Orientation Zxy
Symmetry Operations
In the D4h Point Group, with orientation Zxy there are the following symmetry operations
Operator Orientation
E { 0 , 0 , 0 } ,
C 4 { 0 , 0 , 1 } , { 0 , 0 , − 1 } ,
C 2 { 0 , 0 , 1 } ,
C 2 { 0 , 1 , 0 } , { 1 , 0 , 0 } ,
C 2 { 1 , 1 , 0 } , { 1 , − 1 , 0 } ,
i { 0 , 0 , 0 } ,
S 4 { 0 , 0 , 1 } , { 0 , 0 , − 1 } ,
σ h { 0 , 0 , 1 } ,
σ v { 1 , 0 , 0 } , { 0 , 1 , 0 } ,
σ d { 1 , 1 , 0 } , { 1 , − 1 , 0 } ,
Different Settings
Character Table
E (1) C 4 (2) C 2 (1) C 2 (2) C 2 (2) i (1) S 4 (2) σ h (1) σ v (2) σ d (2)
A 1 g 1 1 1 1 1 1 1 1 1 1
A 2 g 1 1 1 − 1 − 1 1 1 1 − 1 − 1
B 1 g 1 − 1 1 1 − 1 1 − 1 1 1 − 1
B 2 g 1 − 1 1 − 1 1 1 − 1 1 − 1 1
E g 2 0 − 2 0 0 2 0 − 2 0 0
A 1 u 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1
A 2 u 1 1 1 − 1 − 1 − 1 − 1 − 1 1 1
B 1 u 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1
B 2 u 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1
E u 2 0 − 2 0 0 − 2 0 2 0 0
Product Table
A 1 g A 2 g B 1 g B 2 g E g A 1 u A 2 u B 1 u B 2 u E u
A 1 g A 1 g A 2 g B 1 g B 2 g E g A 1 u A 2 u B 1 u B 2 u E u
A 2 g A 2 g A 1 g B 2 g B 1 g E g A 2 u A 1 u B 2 u B 1 u E u
B 1 g B 1 g B 2 g A 1 g A 2 g E g B 1 u B 2 u A 1 u A 2 u E u
B 2 g B 2 g B 1 g A 2 g A 1 g E g B 2 u B 1 u A 2 u A 1 u E u
E g E g E g E g E g A 1 g + A 2 g + B 1 g + B 2 g E u E u E u E u A 1 u + A 2 u + B 1 u + B 2 u
A 1 u A 1 u A 2 u B 1 u B 2 u E u A 1 g A 2 g B 1 g B 2 g E g
A 2 u A 2 u A 1 u B 2 u B 1 u E u A 2 g A 1 g B 2 g B 1 g E g
B 1 u B 1 u B 2 u A 1 u A 2 u E u B 1 g B 2 g A 1 g A 2 g E g
B 2 u B 2 u B 1 u A 2 u A 1 u E u B 2 g B 1 g A 2 g A 1 g E g
E u E u E u E u E u A 1 u + A 2 u + B 1 u + B 2 u E g E g E g E g A 1 g + A 2 g + B 1 g + B 2 g
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics.
V ( r , θ , ϕ ) = ∞ ∑ k = 0 k ∑ m = − k A k , m ( r ) C ( m ) k ( θ , ϕ )
Here A k , m ( r ) is a radial function and C ( m ) k ( θ , ϕ ) a renormalised spherical harmonics. C ( m ) k ( θ , ϕ ) = √ 4 π 2 k + 1 Y ( m ) k ( θ , ϕ )
The presence of symmetry induces relations between the expansion coefficients such that V ( r , θ , ϕ ) is invariant under all symmetry operations. For the D4h Point group with orientation Zxy the form of the expansion coefficients is:
Expansion
A k , m = { A ( 0 , 0 ) k = 0 ∧ m = 0 A ( 2 , 0 ) k = 2 ∧ m = 0 A ( 4 , 4 ) k = 4 ∧ ( m = − 4 ∨ m = 4 ) A ( 4 , 0 ) k = 4 ∧ m = 0 A ( 6 , 4 ) k = 6 ∧ ( m = − 4 ∨ m = 4 ) A ( 6 , 0 ) k = 6 ∧ m = 0
Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[4, 4], k == 4 && (m == -4 || m == 4)}, {A[4, 0], k == 4 && m == 0}, {A[6, 4], k == 6 && (m == -4 || m == 4)}, {A[6, 0], k == 6 && m == 0}}, 0]
Akm_D4h_Zxy.Quanty
Akm = {{0, 0, A(0,0)} ,
{2, 0, A(2,0)} ,
{4, 0, A(4,0)} ,
{4,-4, A(4,4)} ,
{4, 4, A(4,4)} ,
{6, 0, A(6,0)} ,
{6,-4, A(6,4)} ,
{6, 4, A(6,4)} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as:
O = ∑ n ″ , l ″ , m ″ , n ′ , l ′ , m ′ ⟨ ψ n ″ , l ″ , m ″ ( r , θ , ϕ ) | V ( r , θ , ϕ ) | ψ n ′ , l ′ , m ′ ( r , θ , ϕ ) ⟩ a † n ″ , l ″ , m ″ a † n ′ , l ′ , m ′
For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψ n , l , m ( r , θ , ϕ ) = R n , l ( r ) Y ( l ) m ( θ , ϕ ) . With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
A n ″ l ″ , n ′ l ′ ( k , m ) = ⟨ R n ″ , l ″ | A k , m ( r ) | R n ′ , l ′ ⟩
Note the difference between the function A k , m and the parameter A n ″ l ″ , n ′ l ′ ( k , m )
we can express the operator as
O = ∑ n ″ , l ″ , m ″ , n ′ , l ′ , m ′ , k , m A n ″ l ″ , n ′ l ′ ( k , m ) ⟨ Y ( m ″ ) l ″ ( θ , ϕ ) | C ( m ) k ( θ , ϕ ) | Y ( m ′ ) l ′ ( θ , ϕ ) ⟩ a † n ″ , l ″ , m ″ a † n ′ , l ′ , m ′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A l ″ , l ′ ( k , m ) can be complex. Instead of allowing complex parameters we took A l ″ , l ′ ( k , m ) + I B l ″ , l ′ ( k , m ) (with both A and B real) as the expansion parameter.
Y ( 0 ) 0 Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1 Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2 Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
Y ( 0 ) 0 Ass ( 0 , 0 ) 0 0 0 0 0 Asd ( 2 , 0 ) √ 5 0 0 0 0 0 0 0 0 0
Y ( 1 ) − 1 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 0 0 0 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 − 2 Apf ( 4 , 4 ) 3 √ 3
Y ( 1 ) 0 0 0 App ( 0 , 0 ) + 2 5 App ( 2 , 0 ) 0 0 0 0 0 0 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0
Y ( 1 ) 1 0 0 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 0 0 − 2 Apf ( 4 , 4 ) 3 √ 3 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0
Y ( 2 ) − 2 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 1 3 √ 10 7 Add ( 4 , 4 ) 0 0 0 0 0 0 0
Y ( 2 ) − 1 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 0 0
Y ( 2 ) 0 Asd ( 2 , 0 ) √ 5 0 0 0 0 0 Add ( 0 , 0 ) + 2 7 Add ( 2 , 0 ) + 2 7 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 0
Y ( 2 ) 1 0 0 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0
Y ( 2 ) 2 0 0 0 0 1 3 √ 10 7 Add ( 4 , 4 ) 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0
Y ( 3 ) − 3 0 0 0 − 2 Apf ( 4 , 4 ) 3 √ 3 0 0 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 ) 0 0 0 1 11 √ 14 3 Aff ( 4 , 4 ) − 5 143 √ 70 3 Aff ( 6 , 4 ) 0 0
Y ( 3 ) − 2 0 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0 0 0 1 33 √ 70 Aff ( 4 , 4 ) + 10 143 √ 14 Aff ( 6 , 4 ) 0
Y ( 3 ) − 1 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0 0 1 11 √ 14 3 Aff ( 4 , 4 ) − 5 143 √ 70 3 Aff ( 6 , 4 )
Y ( 3 ) 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) + 4 15 Aff ( 2 , 0 ) + 2 11 Aff ( 4 , 0 ) + 100 429 Aff ( 6 , 0 ) 0 0 0
Y ( 3 ) 1 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0 0 1 11 √ 14 3 Aff ( 4 , 4 ) − 5 143 √ 70 3 Aff ( 6 , 4 ) 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0
Y ( 3 ) 2 0 0 0 0 0 0 0 0 0 0 1 33 √ 70 Aff ( 4 , 4 ) + 10 143 √ 14 Aff ( 6 , 4 ) 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0
Y ( 3 ) 3 0 − 2 Apf ( 4 , 4 ) 3 √ 3 0 0 0 0 0 0 0 0 0 1 11 √ 14 3 Aff ( 4 , 4 ) − 5 143 √ 70 3 Aff ( 6 , 4 ) 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 )
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y ( 0 ) 0 Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1 Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2 Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
s 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p x 0 1 √ 2 0 − 1 √ 2 0 0 0 0 0 0 0 0 0 0 0 0
p y 0 i √ 2 0 i √ 2 0 0 0 0 0 0 0 0 0 0 0 0
p z 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
d x 2 − y 2 0 0 0 0 1 √ 2 0 0 0 1 √ 2 0 0 0 0 0 0 0
d 3 z 2 − r 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
d yz 0 0 0 0 0 i √ 2 0 i √ 2 0 0 0 0 0 0 0 0
d xz 0 0 0 0 0 1 √ 2 0 − 1 √ 2 0 0 0 0 0 0 0 0
d xy 0 0 0 0 i √ 2 0 0 0 − i √ 2 0 0 0 0 0 0 0
f xyz 0 0 0 0 0 0 0 0 0 0 i √ 2 0 0 0 − i √ 2 0
f x ( 5 x 2 − r 2 ) 0 0 0 0 0 0 0 0 0 √ 5 4 0 − √ 3 4 0 √ 3 4 0 − √ 5 4
f y ( 5 y 2 − r 2 ) 0 0 0 0 0 0 0 0 0 − i √ 5 4 0 − i √ 3 4 0 − i √ 3 4 0 − i √ 5 4
f z ( 5 z 2 − r 2 ) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
f x ( y 2 − z 2 ) 0 0 0 0 0 0 0 0 0 − √ 3 4 0 − √ 5 4 0 √ 5 4 0 √ 3 4
f y ( z 2 − x 2 ) 0 0 0 0 0 0 0 0 0 − i √ 3 4 0 i √ 5 4 0 i √ 5 4 0 − i √ 3 4
f z ( x 2 − y 2 ) 0 0 0 0 0 0 0 0 0 0 1 √ 2 0 0 0 1 √ 2 0
One particle coupling on a basis of symmetry adapted functions
After rotation we find
s p x p y p z d x 2 − y 2 d 3 z 2 − r 2 d yz d xz d xy f xyz f x ( 5 x 2 − r 2 ) f y ( 5 y 2 − r 2 ) f z ( 5 z 2 − r 2 ) f x ( y 2 − z 2 ) f y ( z 2 − x 2 ) f z ( x 2 − y 2 )
s Ass ( 0 , 0 ) 0 0 0 0 Asd ( 2 , 0 ) √ 5 0 0 0 0 0 0 0 0 0 0
p x 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 0 0 0 0 0 − 3 10 √ 3 7 Apf ( 2 , 0 ) + Apf ( 4 , 0 ) 2 √ 21 + 1 3 √ 5 6 Apf ( 4 , 4 ) 0 0 − 3 Apf ( 2 , 0 ) 2 √ 35 + 1 6 √ 5 7 Apf ( 4 , 0 ) − Apf ( 4 , 4 ) 3 √ 2 0 0
p y 0 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 0 0 0 0 0 − 3 10 √ 3 7 Apf ( 2 , 0 ) + Apf ( 4 , 0 ) 2 √ 21 + 1 3 √ 5 6 Apf ( 4 , 4 ) 0 0 3 Apf ( 2 , 0 ) 2 √ 35 − 1 6 √ 5 7 Apf ( 4 , 0 ) + Apf ( 4 , 4 ) 3 √ 2 0
p z 0 0 0 App ( 0 , 0 ) + 2 5 App ( 2 , 0 ) 0 0 0 0 0 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0
d x 2 − y 2 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) + 1 3 √ 10 7 Add ( 4 , 4 ) 0 0 0 0 0 0 0 0 0 0 0
d 3 z 2 − r 2 Asd ( 2 , 0 ) √ 5 0 0 0 0 Add ( 0 , 0 ) + 2 7 Add ( 2 , 0 ) + 2 7 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 0 0
d yz 0 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 0
d xz 0 0 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0
d xy 0 0 0 0 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) − 1 3 √ 10 7 Add ( 4 , 4 ) 0 0 0 0 0 0 0
f xyz 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) − 1 33 √ 70 Aff ( 4 , 4 ) + 10 143 Aff ( 6 , 0 ) − 10 143 √ 14 Aff ( 6 , 4 ) 0 0 0 0 0 0
f x ( 5 x 2 − r 2 ) 0 − 3 10 √ 3 7 Apf ( 2 , 0 ) + Apf ( 4 , 0 ) 2 √ 21 + 1 3 √ 5 6 Apf ( 4 , 4 ) 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 2 15 Aff ( 2 , 0 ) + 3 44 Aff ( 4 , 0 ) + 1 22 √ 35 2 Aff ( 4 , 4 ) − 125 Aff ( 6 , 0 ) 1716 − 25 286 √ 7 2 Aff ( 6 , 4 ) 0 0 Aff ( 2 , 0 ) √ 15 − 1 44 √ 5 3 Aff ( 4 , 0 ) + 1 22 √ 7 6 Aff ( 4 , 4 ) − 35 572 √ 5 3 Aff ( 6 , 0 ) − 5 286 √ 35 6 Aff ( 6 , 4 ) 0 0
f y ( 5 y 2 − r 2 ) 0 0 − 3 10 √ 3 7 Apf ( 2 , 0 ) + Apf ( 4 , 0 ) 2 √ 21 + 1 3 √ 5 6 Apf ( 4 , 4 ) 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 2 15 Aff ( 2 , 0 ) + 3 44 Aff ( 4 , 0 ) + 1 22 √ 35 2 Aff ( 4 , 4 ) − 125 Aff ( 6 , 0 ) 1716 − 25 286 √ 7 2 Aff ( 6 , 4 ) 0 0 − Aff ( 2 , 0 ) √ 15 + 1 44 √ 5 3 Aff ( 4 , 0 ) − 1 22 √ 7 6 Aff ( 4 , 4 ) + 35 572 √ 5 3 Aff ( 6 , 0 ) + 5 286 √ 35 6 Aff ( 6 , 4 ) 0
f z ( 5 z 2 − r 2 ) 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) + 4 15 Aff ( 2 , 0 ) + 2 11 Aff ( 4 , 0 ) + 100 429 Aff ( 6 , 0 ) 0 0 0
f x ( y 2 − z 2 ) 0 − 3 Apf ( 2 , 0 ) 2 √ 35 + 1 6 √ 5 7 Apf ( 4 , 0 ) − Apf ( 4 , 4 ) 3 √ 2 0 0 0 0 0 0 0 0 Aff ( 2 , 0 ) √ 15 − 1 44 √ 5 3 Aff ( 4 , 0 ) + 1 22 √ 7 6 Aff ( 4 , 4 ) − 35 572 √ 5 3 Aff ( 6 , 0 ) − 5 286 √ 35 6 Aff ( 6 , 4 ) 0 0 Aff ( 0 , 0 ) + 7 132 Aff ( 4 , 0 ) − 1 22 √ 35 2 Aff ( 4 , 4 ) − 5 44 Aff ( 6 , 0 ) + 25 286 √ 7 2 Aff ( 6 , 4 ) 0 0
f y ( z 2 − x 2 ) 0 0 3 Apf ( 2 , 0 ) 2 √ 35 − 1 6 √ 5 7 Apf ( 4 , 0 ) + Apf ( 4 , 4 ) 3 √ 2 0 0 0 0 0 0 0 0 − Aff ( 2 , 0 ) √ 15 + 1 44 √ 5 3 Aff ( 4 , 0 ) − 1 22 √ 7 6 Aff ( 4 , 4 ) + 35 572 √ 5 3 Aff ( 6 , 0 ) + 5 286 √ 35 6 Aff ( 6 , 4 ) 0 0 Aff ( 0 , 0 ) + 7 132 Aff ( 4 , 0 ) − 1 22 √ 35 2 Aff ( 4 , 4 ) − 5 44 Aff ( 6 , 0 ) + 25 286 √ 7 2 Aff ( 6 , 4 ) 0
f z ( x 2 − y 2 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 1 33 √ 70 Aff ( 4 , 4 ) + 10 143 Aff ( 6 , 0 ) + 10 143 √ 14 Aff ( 6 , 4 )
Coupling for a single shell
Although the parameters A l ″ , l ′ ( k , m ) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A l ″ , l ′ ( k , m ) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l ″ and l ′ .
Click on one of the subsections to expand it or expand all
Potential for s orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Ea1g, k == 0 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D4h_Zxy.Quanty
Akm = {{0, 0, Ea1g} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Ea1g
ψ ( θ , ϕ ) = √ 1 1 1 2 √ π
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ π
Potential for p orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 3 ( Ea2u + 2 Eeu ) k = 0 ∧ m = 0 5 ( Ea2u − Eeu ) 3 k = 2 ∧ m = 0
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2u + 2*Eeu)/3, k == 0 && m == 0}, {(5*(Ea2u - Eeu))/3, k == 2 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D4h_Zxy.Quanty
Akm = {{0, 0, (1/3)*(Ea2u + (2)*(Eeu))} ,
{2, 0, (5/3)*(Ea2u + (-1)*(Eeu))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1
Y ( 1 ) − 1 Eeu 0 0
Y ( 1 ) 0 0 Ea2u 0
Y ( 1 ) 1 0 0 Eeu
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
p x p y p z
p x Eeu 0 0
p y 0 Eeu 0
p z 0 0 Ea2u
Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1
p x 1 √ 2 0 − 1 √ 2
p y i √ 2 0 i √ 2
p z 0 1 0
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Eeu
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π sin ( θ ) cos ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π x
Eeu
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π sin ( θ ) sin ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π y
Ea2u
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π cos ( θ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π z
Potential for d orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 5 ( Ea1g + Eb1g + Eb2g + 2 Eeg ) k = 0 ∧ m = 0 Ea1g − Eb1g − Eb2g + Eeg k = 2 ∧ m = 0 3 2 √ 7 10 ( Eb1g − Eb2g ) k = 4 ∧ ( m = − 4 ∨ m = 4 ) 3 10 ( 6 Ea1g + Eb1g + Eb2g − 8 Eeg ) k = 4 ∧ m = 0
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea1g + Eb1g + Eb2g + 2*Eeg)/5, k == 0 && m == 0}, {Ea1g - Eb1g - Eb2g + Eeg, k == 2 && m == 0}, {(3*Sqrt[7/10]*(Eb1g - Eb2g))/2, k == 4 && (m == -4 || m == 4)}, {(3*(6*Ea1g + Eb1g + Eb2g - 8*Eeg))/10, k == 4 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D4h_Zxy.Quanty
Akm = {{0, 0, (1/5)*(Ea1g + Eb1g + Eb2g + (2)*(Eeg))} ,
{2, 0, Ea1g + (-1)*(Eb1g) + (-1)*(Eb2g) + Eeg} ,
{4, 0, (3/10)*((6)*(Ea1g) + Eb1g + Eb2g + (-8)*(Eeg))} ,
{4,-4, (3/2)*((sqrt(7/10))*(Eb1g + (-1)*(Eb2g)))} ,
{4, 4, (3/2)*((sqrt(7/10))*(Eb1g + (-1)*(Eb2g)))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2
Y ( 2 ) − 2 Eb1g + Eb2g 2 0 0 0 Eb1g − Eb2g 2
Y ( 2 ) − 1 0 Eeg 0 0 0
Y ( 2 ) 0 0 0 Ea1g 0 0
Y ( 2 ) 1 0 0 0 Eeg 0
Y ( 2 ) 2 Eb1g − Eb2g 2 0 0 0 Eb1g + Eb2g 2
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d x 2 − y 2 d 3 z 2 − r 2 d yz d xz d xy
d x 2 − y 2 Eb1g 0 0 0 0
d 3 z 2 − r 2 0 Ea1g 0 0 0
d yz 0 0 Eeg 0 0
d xz 0 0 0 Eeg 0
d xy 0 0 0 0 Eb2g
Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2
d x 2 − y 2 1 √ 2 0 0 0 1 √ 2
d 3 z 2 − r 2 0 0 1 0 0
d yz 0 i √ 2 0 i √ 2 0
d xz 0 1 √ 2 0 − 1 √ 2 0
d xy i √ 2 0 0 0 − i √ 2
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Eb1g
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin 2 ( θ ) cos ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 15 π ( x 2 − y 2 )
Ea1g
ψ ( θ , ϕ ) = √ 1 1 1 8 √ 5 π ( 3 cos ( 2 θ ) + 1 )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 5 π ( 3 z 2 − 1 )
Eeg
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin ( 2 θ ) sin ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π y z
Eeg
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin ( 2 θ ) cos ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π x z
Eb2g
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin 2 ( θ ) sin ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π x y
Potential for f orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 7 ( Ea2u + Eb1u + Eb2u + 2 Eeu1 + 2 Eeu2 ) k = 0 ∧ m = 0 5 7 ( Ea2u − Eeu1 + √ 15 Meu ) k = 2 ∧ m = 0 − 3 56 ( 2 √ 70 Eb1u − 2 √ 70 Eb2u − 3 √ 70 Eeu1 + 3 √ 70 Eeu2 − 2 √ 42 Meu ) k = 4 ∧ ( m = − 4 ∨ m = 4 ) 3 28 ( 12 Ea2u − 14 Eb1u − 14 Eb2u + 9 Eeu1 + 7 Eeu2 − 2 √ 15 Meu ) k = 4 ∧ m = 0 − 13 560 √ 3 ( 4 √ 42 Eb1u − 4 √ 42 Eb2u + 5 √ 42 Eeu1 − 5 √ 42 Eeu2 + 2 √ 70 Meu ) k = 6 ∧ ( m = − 4 ∨ m = 4 ) 13 280 ( 40 Ea2u + 12 Eb1u + 12 Eb2u − 25 Eeu1 − 39 Eeu2 − 14 √ 15 Meu ) k = 6 ∧ m = 0
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2u + Eb1u + Eb2u + 2*Eeu1 + 2*Eeu2)/7, k == 0 && m == 0}, {(5*(Ea2u - Eeu1 + Sqrt[15]*Meu))/7, k == 2 && m == 0}, {(-3*(2*Sqrt[70]*Eb1u - 2*Sqrt[70]*Eb2u - 3*Sqrt[70]*Eeu1 + 3*Sqrt[70]*Eeu2 - 2*Sqrt[42]*Meu))/56, k == 4 && (m == -4 || m == 4)}, {(3*(12*Ea2u - 14*Eb1u - 14*Eb2u + 9*Eeu1 + 7*Eeu2 - 2*Sqrt[15]*Meu))/28, k == 4 && m == 0}, {(-13*Sqrt[3]*(4*Sqrt[42]*Eb1u - 4*Sqrt[42]*Eb2u + 5*Sqrt[42]*Eeu1 - 5*Sqrt[42]*Eeu2 + 2*Sqrt[70]*Meu))/560, k == 6 && (m == -4 || m == 4)}, {(13*(40*Ea2u + 12*Eb1u + 12*Eb2u - 25*Eeu1 - 39*Eeu2 - 14*Sqrt[15]*Meu))/280, k == 6 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D4h_Zxy.Quanty
Akm = {{0, 0, (1/7)*(Ea2u + Eb1u + Eb2u + (2)*(Eeu1) + (2)*(Eeu2))} ,
{2, 0, (5/7)*(Ea2u + (-1)*(Eeu1) + (sqrt(15))*(Meu))} ,
{4, 0, (3/28)*((12)*(Ea2u) + (-14)*(Eb1u) + (-14)*(Eb2u) + (9)*(Eeu1) + (7)*(Eeu2) + (-2)*((sqrt(15))*(Meu)))} ,
{4,-4, (-3/56)*((2)*((sqrt(70))*(Eb1u)) + (-2)*((sqrt(70))*(Eb2u)) + (-3)*((sqrt(70))*(Eeu1)) + (3)*((sqrt(70))*(Eeu2)) + (-2)*((sqrt(42))*(Meu)))} ,
{4, 4, (-3/56)*((2)*((sqrt(70))*(Eb1u)) + (-2)*((sqrt(70))*(Eb2u)) + (-3)*((sqrt(70))*(Eeu1)) + (3)*((sqrt(70))*(Eeu2)) + (-2)*((sqrt(42))*(Meu)))} ,
{6, 0, (13/280)*((40)*(Ea2u) + (12)*(Eb1u) + (12)*(Eb2u) + (-25)*(Eeu1) + (-39)*(Eeu2) + (-14)*((sqrt(15))*(Meu)))} ,
{6,-4, (-13/560)*((sqrt(3))*((4)*((sqrt(42))*(Eb1u)) + (-4)*((sqrt(42))*(Eb2u)) + (5)*((sqrt(42))*(Eeu1)) + (-5)*((sqrt(42))*(Eeu2)) + (2)*((sqrt(70))*(Meu))))} ,
{6, 4, (-13/560)*((sqrt(3))*((4)*((sqrt(42))*(Eb1u)) + (-4)*((sqrt(42))*(Eb2u)) + (5)*((sqrt(42))*(Eeu1)) + (-5)*((sqrt(42))*(Eeu2)) + (2)*((sqrt(70))*(Meu))))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
Y ( 3 ) − 3 1 8 ( 5 Eeu1 + 3 Eeu2 − 2 √ 15 Meu ) 0 0 0 1 8 ( √ 15 Eeu1 − √ 15 Eeu2 + 2 Meu ) 0 0
Y ( 3 ) − 2 0 Eb1u + Eb2u 2 0 0 0 Eb2u − Eb1u 2 0
Y ( 3 ) − 1 0 0 1 8 ( 3 Eeu1 + 5 Eeu2 + 2 √ 15 Meu ) 0 0 0 1 8 ( √ 15 Eeu1 − √ 15 Eeu2 + 2 Meu )
Y ( 3 ) 0 0 0 0 Ea2u 0 0 0
Y ( 3 ) 1 1 8 ( √ 15 Eeu1 − √ 15 Eeu2 + 2 Meu ) 0 0 0 1 8 ( 3 Eeu1 + 5 Eeu2 + 2 √ 15 Meu ) 0 0
Y ( 3 ) 2 0 Eb2u − Eb1u 2 0 0 0 Eb1u + Eb2u 2 0
Y ( 3 ) 3 0 0 1 8 ( √ 15 Eeu1 − √ 15 Eeu2 + 2 Meu ) 0 0 0 1 8 ( 5 Eeu1 + 3 Eeu2 − 2 √ 15 Meu )
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f xyz f x ( 5 x 2 − r 2 ) f y ( 5 y 2 − r 2 ) f z ( 5 z 2 − r 2 ) f x ( y 2 − z 2 ) f y ( z 2 − x 2 ) f z ( x 2 − y 2 )
f xyz Eb1u 0 0 0 0 0 0
f x ( 5 x 2 − r 2 ) 0 Eeu1 0 0 Meu 0 0
f y ( 5 y 2 − r 2 ) 0 0 Eeu1 0 0 − Meu 0
f z ( 5 z 2 − r 2 ) 0 0 0 Ea2u 0 0 0
f x ( y 2 − z 2 ) 0 Meu 0 0 Eeu2 0 0
f y ( z 2 − x 2 ) 0 0 − Meu 0 0 Eeu2 0
f z ( x 2 − y 2 ) 0 0 0 0 0 0 Eb2u
Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
f xyz 0 i √ 2 0 0 0 − i √ 2 0
f x ( 5 x 2 − r 2 ) √ 5 4 0 − √ 3 4 0 √ 3 4 0 − √ 5 4
f y ( 5 y 2 − r 2 ) − i √ 5 4 0 − i √ 3 4 0 − i √ 3 4 0 -\frac{i \sqrt{5}}{4}
f_{z\left(5z^2-r^2\right)} 0 0 0 1 0 0 0
f_{x\left(y^2-z^2\right)} -\frac{\sqrt{3}}{4} 0 -\frac{\sqrt{5}}{4} 0 \frac{\sqrt{5}}{4} 0 \frac{\sqrt{3}}{4}
f_{y\left(z^2-x^2\right)} -\frac{i \sqrt{3}}{4} 0 \frac{i \sqrt{5}}{4} 0 \frac{i \sqrt{5}}{4} 0 -\frac{i \sqrt{3}}{4}
f_{z\left(x^2-y^2\right)} 0 \frac{1}{\sqrt{2}} 0 0 0 \frac{1}{\sqrt{2}} 0
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
\text{Eb1u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{105}{\pi }} x y z
\text{Eeu1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )-5 \cos (2 \theta )-7\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} x \left(5 x^2-15 y^2-15 z^2+3\right)
\text{Eeu1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )+7\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} y \left(-15 x^2+5 y^2-15 z^2+3\right)
\text{Ea2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta ))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right)
\text{Eeu2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{105}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \sin ^2(\theta ) \cos (2 \phi )+3 \cos (2 \theta )+1\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{16} \sqrt{\frac{105}{\pi }} x \left(x^2-3 y^2+5 z^2-1\right)
\text{Eeu2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{32} \sqrt{\frac{105}{\pi }} \sin (\theta ) \sin (\phi ) \left(-4 \sin ^2(\theta ) \cos (2 \phi )+6 \cos (2 \theta )+2\right)
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{105}{\pi }} y \left(-3 x^2+y^2+5 z^2-1\right)
\text{Eb2u}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right)
Coupling between two shells
Click on one of the subsections to expand it or expand all
Potential for s-d orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & k\neq 2\lor m\neq 0 \\
A(2,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D4h_Zxy.Quanty
Akm = {{2, 0, A(2,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{0}^{(0)}} 0 0 \frac{A(2,0)}{\sqrt{5}} 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d_{x^2-y^2} d_{3z^2-r^2} d_{\text{yz}} d_{\text{xz}} d_{\text{xy}}
\text{s} 0 \frac{A(2,0)}{\sqrt{5}} 0 0 0
Potential for p-f orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & k=0\land m=0 \\
A(2,0) & k=2\land m=0 \\
A(4,4) & k=4\land (m=-4\lor m=4) \\
A(4,0) & k=4\land m=0
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D4h_Zxy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[4, 4], k == 4 && (m == -4 || m == 4)}, {A[4, 0], k == 4 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D4h_Zxy.Quanty
Akm = {{2, 0, A(2,0)} ,
{4, 0, A(4,0)} ,
{4,-4, A(4,4)} ,
{4, 4, A(4,4)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0 0 -\frac{2 A(4,4)}{3 \sqrt{3}}
{Y_{0}^{(1)}} 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0
{Y_{1}^{(1)}} -\frac{2 A(4,4)}{3 \sqrt{3}} 0 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f_{\text{xyz}} f_{x\left(5x^2-r^2\right)} f_{y\left(5y^2-r^2\right)} f_{z\left(5z^2-r^2\right)} f_{x\left(y^2-z^2\right)} f_{y\left(z^2-x^2\right)} f_{z\left(x^2-y^2\right)}
p_x 0 \frac{5 A(4,0)-9 A(2,0)}{10 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{6}} A(4,4) 0 0 \frac{5 A(4,0)-9 A(2,0)}{6 \sqrt{35}}-\frac{A(4,4)}{3 \sqrt{2}} 0 0
p_y 0 0 \frac{5 A(4,0)-9 A(2,0)}{10 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{6}} A(4,4) 0 0 \frac{9 A(2,0)-5 A(4,0)}{6 \sqrt{35}}+\frac{A(4,4)}{3 \sqrt{2}} 0
p_z 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0
Table of several point groups