+Table of Contents
Orientation Y
Symmetry Operations
In the Cs Point Group, with orientation Y there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
σh | {0,1,0} , |
Different Settings
Character Table
E(1) | σh(1) | |
---|---|---|
A' | 1 | 1 |
A'' | 1 | −1 |
Product Table
A' | A'' | |
---|---|---|
A' | A' | A'' |
A'' | A'' | A' |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Cs Point group with orientation Y the form of the expansion coefficients is:
Expansion
Ak,m={A(0,0)k=0∧m=0−A(1,1)k=1∧m=−1A(1,0)k=1∧m=0A(1,1)k=1∧m=1A(2,2)k=2∧(m=−2∨m=2)−A(2,1)k=2∧m=−1A(2,0)k=2∧m=0A(2,1)k=2∧m=1−A(3,3)k=3∧m=−3A(3,2)k=3∧(m=−2∨m=2)−A(3,1)k=3∧m=−1A(3,0)k=3∧m=0A(3,1)k=3∧m=1A(3,3)k=3∧m=3A(4,4)k=4∧(m=−4∨m=4)−A(4,3)k=4∧m=−3A(4,2)k=4∧(m=−2∨m=2)−A(4,1)k=4∧m=−1A(4,0)k=4∧m=0A(4,1)k=4∧m=1A(4,3)k=4∧m=3−A(5,5)k=5∧m=−5A(5,4)k=5∧(m=−4∨m=4)−A(5,3)k=5∧m=−3A(5,2)k=5∧(m=−2∨m=2)−A(5,1)k=5∧m=−1A(5,0)k=5∧m=0A(5,1)k=5∧m=1A(5,3)k=5∧m=3A(5,5)k=5∧m=5A(6,6)k=6∧(m=−6∨m=6)−A(6,5)k=6∧m=−5A(6,4)k=6∧(m=−4∨m=4)−A(6,3)k=6∧m=−3A(6,2)k=6∧(m=−2∨m=2)−A(6,1)k=6∧m=−1A(6,0)k=6∧m=0A(6,1)k=6∧m=1A(6,3)k=6∧m=3A(6,5)k=6∧m=5
Input format suitable for Mathematica (Quanty.nb)
- Akm_Cs_Y.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1], k == 1 && m == -1}, {A[1, 0], k == 1 && m == 0}, {A[1, 1], k == 1 && m == 1}, {A[2, 2], k == 2 && (m == -2 || m == 2)}, {-A[2, 1], k == 2 && m == -1}, {A[2, 0], k == 2 && m == 0}, {A[2, 1], k == 2 && m == 1}, {-A[3, 3], k == 3 && m == -3}, {A[3, 2], k == 3 && (m == -2 || m == 2)}, {-A[3, 1], k == 3 && m == -1}, {A[3, 0], k == 3 && m == 0}, {A[3, 1], k == 3 && m == 1}, {A[3, 3], k == 3 && m == 3}, {A[4, 4], k == 4 && (m == -4 || m == 4)}, {-A[4, 3], k == 4 && m == -3}, {A[4, 2], k == 4 && (m == -2 || m == 2)}, {-A[4, 1], k == 4 && m == -1}, {A[4, 0], k == 4 && m == 0}, {A[4, 1], k == 4 && m == 1}, {A[4, 3], k == 4 && m == 3}, {-A[5, 5], k == 5 && m == -5}, {A[5, 4], k == 5 && (m == -4 || m == 4)}, {-A[5, 3], k == 5 && m == -3}, {A[5, 2], k == 5 && (m == -2 || m == 2)}, {-A[5, 1], k == 5 && m == -1}, {A[5, 0], k == 5 && m == 0}, {A[5, 1], k == 5 && m == 1}, {A[5, 3], k == 5 && m == 3}, {A[5, 5], k == 5 && m == 5}, {A[6, 6], k == 6 && (m == -6 || m == 6)}, {-A[6, 5], k == 6 && m == -5}, {A[6, 4], k == 6 && (m == -4 || m == 4)}, {-A[6, 3], k == 6 && m == -3}, {A[6, 2], k == 6 && (m == -2 || m == 2)}, {-A[6, 1], k == 6 && m == -1}, {A[6, 0], k == 6 && m == 0}, {A[6, 1], k == 6 && m == 1}, {A[6, 3], k == 6 && m == 3}, {A[6, 5], k == 6 && m == 5}}, 0]
Input format suitable for Quanty
- Akm_Cs_Y.Quanty
Akm = { 0, A(0,0)} , {1, 0, A(1,0)} , {1,-1, (-1)*(A(1,1))} , {1, 1, A(1,1)} , {2, 0, A(2,0)} , {2,-1, (-1)*(A(2,1))} , {2, 1, A(2,1)} , {2,-2, A(2,2)} , {2, 2, A(2,2)} , {3, 0, A(3,0)} , {3,-1, (-1)*(A(3,1))} , {3, 1, A(3,1)} , {3,-2, A(3,2)} , {3, 2, A(3,2)} , {3,-3, (-1)*(A(3,3))} , {3, 3, A(3,3)} , {4, 0, A(4,0)} , {4,-1, (-1)*(A(4,1))} , {4, 1, A(4,1)} , {4,-2, A(4,2)} , {4, 2, A(4,2)} , {4,-3, (-1)*(A(4,3))} , {4, 3, A(4,3)} , {4,-4, A(4,4)} , {4, 4, A(4,4)} , {5, 0, A(5,0)} , {5,-1, (-1)*(A(5,1))} , {5, 1, A(5,1)} , {5,-2, A(5,2)} , {5, 2, A(5,2)} , {5,-3, (-1)*(A(5,3))} , {5, 3, A(5,3)} , {5,-4, A(5,4)} , {5, 4, A(5,4)} , {5,-5, (-1)*(A(5,5))} , {5, 5, A(5,5)} , {6, 0, A(6,0)} , {6,-1, (-1)*(A(6,1))} , {6, 1, A(6,1)} , {6,-2, A(6,2)} , {6, 2, A(6,2)} , {6,-3, (-1)*(A(6,3))} , {6, 3, A(6,3)} , {6,-4, A(6,4)} , {6, 4, A(6,4)} , {6,-5, (-1)*(A(6,5))} , {6, 5, A(6,5)} , {6,-6, A(6,6)} , {6, 6, A(6,6)} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m)
we can express the operator as O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter.
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y(0)0 | Ass(0,0) | −Asp(1,1)√3 | Asp(1,0)√3 | Asp(1,1)√3 | Asd(2,2)√5 | −Asd(2,1)√5 | Asd(2,0)√5 | Asd(2,1)√5 | Asd(2,2)√5 | −Asf(3,3)√7 | Asf(3,2)√7 | −Asf(3,1)√7 | Asf(3,0)√7 | Asf(3,1)√7 | Asf(3,2)√7 | Asf(3,3)√7 |
Y(1)−1 | −Asp(1,1)√3 | App(0,0)−15App(2,0) | −15√3App(2,1) | −15√6App(2,2) | 17√35Apd(3,1)−√25Apd(1,1) | Apd(1,0)√5−3Apd(3,0)7√5 | Apd(1,1)√15−37√25Apd(3,1) | −17√6Apd(3,2) | −37Apd(3,3) | 3Apf(2,2)√35−Apf(4,2)3√21 | Apf(4,1)3√7−√635Apf(2,1) | 35√27Apf(2,0)−13√27Apf(4,0) | 3Apf(2,1)5√7−13√1021Apf(4,1) | 15√37Apf(2,2)−13√57Apf(4,2) | −13Apf(4,3) | −2Apf(4,4)3√3 |
Y(1)0 | Asp(1,0)√3 | −15√3App(2,1) | App(0,0)+25App(2,0) | 15√3App(2,1) | 17√3Apd(3,2) | −Apd(1,1)√5−27√65Apd(3,1) | 2Apd(1,0)√15+37√35Apd(3,0) | Apd(1,1)√5+27√65Apd(3,1) | 17√3Apd(3,2) | −Apf(4,3)3√3 | √335Apf(2,2)+2Apf(4,2)3√7 | −25√67Apf(2,1)−13√57Apf(4,1) | 35√37Apf(2,0)+4Apf(4,0)3√21 | 25√67Apf(2,1)+13√57Apf(4,1) | √335Apf(2,2)+2Apf(4,2)3√7 | Apf(4,3)3√3 |
Y(1)1 | Asp(1,1)√3 | −15√6App(2,2) | 15√3App(2,1) | App(0,0)−15App(2,0) | 37Apd(3,3) | −17√6Apd(3,2) | 37√25Apd(3,1)−Apd(1,1)√15 | Apd(1,0)√5−3Apd(3,0)7√5 | √25Apd(1,1)−17√35Apd(3,1) | −2Apf(4,4)3√3 | 13Apf(4,3) | 15√37Apf(2,2)−13√57Apf(4,2) | 13√1021Apf(4,1)−3Apf(2,1)5√7 | 35√27Apf(2,0)−13√27Apf(4,0) | √635Apf(2,1)−Apf(4,1)3√7 | 3Apf(2,2)√35−Apf(4,2)3√21 |
Y(2)−2 | Asd(2,2)√5 | 17√35Apd(3,1)−√25Apd(1,1) | 17√3Apd(3,2) | 37Apd(3,3) | Add(0,0)−27Add(2,0)+121Add(4,0) | 121√5Add(4,1)−17√6Add(2,1) | 17√53Add(4,2)−27Add(2,2) | 13√57Add(4,3) | 13√107Add(4,4) | −√37Adf(1,1)+13√27Adf(3,1)−133√57Adf(5,1) | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | Adf(1,1)√35−2√2105Adf(3,1)+5Adf(5,1)11√21 | 533Adf(5,2)−2Adf(3,2)3√7 | 533√2Adf(5,3)−13√27Adf(3,3) | 111√10Adf(5,4) | 511√23Adf(5,5) |
Y(2)−1 | −Asd(2,1)√5 | Apd(1,0)√5−3Apd(3,0)7√5 | −Apd(1,1)√5−27√65Apd(3,1) | −17√6Apd(3,2) | 121√5Add(4,1)−17√6Add(2,1) | Add(0,0)+17Add(2,0)−421Add(4,0) | −17Add(2,1)−17√103Add(4,1) | −17√6Add(2,2)−221√10Add(4,2) | −13√57Add(4,3) | 13√57Adf(3,2)−133√5Adf(5,2) | −√27Adf(1,1)−Adf(3,1)√21+211√1021Adf(5,1) | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | √335Adf(1,1)−13√235Adf(3,1)−20Adf(5,1)33√7 | −Adf(3,2)√21−5Adf(5,2)11√3 | −13√57Adf(3,3)−433√5Adf(5,3) | −211√53Adf(5,4) |
Y(2)0 | Asd(2,0)√5 | Apd(1,1)√15−37√25Apd(3,1) | 2Apd(1,0)√15+37√35Apd(3,0) | 37√25Apd(3,1)−Apd(1,1)√15 | 17√53Add(4,2)−27Add(2,2) | −17Add(2,1)−17√103Add(4,1) | Add(0,0)+27Add(2,0)+27Add(4,0) | 17Add(2,1)+17√103Add(4,1) | 17√53Add(4,2)−27Add(2,2) | 13√57Adf(3,3)−233√5Adf(5,3) | 111√5Adf(5,2) | −√635Adf(1,1)−Adf(3,1)√35−511√27Adf(5,1) | 3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0) | √635Adf(1,1)+Adf(3,1)√35+511√27Adf(5,1) | 111√5Adf(5,2) | 233√5Adf(5,3)−13√57Adf(3,3) |
Y(2)1 | Asd(2,1)√5 | −17√6Apd(3,2) | Apd(1,1)√5+27√65Apd(3,1) | Apd(1,0)√5−3Apd(3,0)7√5 | 13√57Add(4,3) | −17√6Add(2,2)−221√10Add(4,2) | 17Add(2,1)+17√103Add(4,1) | Add(0,0)+17Add(2,0)−421Add(4,0) | 17√6Add(2,1)−121√5Add(4,1) | −211√53Adf(5,4) | 13√57Adf(3,3)+433√5Adf(5,3) | −Adf(3,2)√21−5Adf(5,2)11√3 | −√335Adf(1,1)+13√235Adf(3,1)+20Adf(5,1)33√7 | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | √27Adf(1,1)+Adf(3,1)√21−211√1021Adf(5,1) | 13√57Adf(3,2)−133√5Adf(5,2) |
Y(2)2 | Asd(2,2)√5 | −37Apd(3,3) | 17√3Apd(3,2) | √25Apd(1,1)−17√35Apd(3,1) | 13√107Add(4,4) | −13√57Add(4,3) | 17√53Add(4,2)−27Add(2,2) | 17√6Add(2,1)−121√5Add(4,1) | Add(0,0)−27Add(2,0)+121Add(4,0) | −511√23Adf(5,5) | 111√10Adf(5,4) | 13√27Adf(3,3)−533√2Adf(5,3) | 533Adf(5,2)−2Adf(3,2)3√7 | −Adf(1,1)√35+2√2105Adf(3,1)−5Adf(5,1)11√21 | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | √37Adf(1,1)−13√27Adf(3,1)+133√57Adf(5,1) |
Y(3)−3 | −Asf(3,3)√7 | 3Apf(2,2)√35−Apf(4,2)3√21 | −Apf(4,3)3√3 | −2Apf(4,4)3√3 | −√37Adf(1,1)+13√27Adf(3,1)−133√57Adf(5,1) | 13√57Adf(3,2)−133√5Adf(5,2) | 13√57Adf(3,3)−233√5Adf(5,3) | −211√53Adf(5,4) | −511√23Adf(5,5) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | −13Aff(2,1)+111√103Aff(4,1)−5429√7Aff(6,1) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | 111√7Aff(4,3)−10143√73Aff(6,3) | 111√143Aff(4,4)−5143√703Aff(6,4) | −513√1433Aff(6,5) | −1013√733Aff(6,6) |
Y(3)−2 | Asf(3,2)√7 | Apf(4,1)3√7−√635Apf(2,1) | √335Apf(2,2)+2Apf(4,2)3√7 | 13Apf(4,3) | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | −√27Adf(1,1)−Adf(3,1)√21+211√1021Adf(5,1) | 111√5Adf(5,2) | 13√57Adf(3,3)+433√5Adf(5,3) | 111√10Adf(5,4) | −13Aff(2,1)+111√103Aff(4,1)−5429√7Aff(6,1) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | −Aff(2,1)√15−433√2Aff(4,1)+5143√353Aff(6,1) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | 133√14Aff(4,3)+5143√42Aff(6,3) | 133√70Aff(4,4)+10143√14Aff(6,4) | 513√1433Aff(6,5) |
Y(3)−1 | −Asf(3,1)√7 | 35√27Apf(2,0)−13√27Apf(4,0) | −25√67Apf(2,1)−13√57Apf(4,1) | 15√37Apf(2,2)−13√57Apf(4,2) | Adf(1,1)√35−2√2105Adf(3,1)+5Adf(5,1)11√21 | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | −√635Adf(1,1)−Adf(3,1)√35−511√27Adf(5,1) | −Adf(3,2)√21−5Adf(5,2)11√3 | 13√27Adf(3,3)−533√2Adf(5,3) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | −Aff(2,1)√15−433√2Aff(4,1)+5143√353Aff(6,1) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | −115√2Aff(2,1)−111√53Aff(4,1)−25429√14Aff(6,1) | −25√23Aff(2,2)−233√10Aff(4,2)−10143√353Aff(6,2) | −133√14Aff(4,3)−5143√42Aff(6,3) | 111√143Aff(4,4)−5143√703Aff(6,4) |
Y(3)0 | Asf(3,0)√7 | 3Apf(2,1)5√7−13√1021Apf(4,1) | 35√37Apf(2,0)+4Apf(4,0)3√21 | 13√1021Apf(4,1)−3Apf(2,1)5√7 | 533Adf(5,2)−2Adf(3,2)3√7 | √335Adf(1,1)−13√235Adf(3,1)−20Adf(5,1)33√7 | 3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0) | −√335Adf(1,1)+13√235Adf(3,1)+20Adf(5,1)33√7 | 533Adf(5,2)−2Adf(3,2)3√7 | 111√7Aff(4,3)−10143√73Aff(6,3) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | −115√2Aff(2,1)−111√53Aff(4,1)−25429√14Aff(6,1) | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | 115√2Aff(2,1)+111√53Aff(4,1)+25429√14Aff(6,1) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | 10143√73Aff(6,3)−111√7Aff(4,3) |
Y(3)1 | Asf(3,1)√7 | 15√37Apf(2,2)−13√57Apf(4,2) | 25√67Apf(2,1)+13√57Apf(4,1) | 35√27Apf(2,0)−13√27Apf(4,0) | 533√2Adf(5,3)−13√27Adf(3,3) | −Adf(3,2)√21−5Adf(5,2)11√3 | √635Adf(1,1)+Adf(3,1)√35+511√27Adf(5,1) | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | −Adf(1,1)√35+2√2105Adf(3,1)−5Adf(5,1)11√21 | 111√143Aff(4,4)−5143√703Aff(6,4) | 133√14Aff(4,3)+5143√42Aff(6,3) | −25√23Aff(2,2)−233√10Aff(4,2)−10143√353Aff(6,2) | 115√2Aff(2,1)+111√53Aff(4,1)+25429√14Aff(6,1) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | Aff(2,1)√15+433√2Aff(4,1)−5143√353Aff(6,1) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) |
Y(3)2 | Asf(3,2)√7 | −13Apf(4,3) | √335Apf(2,2)+2Apf(4,2)3√7 | √635Apf(2,1)−Apf(4,1)3√7 | 111√10Adf(5,4) | −13√57Adf(3,3)−433√5Adf(5,3) | 111√5Adf(5,2) | √27Adf(1,1)+Adf(3,1)√21−211√1021Adf(5,1) | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | −513√1433Aff(6,5) | 133√70Aff(4,4)+10143√14Aff(6,4) | −133√14Aff(4,3)−5143√42Aff(6,3) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | Aff(2,1)√15+433√2Aff(4,1)−5143√353Aff(6,1) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 13Aff(2,1)−111√103Aff(4,1)+5429√7Aff(6,1) |
Y(3)3 | Asf(3,3)√7 | −2Apf(4,4)3√3 | Apf(4,3)3√3 | 3Apf(2,2)√35−Apf(4,2)3√21 | 511√23Adf(5,5) | −211√53Adf(5,4) | 233√5Adf(5,3)−13√57Adf(3,3) | 13√57Adf(3,2)−133√5Adf(5,2) | √37Adf(1,1)−13√27Adf(3,1)+133√57Adf(5,1) | −1013√733Aff(6,6) | 513√1433Aff(6,5) | 111√143Aff(4,4)−5143√703Aff(6,4) | 10143√73Aff(6,3)−111√7Aff(4,3) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | 13Aff(2,1)−111√103Aff(4,1)+5429√7Aff(6,1) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pz | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
px | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
py | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dz2−x2 | 0 | 0 | 0 | 0 | −12√2 | 0 | √32 | 0 | −12√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d3y2−r2 | 0 | 0 | 0 | 0 | −√322 | 0 | −12 | 0 | −√322 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxy | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dyz | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxz | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fxyz | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 |
fz(5z2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
fx(5x2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √54 | 0 | −√34 | 0 | √34 | 0 | −√54 |
fy(5y2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√54 | 0 | −i√34 | 0 | −i√34 | 0 | −i√54 |
fz(x2−y2) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
f_{x\left(y^2-z^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{3}}{4} |
f_{y\left(z^2-x^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{i \sqrt{3}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
\text{s} | p_z | p_x | p_y | d_{z^2-x^2} | d_{3y^2-r^2} | d_{\text{xy}} | d_{\text{yz}} | d_{\text{xz}} | f_{\text{xyz}} | f_{z\left(5z^2-r^2\right)} | f_{x\left(5x^2-r^2\right)} | f_{y\left(5y^2-r^2\right)} | f_{z\left(x^2-y^2\right)} | f_{x\left(y^2-z^2\right)} | f_{y\left(z^2-x^2\right)} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} } | \color{darkred}{ -\sqrt{\frac{2}{3}} \text{Asp}(1,1) } | \color{darkred}{ 0 } | \frac{1}{2} \sqrt{\frac{3}{5}} \text{Asd}(2,0)-\frac{\text{Asd}(2,2)}{\sqrt{10}} | -\frac{\text{Asd}(2,0)}{2 \sqrt{5}}-\sqrt{\frac{3}{10}} \text{Asd}(2,2) | 0 | 0 | -\sqrt{\frac{2}{5}} \text{Asd}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} } | \color{darkred}{ \frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,1)-\frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Asf}(3,2) } | \color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,1)+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,3) } | \color{darkred}{ 0 } |
p_z | \color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} } | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | -\frac{1}{5} \sqrt{6} \text{App}(2,1) | 0 | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}+\frac{9 \text{Apd}(3,0)}{14 \sqrt{5}}-\frac{1}{7} \sqrt{\frac{3}{2}} \text{Apd}(3,2) } | \color{darkred}{ -\frac{\text{Apd}(1,0)}{\sqrt{15}}-\frac{3}{14} \sqrt{\frac{3}{5}} \text{Apd}(3,0)-\frac{3 \text{Apd}(3,2)}{7 \sqrt{2}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{4}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1) } | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Apf}(4,1)-\frac{1}{6} \sqrt{\frac{5}{3}} \text{Apf}(4,3) | 0 | \sqrt{\frac{6}{35}} \text{Apf}(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2) | \sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{5 \text{Apf}(4,1)}{6 \sqrt{7}}+\frac{1}{6} \text{Apf}(4,3) | 0 |
p_x | \color{darkred}{ -\sqrt{\frac{2}{3}} \text{Asp}(1,1) } | -\frac{1}{5} \sqrt{6} \text{App}(2,1) | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0)+\frac{1}{5} \sqrt{6} \text{App}(2,2) | 0 | \color{darkred}{ \sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{1}{2} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{14} \text{Apd}(3,3) } | \color{darkred}{ \sqrt{\frac{2}{15}} \text{Apd}(1,1)+\frac{3 \text{Apd}(3,1)}{14 \sqrt{5}}+\frac{3}{14} \sqrt{3} \text{Apd}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}}+\frac{1}{7} \sqrt{6} \text{Apd}(3,2) } | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)-\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | 0 | -\sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{\text{Apf}(4,1)}{3 \sqrt{7}}-\frac{1}{3} \text{Apf}(4,3) | -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | 0 |
p_y | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0)-\frac{1}{5} \sqrt{6} \text{App}(2,2) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{7} \text{Apd}(3,3) } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}}-\frac{1}{7} \sqrt{6} \text{Apd}(3,2) } | \color{darkred}{ 0 } | -\sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{\text{Apf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Apf}(4,3) | 0 | 0 | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)-\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | 0 | 0 | \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} |
d_{z^2-x^2} | \frac{1}{2} \sqrt{\frac{3}{5}} \text{Asd}(2,0)-\frac{\text{Asd}(2,2)}{\sqrt{10}} | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}+\frac{9 \text{Apd}(3,0)}{14 \sqrt{5}}-\frac{1}{7} \sqrt{\frac{3}{2}} \text{Apd}(3,2) } | \color{darkred}{ \sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{1}{2} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{14} \text{Apd}(3,3) } | \color{darkred}{ 0 } | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,2)+\frac{19}{84} \text{Add}(4,0)-\frac{1}{7} \sqrt{\frac{5}{2}} \text{Add}(4,2)+\frac{1}{6} \sqrt{\frac{5}{14}} \text{Add}(4,4) | -\frac{1}{7} \sqrt{3} \text{Add}(2,0)+\frac{1}{7} \sqrt{2} \text{Add}(2,2)-\frac{5 \text{Add}(4,0)}{28 \sqrt{3}}-\frac{1}{7} \sqrt{\frac{5}{6}} \text{Add}(4,2)+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Add}(4,4) | 0 | 0 | \frac{1}{6} \sqrt{\frac{5}{7}} \text{Add}(4,3)-\frac{1}{6} \sqrt{5} \text{Add}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ \frac{3}{2} \sqrt{\frac{3}{35}} \text{Adf}(1,0)+\frac{2 \text{Adf}(3,0)}{\sqrt{105}}+\frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,2)+\frac{5}{11} \sqrt{\frac{5}{21}} \text{Adf}(5,0)-\frac{5 \text{Adf}(5,2)}{33 \sqrt{2}} } | \color{darkred}{ 3 \sqrt{\frac{3}{70}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{6 \sqrt{35}}+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,3)+\frac{5 \text{Adf}(5,1)}{6 \sqrt{14}}-\frac{5}{44} \sqrt{3} \text{Adf}(5,3)+\frac{5}{44} \sqrt{\frac{5}{3}} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{\text{Adf}(1,0)}{2 \sqrt{7}}+\frac{\text{Adf}(3,0)}{3 \sqrt{7}}-\frac{5 \text{Adf}(5,0)}{66 \sqrt{7}}+\frac{1}{11} \sqrt{\frac{15}{2}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | \color{darkred}{ \frac{\text{Adf}(1,1)}{\sqrt{14}}+\frac{\text{Adf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{17}{22} \sqrt{\frac{5}{42}} \text{Adf}(5,1)+\frac{1}{132} \sqrt{5} \text{Adf}(5,3)-\frac{5}{44} \text{Adf}(5,5) } | \color{darkred}{ 0 } |
d_{3y^2-r^2} | -\frac{\text{Asd}(2,0)}{2 \sqrt{5}}-\sqrt{\frac{3}{10}} \text{Asd}(2,2) | \color{darkred}{ -\frac{\text{Apd}(1,0)}{\sqrt{15}}-\frac{3}{14} \sqrt{\frac{3}{5}} \text{Apd}(3,0)-\frac{3 \text{Apd}(3,2)}{7 \sqrt{2}} } | \color{darkred}{ \sqrt{\frac{2}{15}} \text{Apd}(1,1)+\frac{3 \text{Apd}(3,1)}{14 \sqrt{5}}+\frac{3}{14} \sqrt{3} \text{Apd}(3,3) } | \color{darkred}{ 0 } | -\frac{1}{7} \sqrt{3} \text{Add}(2,0)+\frac{1}{7} \sqrt{2} \text{Add}(2,2)-\frac{5 \text{Add}(4,0)}{28 \sqrt{3}}-\frac{1}{7} \sqrt{\frac{5}{6}} \text{Add}(4,2)+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Add}(4,4) | \text{Add}(0,0)-\frac{1}{7} \text{Add}(2,0)-\frac{1}{7} \sqrt{6} \text{Add}(2,2)+\frac{3}{28} \text{Add}(4,0)+\frac{1}{7} \sqrt{\frac{5}{2}} \text{Add}(4,2)+\frac{1}{2} \sqrt{\frac{5}{14}} \text{Add}(4,4) | 0 | 0 | \frac{2}{7} \sqrt{2} \text{Add}(2,1)+\frac{1}{14} \sqrt{\frac{5}{3}} \text{Add}(4,1)+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Add}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{3 \text{Adf}(1,0)}{2 \sqrt{35}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{35}}+\sqrt{\frac{2}{21}} \text{Adf}(3,2)-\frac{5}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0)-\frac{5 \text{Adf}(5,2)}{11 \sqrt{6}} } | \color{darkred}{ \frac{3 \text{Adf}(1,1)}{\sqrt{70}}-\frac{1}{2} \sqrt{\frac{7}{15}} \text{Adf}(3,1)-\frac{\text{Adf}(3,3)}{6 \sqrt{7}}-\frac{5 \text{Adf}(5,1)}{22 \sqrt{42}}-\frac{5}{132} \text{Adf}(5,3)+\frac{5}{44} \sqrt{5} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(1,0)+\frac{\text{Adf}(3,0)}{\sqrt{21}}-\frac{5 \text{Adf}(5,0)}{22 \sqrt{21}}-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{15}{2}} \text{Adf}(5,4) } | \color{darkred}{ -\sqrt{\frac{3}{14}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{2 \sqrt{7}}+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Adf}(3,3)-\frac{3}{22} \sqrt{\frac{5}{14}} \text{Adf}(5,1)-\frac{7}{44} \sqrt{\frac{5}{3}} \text{Adf}(5,3)-\frac{5}{44} \sqrt{3} \text{Adf}(5,5) } | \color{darkred}{ 0 } |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{7} \text{Apd}(3,3) } | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) | -\frac{1}{7} \sqrt{6} \text{Add}(2,1)+\frac{1}{21} \sqrt{5} \text{Add}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Add}(4,3) | 0 | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{6 \sqrt{35}}+\frac{\text{Adf}(3,3)}{2 \sqrt{21}}-\frac{5 \text{Adf}(5,1)}{33 \sqrt{14}}-\frac{5 \text{Adf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)-\frac{5}{22} \text{Adf}(5,5) } |
d_{\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}}-\frac{1}{7} \sqrt{6} \text{Apd}(3,2) } | 0 | 0 | -\frac{1}{7} \sqrt{6} \text{Add}(2,1)+\frac{1}{21} \sqrt{5} \text{Add}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Add}(4,3) | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)-\frac{2}{21} \sqrt{10} \text{Add}(4,2) | 0 | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{3}{35}} \text{Adf}(1,0)-\frac{\text{Adf}(3,0)}{2 \sqrt{105}}-\frac{\text{Adf}(3,2)}{3 \sqrt{14}}+\frac{5}{22} \sqrt{\frac{5}{21}} \text{Adf}(5,0)+\frac{5}{33} \sqrt{2} \text{Adf}(5,2)+\frac{5 \text{Adf}(5,4)}{11 \sqrt{6}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}+\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)-\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } |
d_{\text{xz}} | -\sqrt{\frac{2}{5}} \text{Asd}(2,1) | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{4}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1) } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}}+\frac{1}{7} \sqrt{6} \text{Apd}(3,2) } | \color{darkred}{ 0 } | \frac{1}{6} \sqrt{\frac{5}{7}} \text{Add}(4,3)-\frac{1}{6} \sqrt{5} \text{Add}(4,1) | \frac{2}{7} \sqrt{2} \text{Add}(2,1)+\frac{1}{14} \sqrt{\frac{5}{3}} \text{Add}(4,1)+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Add}(4,3) | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)+\frac{2}{21} \sqrt{10} \text{Add}(4,2) | \color{darkred}{ 0 } | \color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) } | \color{darkred}{ -\sqrt{\frac{3}{35}} \text{Adf}(1,0)-\frac{\text{Adf}(3,0)}{2 \sqrt{105}}+\frac{\text{Adf}(3,2)}{3 \sqrt{14}}+\frac{5}{22} \sqrt{\frac{5}{21}} \text{Adf}(5,0)-\frac{5}{33} \sqrt{2} \text{Adf}(5,2)+\frac{5 \text{Adf}(5,4)}{11 \sqrt{6}} } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) } | \color{darkred}{ -\frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)+\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | \color{darkred}{ 0 } |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | -\sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{\text{Apf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Apf}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)-\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)-\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | 0 | 0 | \frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{\text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)-\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) | 0 | 0 | -\frac{7}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) |
f_{z\left(5z^2-r^2\right)} | \color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} } | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)-\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | \color{darkred}{ \frac{3}{2} \sqrt{\frac{3}{35}} \text{Adf}(1,0)+\frac{2 \text{Adf}(3,0)}{\sqrt{105}}+\frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,2)+\frac{5}{11} \sqrt{\frac{5}{21}} \text{Adf}(5,0)-\frac{5 \text{Adf}(5,2)}{33 \sqrt{2}} } | \color{darkred}{ -\frac{3 \text{Adf}(1,0)}{2 \sqrt{35}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{35}}+\sqrt{\frac{2}{21}} \text{Adf}(3,2)-\frac{5}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0)-\frac{5 \text{Adf}(5,2)}{11 \sqrt{6}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) } | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | \frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{1}{22} \sqrt{5} \text{Aff}(4,1)+\frac{1}{22} \sqrt{35} \text{Aff}(4,3)+\frac{25}{143} \sqrt{\frac{7}{6}} \text{Aff}(6,1)-\frac{5}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) | \frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{5 \text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{21} \text{Aff}(4,3)+\frac{25}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)+\frac{5}{143} \sqrt{7} \text{Aff}(6,3) | 0 |
f_{x\left(5x^2-r^2\right)} | \color{darkred}{ \frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,1)-\frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,3) } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Apf}(4,1)-\frac{1}{6} \sqrt{\frac{5}{3}} \text{Apf}(4,3) | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | 0 | \color{darkred}{ 3 \sqrt{\frac{3}{70}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{6 \sqrt{35}}+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,3)+\frac{5 \text{Adf}(5,1)}{6 \sqrt{14}}-\frac{5}{44} \sqrt{3} \text{Adf}(5,3)+\frac{5}{44} \sqrt{\frac{5}{3}} \text{Adf}(5,5) } | \color{darkred}{ \frac{3 \text{Adf}(1,1)}{\sqrt{70}}-\frac{1}{2} \sqrt{\frac{7}{15}} \text{Adf}(3,1)-\frac{\text{Adf}(3,3)}{6 \sqrt{7}}-\frac{5 \text{Adf}(5,1)}{22 \sqrt{42}}-\frac{5}{132} \text{Adf}(5,3)+\frac{5}{44} \sqrt{5} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{3}{35}} \text{Adf}(1,0)-\frac{\text{Adf}(3,0)}{2 \sqrt{105}}+\frac{\text{Adf}(3,2)}{3 \sqrt{14}}+\frac{5}{22} \sqrt{\frac{5}{21}} \text{Adf}(5,0)-\frac{5}{33} \sqrt{2} \text{Adf}(5,2)+\frac{5 \text{Adf}(5,4)}{11 \sqrt{6}} } | 0 | \frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{1}{22} \sqrt{5} \text{Aff}(4,1)+\frac{1}{22} \sqrt{35} \text{Aff}(4,3)+\frac{25}{143} \sqrt{\frac{7}{6}} \text{Aff}(6,1)-\frac{5}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)+\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}+\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | 0 | -\frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{3}{22} \sqrt{3} \text{Aff}(4,1)+\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{70} \text{Aff}(6,1)+\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 |
f_{y\left(5y^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)-\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{6 \sqrt{35}}+\frac{\text{Adf}(3,3)}{2 \sqrt{21}}-\frac{5 \text{Adf}(5,1)}{33 \sqrt{14}}-\frac{5 \text{Adf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Adf}(5,5) } | \color{darkred}{ -\sqrt{\frac{3}{35}} \text{Adf}(1,0)-\frac{\text{Adf}(3,0)}{2 \sqrt{105}}-\frac{\text{Adf}(3,2)}{3 \sqrt{14}}+\frac{5}{22} \sqrt{\frac{5}{21}} \text{Adf}(5,0)+\frac{5}{33} \sqrt{2} \text{Adf}(5,2)+\frac{5 \text{Adf}(5,4)}{11 \sqrt{6}} } | \color{darkred}{ 0 } | \frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{\text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)-\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) | 0 | 0 | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)-\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}-\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | 0 | 0 | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Asf}(3,2) } | \sqrt{\frac{6}{35}} \text{Apf}(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2) | -\sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{\text{Apf}(4,1)}{3 \sqrt{7}}-\frac{1}{3} \text{Apf}(4,3) | 0 | \color{darkred}{ -\frac{\text{Adf}(1,0)}{2 \sqrt{7}}+\frac{\text{Adf}(3,0)}{3 \sqrt{7}}-\frac{5 \text{Adf}(5,0)}{66 \sqrt{7}}+\frac{1}{11} \sqrt{\frac{15}{2}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | \color{darkred}{ -\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(1,0)+\frac{\text{Adf}(3,0)}{\sqrt{21}}-\frac{5 \text{Adf}(5,0)}{22 \sqrt{21}}-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{15}{2}} \text{Adf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) } | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) | -\frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{3}{22} \sqrt{3} \text{Aff}(4,1)+\frac{1}{22} \sqrt{\frac{7}{3}} \text{Aff}(4,3)-\frac{5}{429} \sqrt{70} \text{Aff}(6,1)+\frac{15}{286} \sqrt{7} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Aff}(6,5) | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | \frac{\text{Aff}(2,1)}{\sqrt{6}}+\frac{1}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)-\frac{5}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)+\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) | 0 |
f_{x\left(y^2-z^2\right)} | \color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,1)+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,3) } | \sqrt{\frac{6}{35}} \text{Apf}(2,1)+\frac{5 \text{Apf}(4,1)}{6 \sqrt{7}}+\frac{1}{6} \text{Apf}(4,3) | -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | 0 | \color{darkred}{ \frac{\text{Adf}(1,1)}{\sqrt{14}}+\frac{\text{Adf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{17}{22} \sqrt{\frac{5}{42}} \text{Adf}(5,1)+\frac{1}{132} \sqrt{5} \text{Adf}(5,3)-\frac{5}{44} \text{Adf}(5,5) } | \color{darkred}{ -\sqrt{\frac{3}{14}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{2 \sqrt{7}}+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Adf}(3,3)-\frac{3}{22} \sqrt{\frac{5}{14}} \text{Adf}(5,1)-\frac{7}{44} \sqrt{\frac{5}{3}} \text{Adf}(5,3)-\frac{5}{44} \sqrt{3} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)+\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | 0 | \frac{\text{Aff}(2,1)}{3 \sqrt{10}}+\frac{5 \text{Aff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{21} \text{Aff}(4,3)+\frac{25}{429} \sqrt{\frac{35}{2}} \text{Aff}(6,1)+\frac{5}{143} \sqrt{7} \text{Aff}(6,3) | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | \frac{\text{Aff}(2,1)}{\sqrt{6}}+\frac{1}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)-\frac{5}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)+\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | 0 |
f_{y\left(z^2-x^2\right)} | \color{darkred}{ 0 } | 0 | 0 | \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)-\frac{5}{22} \text{Adf}(5,5) } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}+\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)-\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | \color{darkred}{ 0 } | -\frac{7}{66} \sqrt{5} \text{Aff}(4,1)+\frac{1}{66} \sqrt{35} \text{Aff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Aff}(6,1)+\frac{5}{286} \sqrt{105} \text{Aff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Aff}(6,5) | 0 | 0 | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | 0 | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)-\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)-\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) |
Coupling for a single shell
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for s-p orbital mixing
Potential for s-d orbital mixing
Potential for s-f orbital mixing
Potential for p-d orbital mixing
Potential for p-f orbital mixing
Potential for d-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |