10143Aff(6,0)13314Aff(4,3)+514342Aff(6,3)013314Bff(4,3)+514342Bff(6,3)00
fy(5z2r2)03527Apf(2,0)1327Apf(4,0)0000000013314Aff(4,3)+514342Aff(6,3)Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)0013314Bff(4,3)+514342Bff(6,3)0
fz(5z23r2)003537Apf(2,0)+4Apf(4,0)32100000010143143Bff(6,3)11114Bff(4,3)00Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)0011114Aff(4,3)10143143Aff(6,3)
fx(5z2r2)0003527Apf(2,0)1327Apf(4,0)00000013314Bff(4,3)+514342Bff(6,3)00Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)13314Aff(4,3)514342Aff(6,3)0
fz(x2y2)013Bpf(4,3)013Apf(4,3)000000013314Bff(4,3)+514342Bff(6,3)013314Aff(4,3)514342Aff(6,3)Aff(0,0)733Aff(4,0)+10143Aff(6,0)0
fx(x23y2)001323Apf(4,3)0000001013733Bff(6,6)0011114Aff(4,3)10143143Aff(6,3)00Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)+1013733Aff(6,6)

Coupling for a single shell

Although the parameters Al,l(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al,l(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l and l.

Click on one of the subsections to expand it or

Potential for s orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={Eagk=0m=00True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_S6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Eag, k == 0 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_S6_Z.Quanty
Akm = {{0, 0, Eag} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(0)0
Y(0)0Eag

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

s
sEag

Rotation matrix used

Rotation matrix used

Y(0)0
s1

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eag
ψ(θ,ϕ)=11 12π
ψ(ˆx,ˆy,ˆz)=11 12π

Potential for p orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={13(Eau+2Eeu)k=0m=05(EauEeu)3k=2m=0

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_S6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Eau + 2*Eeu)/3, k == 0 && m == 0}, {(5*(Eau - Eeu))/3, k == 2 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_S6_Z.Quanty
Akm = {{0, 0, (1/3)*(Eau + (2)*(Eeu))} , 
       {2, 0, (5/3)*(Eau + (-1)*(Eeu))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(1)1 Y(1)0 Y(1)1
Y(1)1Eeu00
Y(1)00Eau0
Y(1)100Eeu

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

py pz px
pyEeu00
pz0Eau0
px00Eeu

Rotation matrix used

Rotation matrix used

Y(1)1 Y(1)0 Y(1)1
pyi20i2
pz010
px12012

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eeu
ψ(θ,ϕ)=11 123πsin(θ)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πy
Eau
ψ(θ,ϕ)=11 123πcos(θ)
ψ(ˆx,ˆy,ˆz)=11 123πz
Eeu
ψ(θ,ϕ)=11 123πsin(θ)cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πx

Potential for d orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={15(Eag+2(Eeu1+Eeu2))k=0m=0Eag+Eeu12Eeu2k=2m=0375(Meu1iMeu2)k=4m=335(3Eag4Eeu1+Eeu2)k=4m=0375(Meu1+iMeu2)k=4m=3

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_S6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Eag + 2*(Eeu1 + Eeu2))/5, k == 0 && m == 0}, {Eag + Eeu1 - 2*Eeu2, k == 2 && m == 0}, {-3*Sqrt[7/5]*(Meu1 - I*Meu2), k == 4 && m == -3}, {(3*(3*Eag - 4*Eeu1 + Eeu2))/5, k == 4 && m == 0}, {3*Sqrt[7/5]*(Meu1 + I*Meu2), k == 4 && m == 3}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_S6_Z.Quanty
Akm = {{0, 0, (1/5)*(Eag + (2)*(Eeu1 + Eeu2))} , 
       {2, 0, Eag + Eeu1 + (-2)*(Eeu2)} , 
       {4, 0, (3/5)*((3)*(Eag) + (-4)*(Eeu1) + Eeu2)} , 
       {4,-3, (-3)*((sqrt(7/5))*(Meu1 + (-I)*(Meu2)))} , 
       {4, 3, (3)*((sqrt(7/5))*(Meu1 + (I)*(Meu2)))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
Y(2)2Eeu200Meu1iMeu20
Y(2)10Eeu100Meu1+iMeu2
Y(2)000Eag00
Y(2)1Meu1+iMeu200Eeu10
Y(2)20Meu1iMeu200Eeu2

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

dxy dyz d3z2r2 dxz dx2y2
dxyEeu2Meu10Meu20
dyzMeu1Eeu100Meu2
d3z2r200Eag00
dxzMeu200Eeu1Meu1
dx2y20Meu20Meu1Eeu2

Rotation matrix used

Rotation matrix used

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
dxyi2000i2
dyz0i20i20
d3z2r200100
dxz0120120
dx2y21200012

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eeu2
ψ(θ,ϕ)=11 1415πsin2(θ)sin(2ϕ)
ψ(ˆx,ˆy,ˆz)=11 1215πxy
Eeu1
ψ(θ,ϕ)=11 1415πsin(2θ)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 1215πyz
Eag
ψ(θ,ϕ)=11 185π(3cos(2θ)+1)
ψ(ˆx,ˆy,ˆz)=11 145π(3z21)
Eeu1
ψ(θ,ϕ)=11 1415πsin(2θ)cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 1215πxz
Eeu2
ψ(θ,ϕ)=11 1415πsin2(θ)cos(2ϕ)
ψ(ˆx,ˆy,ˆz)=11 1415π(x2y2)

Potential for f orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={17(Eau1+Eau2+Eau3+2Eeu1+2Eeu2)k=0m=0528(5Eau14Eau2+5Eau36Eeu1)k=2m=09iMau129Mau236Meu1+6iMeu214k=4m=3314(3Eau1+6Eau2+3Eau3+2Eeu114Eeu2)k=4m=09iMau12+9Mau23+6Meu1+6iMeu214k=4m=31320337(Eau1Eau32iMau13)k=6m=6135314(iMau12+Mau233Meu1+3iMeu2)k=6m=313140(Eau120Eau2+Eau3+30Eeu112Eeu2)k=6m=0135314(iMau12Mau23+3Meu1+3iMeu2)k=6m=31320337(Eau1Eau3+2iMau13)k=6m=6

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_S6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Eau1 + Eau2 + Eau3 + 2*Eeu1 + 2*Eeu2)/7, k == 0 && m == 0}, {(-5*(5*Eau1 - 4*Eau2 + 5*Eau3 - 6*Eeu1))/28, k == 2 && m == 0}, {((-9*I)*Mau12 - 9*Mau23 - 6*Meu1 + (6*I)*Meu2)/Sqrt[14], k == 4 && m == -3}, {(3*(3*Eau1 + 6*Eau2 + 3*Eau3 + 2*Eeu1 - 14*Eeu2))/14, k == 4 && m == 0}, {((-9*I)*Mau12 + 9*Mau23 + 6*Meu1 + (6*I)*Meu2)/Sqrt[14], k == 4 && m == 3}, {(-13*Sqrt[33/7]*(Eau1 - Eau3 - (2*I)*Mau13))/20, k == 6 && m == -6}, {(13*Sqrt[3/14]*(I*Mau12 + Mau23 - 3*Meu1 + (3*I)*Meu2))/5, k == 6 && m == -3}, {(-13*(Eau1 - 20*Eau2 + Eau3 + 30*Eeu1 - 12*Eeu2))/140, k == 6 && m == 0}, {(13*Sqrt[3/14]*(I*Mau12 - Mau23 + 3*Meu1 + (3*I)*Meu2))/5, k == 6 && m == 3}, {(-13*Sqrt[33/7]*(Eau1 - Eau3 + (2*I)*Mau13))/20, k == 6 && m == 6}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_S6_Z.Quanty
Akm = {{0, 0, (1/7)*(Eau1 + Eau2 + Eau3 + (2)*(Eeu1) + (2)*(Eeu2))} , 
       {2, 0, (-5/28)*((5)*(Eau1) + (-4)*(Eau2) + (5)*(Eau3) + (-6)*(Eeu1))} , 
       {4, 0, (3/14)*((3)*(Eau1) + (6)*(Eau2) + (3)*(Eau3) + (2)*(Eeu1) + (-14)*(Eeu2))} , 
       {4,-3, (1/(sqrt(14)))*((-9*I)*(Mau12) + (-9)*(Mau23) + (-6)*(Meu1) + (6*I)*(Meu2))} , 
       {4, 3, (1/(sqrt(14)))*((-9*I)*(Mau12) + (9)*(Mau23) + (6)*(Meu1) + (6*I)*(Meu2))} , 
       {6, 0, (-13/140)*(Eau1 + (-20)*(Eau2) + Eau3 + (30)*(Eeu1) + (-12)*(Eeu2))} , 
       {6, 3, (13/5)*((sqrt(3/14))*((I)*(Mau12) + (-1)*(Mau23) + (3)*(Meu1) + (3*I)*(Meu2)))} , 
       {6,-3, (13/5)*((sqrt(3/14))*((I)*(Mau12) + Mau23 + (-3)*(Meu1) + (3*I)*(Meu2)))} , 
       {6,-6, (-13/20)*((sqrt(33/7))*(Eau1 + (-1)*(Eau3) + (-2*I)*(Mau13)))} , 
       {6, 6, (-13/20)*((sqrt(33/7))*(Eau1 + (-1)*(Eau3) + (2*I)*(Mau13)))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(3)3Eau1+Eau3200Mau23+iMau1220012(Eau1Eau32iMau13)
Y(3)20Eeu200Meu1iMeu200
Y(3)100Eeu100Meu1+iMeu20
Y(3)0Mau23iMau12200Eau200Mau23iMau122
Y(3)10Meu1+iMeu200Eeu100
Y(3)200Meu1iMeu200Eeu20
Y(3)312(Eau1Eau3+2iMau13)00i(Mau12+iMau23)200Eau1+Eau32

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

fy(3x2y2) fxyz fy(5z2r2) fz(5z23r2) fx(5z2r2) fz(x2y2) fx(x23y2)
fy(3x2y2)Eau100Mau1200Mau13
fxyz0Eeu2Meu10Meu200
fy(5z2r2)0Meu1Eeu100Meu20
fz(5z23r2)Mau1200Eau200Mau23
fx(5z2r2)0Meu200Eeu1Meu10
fz(x2y2)00Meu20Meu1Eeu20
fx(x23y2)Mau1300Mau2300Eau3

Rotation matrix used

Rotation matrix used

Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
fy(3x2y2)i200000i2
fxyz0i2000i20
fy(5z2r2)00i20i200
fz(5z23r2)0001000
fx(5z2r2)001201200
fz(x2y2)012000120
fx(x23y2)120000012

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eau1
ψ(θ,ϕ)=11 14352πsin3(θ)sin(3ϕ)
ψ(ˆx,ˆy,ˆz)=11 14352πy(y23x2)
Eeu2
ψ(θ,ϕ)=11 14105πsin2(θ)cos(θ)sin(2ϕ)
ψ(ˆx,ˆy,ˆz)=11 12105πxyz
Eeu1
ψ(θ,ϕ)=11 18212πsin(θ)(5cos(2θ)+3)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 14212πy(5z21)
Eau2
ψ(θ,ϕ)=11 1167π(3cos(θ)+5cos(3θ))
ψ(ˆx,ˆy,ˆz)=11 147πz(5z23)
Eeu1
ψ(θ,ϕ)=11 116212π(sin(θ)+5sin(3θ))cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 14212πx(5z21)
Eeu2
ψ(θ,ϕ)=11 14105πsin2(θ)cos(θ)cos(2ϕ)
ψ(ˆx,ˆy,ˆz)=11 14105πz(x2y2)
Eau3
ψ(θ,ϕ)=11 14352πsin3(θ)cos(3ϕ)
ψ(ˆx,ˆy,ˆz)=11 14352πx(x23y2)

Coupling between two shells

Click on one of the subsections to expand it or

Potential for s-d orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={0k2m05MagTrue

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_S6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, Sqrt[5]*Mag]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_S6_Z.Quanty
Akm = {{2, 0, (sqrt(5))*(Mag)} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
Y(0)000Mag00

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

dxy dyz d3z2r2 dxz dx2y2
s00Mag00

Potential for p-f orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={0(k4(k2m0))(m3m0m3)521(21Mau2+214Meu)k=2m=0332(Mau3+iMau1)k=4m=3337Mau29Meu14k=4m=03i32(Mau1+iMau3)True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_S6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || m != 0)) || (m != -3 && m != 0 && m != 3)}, {(5*(Sqrt[21]*Mau2 + 2*Sqrt[14]*Meu))/21, k == 2 && m == 0}, {3*Sqrt[3/2]*(I*Mau1 + Mau3), k == 4 && m == -3}, {3*Sqrt[3/7]*Mau2 - (9*Meu)/Sqrt[14], k == 4 && m == 0}}, (3*I)*Sqrt[3/2]*(Mau1 + I*Mau3)]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_S6_Z.Quanty
Akm = {{2, 0, (5/21)*((sqrt(21))*(Mau2) + (2)*((sqrt(14))*(Meu)))} , 
       {4, 0, (3)*((sqrt(3/7))*(Mau2)) + (-9)*((1/(sqrt(14)))*(Meu))} , 
       {4, 3, (3*I)*((sqrt(3/2))*(Mau1 + (I)*(Mau3)))} , 
       {4,-3, (3)*((sqrt(3/2))*((I)*(Mau1) + Mau3))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(1)100Meu0032(Mau3+iMau1)0
Y(1)0Mau3iMau1200Mau200Mau3+iMau12
Y(1)10i32(Mau1+iMau3)00Meu00

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

fy(3x2y2) fxyz fy(5z2r2) fz(5z23r2) fx(5z2r2) fz(x2y2) fx(x23y2)
py032Mau3Meu0032Mau10
pzMau100Mau200Mau3
px032Mau100Meu32Mau30

Table of several point groups

Return to Main page on Point Groups

Nonaxial groups C1 Cs Ci
Cn groups C2 C3 C4 C5 C6 C7 C8
Dn groups D2 D3 D4 D5 D6 D7 D8
Cnv groups C2v C3v C4v C5v C6v C7v C8v
Cnh groups C2h C3h C4h C5h C6h
Dnh groups D2h D3h D4h D5h D6h D7h D8h
Dnd groups D2d D3d D4d D5d D6d D7d D8d
Sn groups S2 S4 S6 S8 S10 S12
Cubic groups T Th Td O Oh I Ih
Linear groups Cv Dh

Print/export