Processing math: 90%

Orientation Zxy

Symmetry Operations

In the D4h Point Group, with orientation Zxy there are the following symmetry operations

Operator Orientation
E {0,0,0} ,
C4 {0,0,1} , {0,0,1} ,
C2 {0,0,1} ,
C2 {0,1,0} , {1,0,0} ,
C2 {1,1,0} , {1,1,0} ,
i {0,0,0} ,
S4 {0,0,1} , {0,0,1} ,
σh {0,0,1} ,
σv {1,0,0} , {0,1,0} ,
σd {1,1,0} , {1,1,0} ,

Different Settings

Character Table

E(1) C4(2) C2(1) C2(2) C2(2) i(1) S4(2) σh(1) σv(2) σd(2)
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 1 1 1 1 1 1
B1g 1 1 1 1 1 1 1 1 1 1
B2g 1 1 1 1 1 1 1 1 1 1
Eg 2 0 2 0 0 2 0 2 0 0
A1u 1 1 1 1 1 1 1 1 1 1
A2u 1 1 1 1 1 1 1 1 1 1
B1u 1 1 1 1 1 1 1 1 1 1
B2u 1 1 1 1 1 1 1 1 1 1
Eu 2 0 2 0 0 2 0 2 0 0

Product Table

A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu
A1g A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu
A2g A2g A1g B2g B1g Eg A2u A1u B2u B1u Eu
B1g B1g B2g A1g A2g Eg B1u B2u A1u A2u Eu
B2g B2g B1g A2g A1g Eg B2u B1u A2u A1u Eu
Eg Eg Eg Eg Eg A1g+A2g+B1g+B2g Eu Eu Eu Eu A1u+A2u+B1u+B2u
A1u A1u A2u B1u B2u Eu A1g A2g B1g B2g Eg
A2u A2u A1u B2u B1u Eu A2g A1g B2g B1g Eg
B1u B1u B2u A1u A2u Eu B1g B2g A1g A2g Eg
B2u B2u B1u A2u A1u Eu B2g B1g A2g A1g Eg
Eu Eu Eu Eu Eu A1u+A2u+B1u+B2u Eg Eg Eg Eg A1g+A2g+B1g+B2g

Sub Groups with compatible settings

Super Groups with compatible settings

Invariant Potential expanded on renormalized spherical Harmonics

Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the D4h Point group with orientation Zxy the form of the expansion coefficients is:

Expansion

Ak,m={A(0,0)k=0m=0A(2,0)k=2m=0A(4,4)k=4(m=4m=4)A(4,0)k=4m=0A(6,4)k=6(m=4m=4)A(6,0)k=6m=0

Input format suitable for Mathematica (Quanty.nb)

Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[4, 4], k == 4 && (m == -4 || m == 4)}, {A[4, 0], k == 4 && m == 0}, {A[6, 4], k == 6 && (m == -4 || m == 4)}, {A[6, 0], k == 6 && m == 0}}, 0]

Input format suitable for Quanty

Akm_D4h_Zxy.Quanty
Akm = {{0, 0, A(0,0)} , 
       {2, 0, A(2,0)} , 
       {4, 0, A(4,0)} , 
       {4,-4, A(4,4)} , 
       {4, 4, A(4,4)} , 
       {6, 0, A(6,0)} , 
       {6,-4, A(6,4)} , 
       {6, 4, A(6,4)} }

One particle coupling on a basis of spherical harmonics

The operator representing the potential in second quantisation is given as: O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l Note the difference between the function Ak,m and the parameter Anl,nl(k,m)

we can express the operator as O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m

The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(0)0Ass(0,0)00000Asd(2,0)5000000000
Y(1)10App(0,0)15App(2,0)0000000003527Apf(2,0)1327Apf(4,0)0002Apf(4,4)33
Y(1)000App(0,0)+25App(2,0)0000000003537Apf(2,0)+4Apf(4,0)321000
Y(1)1000App(0,0)15App(2,0)000002Apf(4,4)330003527Apf(2,0)1327Apf(4,0)00
Y(2)20000Add(0,0)27Add(2,0)+121Add(4,0)00013107Add(4,4)0000000
Y(2)100000Add(0,0)+17Add(2,0)421Add(4,0)0000000000
Y(2)0Asd(2,0)500000Add(0,0)+27Add(2,0)+27Add(4,0)000000000
Y(2)10000000Add(0,0)+17Add(2,0)421Add(4,0)00000000
Y(2)2000013107Add(4,4)000Add(0,0)27Add(2,0)+121Add(4,0)0000000
Y(3)30002Apf(4,4)3300000Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)000111143Aff(4,4)5143703Aff(6,4)00
Y(3)20000000000Aff(0,0)733Aff(4,0)+10143Aff(6,0)00013370Aff(4,4)+1014314Aff(6,4)0
Y(3)103527Apf(2,0)1327Apf(4,0)000000000Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)000111143Aff(4,4)5143703Aff(6,4)
Y(3)0003537Apf(2,0)+4Apf(4,0)321000000000Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)000
Y(3)10003527Apf(2,0)1327Apf(4,0)00000111143Aff(4,4)5143703Aff(6,4)000Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)00
Y(3)2000000000013370Aff(4,4)+1014314Aff(6,4)000Aff(0,0)733Aff(4,0)+10143Aff(6,0)0
Y(3)302Apf(4,4)33000000000111143Aff(4,4)5143703Aff(6,4)000Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)

Rotation matrix to symmetry adapted functions (choice is not unique)

Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
s1000000000000000
px012012000000000000
py0i20i2000000000000
pz0010000000000000
dx2y2000012000120000000
d3z2r20000001000000000
dyz00000i20i200000000
dxz000001201200000000
dxy0000i2000i20000000
fxyz0000000000i2000i20
fx(5x2r2)00000000054034034054
fy(5y2r2)000000000i540i340i340i54
fz(5z2r2)0000000000001000
fx(y2z2)00000000034054054034
fy(z2x2)000000000i340i540i540i34
fz(x2y2)000000000012000120

One particle coupling on a basis of symmetry adapted functions

After rotation we find

s px py pz dx2y2 d3z2r2 dyz dxz dxy fxyz fx(5x2r2) fy(5y2r2) fz(5z2r2) fx(y2z2) fy(z2x2) fz(x2y2)
sAss(0,0)0000Asd(2,0)50000000000
px0App(0,0)15App(2,0)0000000031037Apf(2,0)+Apf(4,0)221+1356Apf(4,4)003Apf(2,0)235+1657Apf(4,0)Apf(4,4)3200
py00App(0,0)15App(2,0)0000000031037Apf(2,0)+Apf(4,0)221+1356Apf(4,4)003Apf(2,0)2351657Apf(4,0)+Apf(4,4)320
pz000App(0,0)+25App(2,0)000000003537Apf(2,0)+4Apf(4,0)321000
dx2y20000Add(0,0)27Add(2,0)+121Add(4,0)+13107Add(4,4)00000000000
d3z2r2Asd(2,0)50000Add(0,0)+27Add(2,0)+27Add(4,0)0000000000
dyz000000Add(0,0)+17Add(2,0)421Add(4,0)000000000
dxz0000000Add(0,0)+17Add(2,0)421Add(4,0)00000000
dxy00000000Add(0,0)27Add(2,0)+121Add(4,0)13107Add(4,4)0000000
fxyz000000000Aff(0,0)733Aff(4,0)13370Aff(4,4)+10143Aff(6,0)1014314Aff(6,4)000000
fx(5x2r2)031037Apf(2,0)+Apf(4,0)221+1356Apf(4,4)00000000Aff(0,0)215Aff(2,0)+344Aff(4,0)+122352Aff(4,4)125Aff(6,0)17162528672Aff(6,4)00Aff(2,0)1514453Aff(4,0)+12276Aff(4,4)3557253Aff(6,0)5286356Aff(6,4)00
fy(5y2r2)0031037Apf(2,0)+Apf(4,0)221+1356Apf(4,4)00000000Aff(0,0)215Aff(2,0)+344Aff(4,0)+122352Aff(4,4)125Aff(6,0)17162528672Aff(6,4)00Aff(2,0)15+14453Aff(4,0)12276Aff(4,4)+3557253Aff(6,0)+5286356Aff(6,4)0
fz(5z2r2)0003537Apf(2,0)+4Apf(4,0)32100000000Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)000
fx(y2z2)03Apf(2,0)235+1657Apf(4,0)Apf(4,4)3200000000Aff(2,0)1514453Aff(4,0)+12276Aff(4,4)3557253Aff(6,0)5286356Aff(6,4)00Aff(0,0)+7132Aff(4,0)122352Aff(4,4)544Aff(6,0)+2528672Aff(6,4)00
fy(z2x2)003Apf(2,0)2351657Apf(4,0)+Apf(4,4)3200000000Aff(2,0)15+14453Aff(4,0)12276Aff(4,4)+3557253Aff(6,0)+5286356Aff(6,4)00Aff(0,0)+7132Aff(4,0)122352Aff(4,4)544Aff(6,0)+2528672Aff(6,4)0
fz(x2y2)000000000000000Aff(0,0)733Aff(4,0)+13370Aff(4,4)+10143Aff(6,0)+1014314Aff(6,4)

Coupling for a single shell

Although the parameters Al,l(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al,l(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l and l.

Click on one of the subsections to expand it or

Potential for s orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={Ea1gk=0m=00True

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Ea1g, k == 0 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D4h_Zxy.Quanty
Akm = {{0, 0, Ea1g} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(0)0
Y(0)0Ea1g

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

s
sEa1g

Rotation matrix used

Rotation matrix used

Y(0)0
s1

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Ea1g
ψ(θ,ϕ)=11 12π
ψ(ˆx,ˆy,ˆz)=11 12π

Potential for p orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={13(Ea2u+2Eeu)k=0m=05(Ea2uEeu)3k=2m=0

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2u + 2*Eeu)/3, k == 0 && m == 0}, {(5*(Ea2u - Eeu))/3, k == 2 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D4h_Zxy.Quanty
Akm = {{0, 0, (1/3)*(Ea2u + (2)*(Eeu))} , 
       {2, 0, (5/3)*(Ea2u + (-1)*(Eeu))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(1)1 Y(1)0 Y(1)1
Y(1)1Eeu00
Y(1)00Ea2u0
Y(1)100Eeu

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

px py pz
pxEeu00
py0Eeu0
pz00Ea2u

Rotation matrix used

Rotation matrix used

Y(1)1 Y(1)0 Y(1)1
px12012
pyi20i2
pz010

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eeu
ψ(θ,ϕ)=11 123πsin(θ)cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πx
Eeu
ψ(θ,ϕ)=11 123πsin(θ)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 123πy
Ea2u
ψ(θ,ϕ)=11 123πcos(θ)
ψ(ˆx,ˆy,ˆz)=11 123πz

Potential for d orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={15(Ea1g+Eb1g+Eb2g+2Eeg)k=0m=0Ea1gEb1gEb2g+Eegk=2m=032710(Eb1gEb2g)k=4(m=4m=4)310(6Ea1g+Eb1g+Eb2g8Eeg)k=4m=0

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea1g + Eb1g + Eb2g + 2*Eeg)/5, k == 0 && m == 0}, {Ea1g - Eb1g - Eb2g + Eeg, k == 2 && m == 0}, {(3*Sqrt[7/10]*(Eb1g - Eb2g))/2, k == 4 && (m == -4 || m == 4)}, {(3*(6*Ea1g + Eb1g + Eb2g - 8*Eeg))/10, k == 4 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D4h_Zxy.Quanty
Akm = {{0, 0, (1/5)*(Ea1g + Eb1g + Eb2g + (2)*(Eeg))} , 
       {2, 0, Ea1g + (-1)*(Eb1g) + (-1)*(Eb2g) + Eeg} , 
       {4, 0, (3/10)*((6)*(Ea1g) + Eb1g + Eb2g + (-8)*(Eeg))} , 
       {4,-4, (3/2)*((sqrt(7/10))*(Eb1g + (-1)*(Eb2g)))} , 
       {4, 4, (3/2)*((sqrt(7/10))*(Eb1g + (-1)*(Eb2g)))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
Y(2)2Eb1g+Eb2g2000Eb1gEb2g2
Y(2)10Eeg000
Y(2)000Ea1g00
Y(2)1000Eeg0
Y(2)2Eb1gEb2g2000Eb1g+Eb2g2

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

dx2y2 d3z2r2 dyz dxz dxy
dx2y2Eb1g0000
d3z2r20Ea1g000
dyz00Eeg00
dxz000Eeg0
dxy0000Eb2g

Rotation matrix used

Rotation matrix used

Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2
dx2y21200012
d3z2r200100
dyz0i20i20
dxz0120120
dxyi2000i2

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

Eb1g
ψ(θ,ϕ)=11 1415πsin2(θ)cos(2ϕ)
ψ(ˆx,ˆy,ˆz)=11 1415π(x2y2)
Ea1g
ψ(θ,ϕ)=11 185π(3cos(2θ)+1)
ψ(ˆx,ˆy,ˆz)=11 145π(3z21)
Eeg
ψ(θ,ϕ)=11 1415πsin(2θ)sin(ϕ)
ψ(ˆx,ˆy,ˆz)=11 1215πyz
Eeg
ψ(θ,ϕ)=11 1415πsin(2θ)cos(ϕ)
ψ(ˆx,ˆy,ˆz)=11 1215πxz
Eb2g
ψ(θ,ϕ)=11 1415πsin2(θ)sin(2ϕ)
ψ(ˆx,ˆy,ˆz)=11 1215πxy

Potential for f orbitals

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

Ak,m={17(Ea2u+Eb1u+Eb2u+2Eeu1+2Eeu2)k=0m=057(Ea2uEeu1+15Meu)k=2m=0356(270Eb1u270Eb2u370Eeu1+370Eeu2242Meu)k=4(m=4m=4)328(12Ea2u14Eb1u14Eb2u+9Eeu1+7Eeu2215Meu)k=4m=0135603(442Eb1u442Eb2u+542Eeu1542Eeu2+270Meu)k=6(m=4m=4)13280(40Ea2u+12Eb1u+12Eb2u25Eeu139Eeu21415Meu)k=6m=0

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2u + Eb1u + Eb2u + 2*Eeu1 + 2*Eeu2)/7, k == 0 && m == 0}, {(5*(Ea2u - Eeu1 + Sqrt[15]*Meu))/7, k == 2 && m == 0}, {(-3*(2*Sqrt[70]*Eb1u - 2*Sqrt[70]*Eb2u - 3*Sqrt[70]*Eeu1 + 3*Sqrt[70]*Eeu2 - 2*Sqrt[42]*Meu))/56, k == 4 && (m == -4 || m == 4)}, {(3*(12*Ea2u - 14*Eb1u - 14*Eb2u + 9*Eeu1 + 7*Eeu2 - 2*Sqrt[15]*Meu))/28, k == 4 && m == 0}, {(-13*Sqrt[3]*(4*Sqrt[42]*Eb1u - 4*Sqrt[42]*Eb2u + 5*Sqrt[42]*Eeu1 - 5*Sqrt[42]*Eeu2 + 2*Sqrt[70]*Meu))/560, k == 6 && (m == -4 || m == 4)}, {(13*(40*Ea2u + 12*Eb1u + 12*Eb2u - 25*Eeu1 - 39*Eeu2 - 14*Sqrt[15]*Meu))/280, k == 6 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D4h_Zxy.Quanty
Akm = {{0, 0, (1/7)*(Ea2u + Eb1u + Eb2u + (2)*(Eeu1) + (2)*(Eeu2))} , 
       {2, 0, (5/7)*(Ea2u + (-1)*(Eeu1) + (sqrt(15))*(Meu))} , 
       {4, 0, (3/28)*((12)*(Ea2u) + (-14)*(Eb1u) + (-14)*(Eb2u) + (9)*(Eeu1) + (7)*(Eeu2) + (-2)*((sqrt(15))*(Meu)))} , 
       {4,-4, (-3/56)*((2)*((sqrt(70))*(Eb1u)) + (-2)*((sqrt(70))*(Eb2u)) + (-3)*((sqrt(70))*(Eeu1)) + (3)*((sqrt(70))*(Eeu2)) + (-2)*((sqrt(42))*(Meu)))} , 
       {4, 4, (-3/56)*((2)*((sqrt(70))*(Eb1u)) + (-2)*((sqrt(70))*(Eb2u)) + (-3)*((sqrt(70))*(Eeu1)) + (3)*((sqrt(70))*(Eeu2)) + (-2)*((sqrt(42))*(Meu)))} , 
       {6, 0, (13/280)*((40)*(Ea2u) + (12)*(Eb1u) + (12)*(Eb2u) + (-25)*(Eeu1) + (-39)*(Eeu2) + (-14)*((sqrt(15))*(Meu)))} , 
       {6,-4, (-13/560)*((sqrt(3))*((4)*((sqrt(42))*(Eb1u)) + (-4)*((sqrt(42))*(Eb2u)) + (5)*((sqrt(42))*(Eeu1)) + (-5)*((sqrt(42))*(Eeu2)) + (2)*((sqrt(70))*(Meu))))} , 
       {6, 4, (-13/560)*((sqrt(3))*((4)*((sqrt(42))*(Eb1u)) + (-4)*((sqrt(42))*(Eb2u)) + (5)*((sqrt(42))*(Eeu1)) + (-5)*((sqrt(42))*(Eeu2)) + (2)*((sqrt(70))*(Meu))))} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(3)318(5Eeu1+3Eeu2215Meu)00018(15Eeu115Eeu2+2Meu)00
Y(3)20Eb1u+Eb2u2000Eb2uEb1u20
Y(3)10018(3Eeu1+5Eeu2+215Meu)00018(15Eeu115Eeu2+2Meu)
Y(3)0000Ea2u000
Y(3)118(15Eeu115Eeu2+2Meu)00018(3Eeu1+5Eeu2+215Meu)00
Y(3)20Eb2uEb1u2000Eb1u+Eb2u20
Y(3)30018(15Eeu115Eeu2+2Meu)00018(5Eeu1+3Eeu2215Meu)

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

fxyz fx(5x2r2) fy(5y2r2) fz(5z2r2) fx(y2z2) fy(z2x2) fz(x2y2)
fxyzEb1u000000
fx(5x2r2)0Eeu100Meu00
fy(5y2r2)00Eeu100Meu0
fz(5z2r2)000Ea2u000
fx(y2z2)0Meu00Eeu200
fy(z2x2)00Meu00Eeu20
fz(x2y2)000000Eb2u

Rotation matrix used

Rotation matrix used

Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
fxyz0i2000i20
fx(5x2r2)54034034054
fy(5y2r2)i540i340i34 0 -\frac{i \sqrt{5}}{4}
f_{z\left(5z^2-r^2\right)} 0 0 0 1 0 0 0
f_{x\left(y^2-z^2\right)} -\frac{\sqrt{3}}{4} 0 -\frac{\sqrt{5}}{4} 0 \frac{\sqrt{5}}{4} 0 \frac{\sqrt{3}}{4}
f_{y\left(z^2-x^2\right)} -\frac{i \sqrt{3}}{4} 0 \frac{i \sqrt{5}}{4} 0 \frac{i \sqrt{5}}{4} 0 -\frac{i \sqrt{3}}{4}
f_{z\left(x^2-y^2\right)} 0 \frac{1}{\sqrt{2}} 0 0 0 \frac{1}{\sqrt{2}} 0

Irriducible representations and their onsite energy

Irriducible representations and their onsite energy

\text{Eb1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{105}{\pi }} x y z
\text{Eeu1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )-5 \cos (2 \theta )-7\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} x \left(5 x^2-15 y^2-15 z^2+3\right)
\text{Eeu1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )+7\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} y \left(-15 x^2+5 y^2-15 z^2+3\right)
\text{Ea2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta ))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right)
\text{Eeu2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{105}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \sin ^2(\theta ) \cos (2 \phi )+3 \cos (2 \theta )+1\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{105}{\pi }} x \left(x^2-3 y^2+5 z^2-1\right)
\text{Eeu2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{32} \sqrt{\frac{105}{\pi }} \sin (\theta ) \sin (\phi ) \left(-4 \sin ^2(\theta ) \cos (2 \phi )+6 \cos (2 \theta )+2\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{105}{\pi }} y \left(-3 x^2+y^2+5 z^2-1\right)
\text{Eb2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right)

Coupling between two shells

Click on one of the subsections to expand it or

Potential for s-d orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

A_{k,m} = \begin{cases} 0 & k\neq 2\lor m\neq 0 \\ A(2,0) & \text{True} \end{cases}

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D4h_Zxy.Quanty
Akm = {{2, 0, A(2,0)} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{0}^{(0)}} 0 0 \frac{A(2,0)}{\sqrt{5}} 0 0

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

d_{x^2-y^2} d_{3z^2-r^2} d_{\text{yz}} d_{\text{xz}} d_{\text{xy}}
\text{s} 0 \frac{A(2,0)}{\sqrt{5}} 0 0 0

Potential for p-f orbital mixing

Potential parameterized with onsite energies of irriducible representations

Potential parameterized with onsite energies of irriducible representations

A_{k,m} = \begin{cases} 0 & k=0\land m=0 \\ A(2,0) & k=2\land m=0 \\ A(4,4) & k=4\land (m=-4\lor m=4) \\ A(4,0) & k=4\land m=0 \end{cases}

Input format suitable for Mathematica (Quanty.nb)

Input format suitable for Mathematica (Quanty.nb)

Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[4, 4], k == 4 && (m == -4 || m == 4)}, {A[4, 0], k == 4 && m == 0}}, 0]

Input format suitable for Quanty

Input format suitable for Quanty

Akm_D4h_Zxy.Quanty
Akm = {{2, 0, A(2,0)} , 
       {4, 0, A(4,0)} , 
       {4,-4, A(4,4)} , 
       {4, 4, A(4,4)} }

The Hamiltonian on a basis of spherical Harmonics

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0 0 -\frac{2 A(4,4)}{3 \sqrt{3}}
{Y_{0}^{(1)}} 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0
{Y_{1}^{(1)}} -\frac{2 A(4,4)}{3 \sqrt{3}} 0 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0

The Hamiltonian on a basis of symmetric functions

The Hamiltonian on a basis of symmetric functions

f_{\text{xyz}} f_{x\left(5x^2-r^2\right)} f_{y\left(5y^2-r^2\right)} f_{z\left(5z^2-r^2\right)} f_{x\left(y^2-z^2\right)} f_{y\left(z^2-x^2\right)} f_{z\left(x^2-y^2\right)}
p_x 0 \frac{5 A(4,0)-9 A(2,0)}{10 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{6}} A(4,4) 0 0 \frac{5 A(4,0)-9 A(2,0)}{6 \sqrt{35}}-\frac{A(4,4)}{3 \sqrt{2}} 0 0
p_y 0 0 \frac{5 A(4,0)-9 A(2,0)}{10 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{6}} A(4,4) 0 0 \frac{9 A(2,0)-5 A(4,0)}{6 \sqrt{35}}+\frac{A(4,4)}{3 \sqrt{2}} 0
p_z 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0

Table of several point groups

Return to Main page on Point Groups

Nonaxial groups C1 Cs Ci
Cn groups C2 C3 C4 C5 C6 C7 C8
Dn groups D2 D3 D4 D5 D6 D7 D8
Cnv groups C2v C3v C4v C5v C6v C7v C8v
Cnh groups C2h C3h C4h C5h C6h
Dnh groups D2h D3h D4h D5h D6h D7h D8h
Dnd groups D2d D3d D4d D5d D6d D7d D8d
Sn groups S2 S4 S6 S8 S10 S12
Cubic groups T Th Td O Oh I Ih
Linear groups C\inftyv D\inftyh

Print/export