Processing math: 87%

Orientation sqrt201z

Symmetry Operations

In the Oh Point Group, with orientation sqrt201z there are the following symmetry operations

Operator Orientation
E {0,0,0} ,
C3 {0,0,1} , {0,0,1} , {2,6,1} , {22,0,1} , {2,6,1} , {2,6,1} , {22,0,1} , {2,6,1} ,
C2 {0,1,0} , {3,1,0} , {3,1,0} , {1,0,2} , {1,3,22} , {1,3,22} ,
C4 {2,0,1} , {2,0,1} , {1,3,2} , {1,3,2} , {1,3,2} , {1,3,2} ,
C2 {2,0,1} , {1,3,2} , {1,3,2} ,
i {0,0,0} ,
S4 {2,0,1} , {2,0,1} , {1,3,2} , {1,3,2} , {1,3,2} , {1,3,2} ,
S6 {0,0,1} , {0,0,1} , {2,6,1} , {22,0,1} , {2,6,1} , {2,6,1} , {22,0,1} , {2,6,1} ,
σh {2,0,1} , {1,3,2} , {1,3,2} ,
σd {0,1,0} , {3,1,0} , {3,1,0} , {1,0,2} , {1,3,22} , {1,3,22} ,

Different Settings

Character Table

E(1) C3(8) C2(6) C4(6) C2(3) i(1) S4(6) S6(8) σh(3) σd(6)
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 1 1 1 1 1 1
Eg 2 1 0 0 2 2 0 1 2 0
T1g 3 0 1 1 1 3 1 0 1 1
T2g 3 0 1 1 1 3 1 0 1 1
A1u 1 1 1 1 1 1 1 1 1 1
A2u 1 1 1 1 1 1 1 1 1 1
Eu 2 1 0 0 2 2 0 1 2 0
T1u 3 0 1 1 1 3 1 0 1 1
T2u 3 0 1 1 1 3 1 0 1 1

Product Table

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u
A1g A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u
A2g A2g A1g Eg T2g T1g A2u A1u Eu T2u T1u
Eg Eg Eg A1g+A2g+Eg T1g+T2g T1g+T2g Eu Eu A1u+A2u+Eu T1u+T2u T1u+T2u
T1g T1g T2g T1g+T2g A1g+Eg+T1g+T2g A2g+Eg+T1g+T2g T1u T2u T1u+T2u A1u+Eu+T1u+T2u A2u+Eu+T1u+T2u
T2g T2g T1g T1g+T2g A2g+Eg+T1g+T2g A1g+Eg+T1g+T2g T2u T1u T1u+T2u A2u+Eu+T1u+T2u A1u+Eu+T1u+T2u
A1u A1u A2u Eu T1u T2u A1g A2g Eg T1g T2g
A2u A2u A1u Eu T2u T1u A2g A1g Eg T2g T1g
Eu Eu Eu A1u+A2u+Eu T1u+T2u T1u+T2u Eg Eg A1g+A2g+Eg T1g+T2g T1g+T2g
T1u T1u T2u T1u+T2u A1u+Eu+T1u+T2u A2u+Eu+T1u+T2u T1g T2g T1g+T2g A1g+Eg+T1g+T2g A2g+Eg+T1g+T2g
T2u T2u T1u T1u+T2u A2u+Eu+T1u+T2u A1u+Eu+T1u+T2u T2g T1g T1g+T2g A2g+Eg+T1g+T2g A1g+Eg+T1g+T2g

Sub Groups with compatible settings

Super Groups with compatible settings

Invariant Potential expanded on renormalized spherical Harmonics

Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Oh Point group with orientation sqrt201z the form of the expansion coefficients is:

Expansion

Ak,m={A(0,0)k=0m=0107A(4,0)k=4m=3A(4,0)k=4m=0107A(4,0)k=4m=318773A(6,0)k=6(m=6m=6)14356A(6,0)k=6m=3A(6,0)k=6m=014356A(6,0)k=6m=3

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_sqrt201z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-(Sqrt[10/7]*A[4, 0]), k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}, {Sqrt[10/7]*A[4, 0], k == 4 && m == 3}, {(Sqrt[77/3]*A[6, 0])/8, k == 6 && (m == -6 || m == 6)}, {(Sqrt[35/6]*A[6, 0])/4, k == 6 && m == -3}, {A[6, 0], k == 6 && m == 0}, {-(Sqrt[35/6]*A[6, 0])/4, k == 6 && m == 3}}, 0]

Input format suitable for Quanty

Akm_Oh_sqrt201z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {4, 0, A(4,0)} , 
       {4,-3, (-1)*((sqrt(10/7))*(A(4,0)))} , 
       {4, 3, (sqrt(10/7))*(A(4,0))} , 
       {6, 0, A(6,0)} , 
       {6, 3, (-1/4)*((sqrt(35/6))*(A(6,0)))} , 
       {6,-3, (1/4)*((sqrt(35/6))*(A(6,0)))} , 
       {6,-6, (1/8)*((sqrt(77/3))*(A(6,0)))} , 
       {6, 6, (1/8)*((sqrt(77/3))*(A(6,0)))} }

One particle coupling on a basis of spherical harmonics

The operator representing the potential in second quantisation is given as: O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l Note the difference between the function Ak,m and the parameter Anl,nl(k,m)

we can express the operator as O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m

The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(0)0Ass(0,0)000000000000000
Y(1)10App(0,0)0000000001327Apf(4,0)0013107Apf(4,0)0
Y(1)000App(0,0)000000131021Apf(4,0)004Apf(4,0)32100131021Apf(4,0)
Y(1)1000App(0,0)00000013107Apf(4,0)001327Apf(4,0)00
Y(2)20000Add(0,0)+121Add(4,0)005212Add(4,0)00000000
Y(2)100000Add(0,0)421Add(4,0)005212Add(4,0)0000000
Y(2)0000000Add(0,0)+27Add(4,0)000000000
Y(2)100005212Add(4,0)00Add(0,0)421Add(4,0)00000000
Y(2)2000005212Add(4,0)00Add(0,0)+121Add(4,0)0000000
Y(3)300131021Apf(4,0)000000Aff(0,0)+111Aff(4,0)5429Aff(6,0)0011110Aff(4,0)+3585852Aff(6,0)0035156Aff(6,0)
Y(3)200013107Apf(4,0)000000Aff(0,0)733Aff(4,0)+10143Aff(6,0)002335Aff(4,0)355725Aff(6,0)00
Y(3)101327Apf(4,0)000000000Aff(0,0)+133Aff(4,0)25143Aff(6,0)00355725Aff(6,0)2335Aff(4,0)0
Y(3)0004Apf(4,0)32100000011110Aff(4,0)+3585852Aff(6,0)00Aff(0,0)+211Aff(4,0)+100429Aff(6,0)0011110Aff(4,0)3585852Aff(6,0)
Y(3)10001327Apf(4,0)0000002335Aff(4,0)355725Aff(6,0)00Aff(0,0)+133Aff(4,0)25143Aff(6,0)00
Y(3)2013107Apf(4,0)000000000355725Aff(6,0)2335Aff(4,0)00Aff(0,0)733Aff(4,0)+10143Aff(6,0)0
Y(3)300131021Apf(4,0)00000035156Aff(6,0)0011110Aff(4,0)3585852Aff(6,0)00Aff(0,0)+111Aff(4,0)5429Aff(6,0)

Rotation matrix to symmetry adapted functions (choice is not unique)

Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
s1000000000000000
px012012000000000000
py0i20i2000000000000
pz0010000000000000
dxy2yz0000i6i30i3i60000000
dx2y2+22xz00001613013160000000
dyz+2xy0000i3i60i6i30000000
dx2y22xz00001316016130000000
d3z2r20000001000000000
f2x33\2\xy23z+5\z30000000002300530023
f5\2x2\z5\2y2\z+x\(1+5\z2)000000000053212301235320
fy\(1+10\2\x\z5\z2)000000000012i53i230i2312i530
f5\2x315\2\xy2+4z\(35\z2)000000000523002300523
fx+2x2\z2y2\z5x\z2000000000012353205321230
fy\(1+2\2\x\z+5\z2)0000000000i2312i53012i53i230
fy\(3\x2+y2)000000000i200000i2

One particle coupling on a basis of symmetry adapted functions

After rotation we find

s px py pz dxy2yz dx2y2+22xz dyz+2xy dx2y22xz d3z2r2 f2x33\2\xy23z+5\z3 f5\2x2\z5\2y2\z+x\(1+5\z2) fy\(1+10\2\x\z5\z2) f5\2x315\2\xy2+4z\(35\z2) fx+2x2\z2y2\z5x\z2 fy\(1+2\2\x\z+5\z2) fy\(3\x2+y2)
sAss(0,0)000000000000000
px0App(0,0)000000002Apf(4,0)2100000
py00App(0,0)000000002Apf(4,0)210000
pz000App(0,0)000000002Apf(4,0)21000
dxy2yz0000Add(0,0)37Add(4,0)00000000000
dx2y2+22xz00000Add(0,0)37Add(4,0)0000000000
dyz+2xy000000Add(0,0)+27Add(4,0)000000000
dx2y22xz0000000Add(0,0)+27Add(4,0)00000000
d3z2r200000000Add(0,0)+27Add(4,0)0000000
f2x33\2\xy23z+5\z3000000000Aff(0,0)+611Aff(4,0)+45143Aff(6,0)000000
f5\2x2\z5\2y2\z+x\(1+5\z2)02Apf(4,0)2100000000Aff(0,0)311Aff(4,0)+75572Aff(6,0)00000
fy\(1+10\2\x\z5\z2)002Apf(4,0)2100000000Aff(0,0)311Aff(4,0)+75572Aff(6,0)0000
f5\2x315\2\xy2+4z\(35\z2)0002Apf(4,0)2100000000Aff(0,0)311Aff(4,0)+75572Aff(6,0)000
fx+2x2\z2y2\z5x\z20000000000000Aff(0,0)+111Aff(4,0)135572Aff(6,0)00
fy\(1+2\2\x\z+5\z2)00000000000000Aff(0,0)+111Aff(4,0)135572Aff(6,0)0
fy\(3\x2+y2)000000000000000Aff(0,0)+111Aff(4,0)135572Aff(6,0)

Coupling for a single shell

Although the parameters Al,l(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al,l(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l and l.

Click on one of the subsections to expand it or

Potential for s orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={Ea1gk=0m=00True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_sqrt201z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Ea1g, k == 0 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_sqrt201z.Quanty
Akm = {{0, 0, Ea1g} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(0)0
Y(0)0Ea1g

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

s
sEa1g

Rotation matrix used

Rotation matrix used

Y(0)0
s1

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Ea1g
ψ(θ,ϕ)=11 12π
ψ(ˆx,ˆy,ˆz)=11 12π

Potential for p orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={Et1uk=0m=00True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_sqrt201z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Et1u, k == 0 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_sqrt201z.Quanty
Akm = {{0, 0, Et1u} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(1)1 Y(1)0 Y(1)1
Y(1)1Et1u00
Y(1)00Et1u0
Y(1)100Et1u

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

px py pz
pxEt1u00
py0Et1u0
pz00Et1u

Rotation matrix used

Rotation matrix used

Y(1)1 Y(1)0 Y(1)1
px12012
pyi20i2
pz010

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Et1u
ψ(θ,ϕ)=11 123πsin(θ)cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πx
Et1u
ψ(θ,ϕ)=11 123πsin(θ)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πy
Et1u
ψ(θ,ϕ)=11 123πcos(θ)
ψ(ˆx,ˆy,ˆz)=11 123πz

Potential for d orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={15(2Eeg+3Et2g)k=0m=0145(EegEt2g)k=4m=37(Et2gEeg)5k=4m=0145(Et2gEeg)k=4m=3

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_sqrt201z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(2*Eeg + 3*Et2g)/5, k == 0 && m == 0}, {Sqrt[14/5]*(Eeg - Et2g), k == 4 && m == -3}, {(7*(-Eeg + Et2g))/5, k == 4 && m == 0}, {Sqrt[14/5]*(-Eeg + Et2g), k == 4 && m == 3}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_sqrt201z.Quanty
Akm = {{0, 0, (1/5)*((2)*(Eeg) + (3)*(Et2g))} , 
       {4, 0, (7/5)*((-1)*(Eeg) + Et2g)} , 
       {4, 3, (sqrt(14/5))*((-1)*(Eeg) + Et2g)} , 
       {4,-3, (sqrt(14/5))*(Eeg + (-1)*(Et2g))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
Y(2)213(Eeg+2Et2g)00132(Et2gEeg)0
Y(2)1013(2Eeg+Et2g)00132(EegEt2g)
Y(2)000Et2g00
Y(2)1132(Et2gEeg)0013(2Eeg+Et2g)0
Y(2)20132(EegEt2g)0013(Eeg+2Et2g)

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

dxy2yz dx2y2+22xz dyz+2xy dx2y22xz d3z2r2
dxy2yzEeg0000
dx2y2+22xz0Eeg000
dyz+2xy00Et2g00
dx2y22xz000Et2g0
d3z2r20000Et2g

Rotation matrix used

Rotation matrix used

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
dxy2yzi6i30i3i6
dx2y2+22xz161301316
dyz+2xyi3i60i6i3
dx2y22xz131601613
d3z2r200100

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eeg
ψ(θ,ϕ)=11 125πsin(θ)sin(ϕ)(sin(θ)cos(ϕ)2cos(θ))
ψ(ˆx,ˆy,ˆz)=11 125πy(x2z)
Eeg
ψ(θ,ϕ)=11 145πsin(θ)(22cos(θ)cos(ϕ)+sin(θ)cos(2ϕ))
ψ(ˆx,ˆy,ˆz)=11 145π(x2+22xzy2)
Et2g
ψ(θ,ϕ)=11 125πsin(θ)sin(ϕ)(2sin(θ)cos(ϕ)+cos(θ))
ψ(ˆx,ˆy,ˆz)=11 125πy(2x+z)
Et2g
ψ(θ,ϕ)=11 145π(2sin2(θ)cos(2ϕ)sin(2θ)cos(ϕ))
ψ(ˆx,ˆy,ˆz)=11 145π(2x22xz2y2)
Et2g
ψ(θ,ϕ)=11 185π(3cos(2θ)+1)
ψ(ˆx,ˆy,ˆz)=11 145π(3z21)

Potential for f orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={17(Ea2u+3(Et1u+Et2u))k=0m=0514(2Ea2u3Et1u+Et2u)k=4m=312(2Ea2u3Et1u+Et2u)k=4m=0514(2Ea2u3Et1u+Et2u)k=4m=313601121(4Ea2u+5Et1u9Et2u)k=6(m=6m=6)13(4Ea2u+5Et1u9Et2u)6210k=6m=326105(4Ea2u+5Et1u9Et2u)k=6m=013(4Ea2u+5Et1u9Et2u)6210k=6m=3

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_sqrt201z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2u + 3*(Et1u + Et2u))/7, k == 0 && m == 0}, {-(Sqrt[5/14]*(2*Ea2u - 3*Et1u + Et2u)), k == 4 && m == -3}, {(2*Ea2u - 3*Et1u + Et2u)/2, k == 4 && m == 0}, {Sqrt[5/14]*(2*Ea2u - 3*Et1u + Et2u), k == 4 && m == 3}, {(13*Sqrt[11/21]*(4*Ea2u + 5*Et1u - 9*Et2u))/60, k == 6 && (m == -6 || m == 6)}, {(13*(4*Ea2u + 5*Et1u - 9*Et2u))/(6*Sqrt[210]), k == 6 && m == -3}, {(26*(4*Ea2u + 5*Et1u - 9*Et2u))/105, k == 6 && m == 0}, {(-13*(4*Ea2u + 5*Et1u - 9*Et2u))/(6*Sqrt[210]), k == 6 && m == 3}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_sqrt201z.Quanty
Akm = {{0, 0, (1/7)*(Ea2u + (3)*(Et1u + Et2u))} , 
       {4, 0, (1/2)*((2)*(Ea2u) + (-3)*(Et1u) + Et2u)} , 
       {4,-3, (-1)*((sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u))} , 
       {4, 3, (sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u)} , 
       {6, 0, (26/105)*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u))} , 
       {6, 3, (-13/6)*((1/(sqrt(210)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
       {6,-3, (13/6)*((1/(sqrt(210)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
       {6,-6, (13/60)*((sqrt(11/21))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} , 
       {6, 6, (13/60)*((sqrt(11/21))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(3)3118(4Ea2u+5Et1u+9Et2u)001910(Ea2uEt1u)00118(4Ea2u5Et1u+9Et2u)
Y(3)2016(5Et1u+Et2u)00165(Et2uEt1u)00
Y(3)10016(Et1u+5Et2u)00165(Et1uEt2u)0
Y(3)01910(Ea2uEt1u)0019(5Ea2u+4Et1u)001910(Et1uEa2u)
Y(3)10165(Et2uEt1u)0016(Et1u+5Et2u)00
Y(3)200165(Et1uEt2u)0016(5Et1u+Et2u)0
Y(3)3118(4Ea2u5Et1u+9Et2u)001910(Et1uEa2u)00118(4Ea2u+5Et1u+9Et2u)

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

f2x33\2\xy23z+5\z3 f5\2x2\z5\2y2\z+x\(1+5\z2) fy\(1+10\2\x\z5\z2) f5\2x315\2\xy2+4z\(35\z2) fx+2x2\z2y2\z5x\z2 fy\(1+2\2\x\z+5\z2) fy\(3\x2+y2)
f2x33\2\xy23z+5\z3Ea2u000000
f5\2x2\z5\2y2\z+x\(1+5\z2) 0 \text{Et1u} 0 0 0 0 0
f_{-y\left\backslash \left(1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash x\right\backslash z-5\left\backslash z^2\right.\right)\right.} 0 0 \text{Et1u} 0 0 0 0
f_{5\left\backslash \sqrt{2}\right.\backslash x^3-\left.15\left\backslash \sqrt{2}\right.\right\backslash x\backslash y^2+4\backslash z\left\backslash \left(3-5\left\backslash z^2\right.\right)\right.} 0 0 0 \text{Et1u} 0 0 0
f_{x+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash x\left\backslash z^2\right.} 0 0 0 0 \text{Et2u} 0 0
f_{-y\left\backslash \left(-1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash x\right\backslash z+5\left\backslash z^2\right.\right)\right.} 0 0 0 0 0 \text{Et2u} 0
f_{-y\left\backslash \left(-3\left\backslash x^2\right.+y^2\right)\right.} 0 0 0 0 0 0 \text{Et2u}

Rotation matrix used

Rotation matrix used

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
f_{\sqrt{2}\backslash x^3-\left.3\left\backslash \sqrt{2}\right.\right\backslash x\backslash y^2-3\backslash z+5\left\backslash z^3\right.} \frac{\sqrt{2}}{3} 0 0 \frac{\sqrt{5}}{3} 0 0 -\frac{\sqrt{2}}{3}
f_{\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z-\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z+x\left\backslash \left(-1+5\left\backslash z^2\right.\right)\right.} 0 \frac{\sqrt{\frac{5}{3}}}{2} \frac{1}{2 \sqrt{3}} 0 -\frac{1}{2 \sqrt{3}} \frac{\sqrt{\frac{5}{3}}}{2} 0
f_{-y\left\backslash \left(1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash x\right\backslash z-5\left\backslash z^2\right.\right)\right.} 0 -\frac{1}{2} i \sqrt{\frac{5}{3}} \frac{i}{2 \sqrt{3}} 0 \frac{i}{2 \sqrt{3}} \frac{1}{2} i \sqrt{\frac{5}{3}} 0
f_{5\left\backslash \sqrt{2}\right.\backslash x^3-\left.15\left\backslash \sqrt{2}\right.\right\backslash x\backslash y^2+4\backslash z\left\backslash \left(3-5\left\backslash z^2\right.\right)\right.} \frac{\sqrt{\frac{5}{2}}}{3} 0 0 -\frac{2}{3} 0 0 -\frac{\sqrt{\frac{5}{2}}}{3}
f_{x+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash x\left\backslash z^2\right.} 0 \frac{1}{2 \sqrt{3}} -\frac{\sqrt{\frac{5}{3}}}{2} 0 \frac{\sqrt{\frac{5}{3}}}{2} \frac{1}{2 \sqrt{3}} 0
f_{-y\left\backslash \left(-1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash x\right\backslash z+5\left\backslash z^2\right.\right)\right.} 0 -\frac{i}{2 \sqrt{3}} -\frac{1}{2} i \sqrt{\frac{5}{3}} 0 -\frac{1}{2} i \sqrt{\frac{5}{3}} \frac{i}{2 \sqrt{3}} 0
f_{-y\left\backslash \left(-3\left\backslash x^2\right.+y^2\right)\right.} \frac{i}{\sqrt{2}} 0 0 0 0 0 \frac{i}{\sqrt{2}}

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

\text{Ea2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{24} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \left(\sqrt{2} \left(1+e^{6 i \phi }\right) \sin ^3(\theta )+e^{3 i \phi } \cos (\theta ) (5 \cos (2 \theta )-1)\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{12} \sqrt{\frac{35}{\pi }} \left(\sqrt{2} x^3-3 \sqrt{2} x y^2+5 z^3-3 z\right)
\text{Et1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \left((5 \cos (2 \theta )+3) \cos (\phi )+5 \sqrt{2} \sin (2 \theta ) \cos (2 \phi )\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{7}{\pi }} \left(5 \sqrt{2} x^2 z+x \left(5 z^2-1\right)-5 \sqrt{2} y^2 z\right)
\text{Et1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(-10 \sqrt{2} \sin (2 \theta ) \cos (\phi )+5 \cos (2 \theta )+3\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{8} \sqrt{\frac{7}{\pi }} y \left(10 \sqrt{2} x z-5 z^2+1\right)
\text{Et1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{24} \sqrt{\frac{7}{\pi }} \left(-5 \sqrt{2} \sin ^3(\theta ) \cos (3 \phi )+3 \cos (\theta )+5 \cos (3 \theta )\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{24} \sqrt{\frac{7}{\pi }} \left(5 \sqrt{2} x^3-15 \sqrt{2} x y^2+4 z \left(3-5 z^2\right)\right)
\text{Et2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \left(\sqrt{2} \sin (2 \theta ) \cos (2 \phi )-(5 \cos (2 \theta )+3) \cos (\phi )\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{35}{\pi }} \left(\sqrt{2} x^2 z-5 x z^2+x-\sqrt{2} y^2 z\right)
\text{Et2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{35}{\pi }} \sin (\theta ) \sin (\phi ) \left(2 \sqrt{2} \sin (2 \theta ) \cos (\phi )+5 \cos (2 \theta )+3\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{8} \sqrt{\frac{35}{\pi }} y \left(2 \sqrt{2} x z+5 z^2-1\right)
\text{Et2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right)

Coupling between two shells

Click on one of the subsections to expand it or

Potential for p-f orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

A_{k,m} = \begin{cases} 0 & k\neq 4\lor (m\neq -3\land m\neq 0\land m\neq 3) \\ \sqrt{\frac{15}{2}} \text{Mt1u} & k=4\land m=-3 \\ -\frac{\sqrt{21} \text{Mt1u}}{2} & k=4\land m=0 \\ -\sqrt{\frac{15}{2}} \text{Mt1u} & \text{True} \end{cases}

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_Oh_sqrt201z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 4 || (m != -3 && m != 0 && m != 3)}, {Sqrt[15/2]*Mt1u, k == 4 && m == -3}, {-(Sqrt[21]*Mt1u)/2, k == 4 && m == 0}}, -(Sqrt[15/2]*Mt1u)]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_Oh_sqrt201z.Quanty
Akm = {{4, 0, (-1/2)*((sqrt(21))*(Mt1u))} , 
       {4, 3, (-1)*((sqrt(15/2))*(Mt1u))} , 
       {4,-3, (sqrt(15/2))*(Mt1u)} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} 0 0 \frac{\text{Mt1u}}{\sqrt{6}} 0 0 \sqrt{\frac{5}{6}} \text{Mt1u} 0
{Y_{0}^{(1)}} \frac{1}{3} \sqrt{\frac{5}{2}} \text{Mt1u} 0 0 -\frac{2 \text{Mt1u}}{3} 0 0 -\frac{1}{3} \sqrt{\frac{5}{2}} \text{Mt1u}
{Y_{1}^{(1)}} 0 -\sqrt{\frac{5}{6}} \text{Mt1u} 0 0 \frac{\text{Mt1u}}{\sqrt{6}} 0 0

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

f_{\sqrt{2}\backslash x^3-\left.3\left\backslash \sqrt{2}\right.\right\backslash x\backslash y^2-3\backslash z+5\left\backslash z^3\right.} f_{\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z-\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z+x\left\backslash \left(-1+5\left\backslash z^2\right.\right)\right.} f_{-y\left\backslash \left(1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash x\right\backslash z-5\left\backslash z^2\right.\right)\right.} f_{5\left\backslash \sqrt{2}\right.\backslash x^3-\left.15\left\backslash \sqrt{2}\right.\right\backslash x\backslash y^2+4\backslash z\left\backslash \left(3-5\left\backslash z^2\right.\right)\right.} f_{x+\left.\sqrt{2}\backslash x^2\right\backslash z-\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash x\left\backslash z^2\right.} f_{-y\left\backslash \left(-1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash x\right\backslash z+5\left\backslash z^2\right.\right)\right.} f_{-y\left\backslash \left(-3\left\backslash x^2\right.+y^2\right)\right.}
p_x 0 \text{Mt1u} 0 0 0 0 0
p_y 0 0 \text{Mt1u} 0 0 0 0
p_z 0 0 0 \text{Mt1u} 0 0 0

Table of several point groups

Return to Main page on Point Groups

Nonaxial groups C1 Cs Ci
Cn groups C2 C3 C4 C5 C6 C7 C8
Dn groups D2 D3 D4 D5 D6 D7 D8
Cnv groups C2v C3v C4v C5v C6v C7v C8v
Cnh groups C2h C3h C4h C5h C6h
Dnh groups D2h D3h D4h D5h D6h D7h D8h
Dnd groups D2d D3d D4d D5d D6d D7d D8d
Sn groups S2 S4 S6 S8 S10 S12
Cubic groups T Th Td O Oh I Ih
Linear groups C\inftyv D\inftyh

Print/export