+Table of Contents
Orientation X
Symmetry Operations
In the Cs Point Group, with orientation X there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
σh | {1,0,0} , |
Different Settings
Character Table
E(1) | σh(1) | |
---|---|---|
A' | 1 | 1 |
A'' | 1 | −1 |
Product Table
A' | A'' | |
---|---|---|
A' | A' | A'' |
A'' | A'' | A' |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Cs Point group with orientation X the form of the expansion coefficients is:
Expansion
Ak,m={A(0,0)k=0∧m=0iB(1,1)k=1∧(m=−1∨m=1)A(1,0)k=1∧m=0A(2,2)k=2∧(m=−2∨m=2)iB(2,1)k=2∧(m=−1∨m=1)A(2,0)k=2∧m=0iB(3,3)k=3∧(m=−3∨m=3)A(3,2)k=3∧(m=−2∨m=2)iB(3,1)k=3∧(m=−1∨m=1)A(3,0)k=3∧m=0A(4,4)k=4∧(m=−4∨m=4)iB(4,3)k=4∧(m=−3∨m=3)A(4,2)k=4∧(m=−2∨m=2)iB(4,1)k=4∧(m=−1∨m=1)A(4,0)k=4∧m=0iB(5,5)k=5∧(m=−5∨m=5)A(5,4)k=5∧(m=−4∨m=4)iB(5,3)k=5∧(m=−3∨m=3)A(5,2)k=5∧(m=−2∨m=2)iB(5,1)k=5∧(m=−1∨m=1)A(5,0)k=5∧m=0A(6,6)k=6∧(m=−6∨m=6)iB(6,5)k=6∧(m=−5∨m=5)A(6,4)k=6∧(m=−4∨m=4)iB(6,3)k=6∧(m=−3∨m=3)A(6,2)k=6∧(m=−2∨m=2)iB(6,1)k=6∧(m=−1∨m=1)A(6,0)k=6∧m=0
Input format suitable for Mathematica (Quanty.nb)
- Akm_Cs_X.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {I*B[1, 1], k == 1 && (m == -1 || m == 1)}, {A[1, 0], k == 1 && m == 0}, {A[2, 2], k == 2 && (m == -2 || m == 2)}, {I*B[2, 1], k == 2 && (m == -1 || m == 1)}, {A[2, 0], k == 2 && m == 0}, {I*B[3, 3], k == 3 && (m == -3 || m == 3)}, {A[3, 2], k == 3 && (m == -2 || m == 2)}, {I*B[3, 1], k == 3 && (m == -1 || m == 1)}, {A[3, 0], k == 3 && m == 0}, {A[4, 4], k == 4 && (m == -4 || m == 4)}, {I*B[4, 3], k == 4 && (m == -3 || m == 3)}, {A[4, 2], k == 4 && (m == -2 || m == 2)}, {I*B[4, 1], k == 4 && (m == -1 || m == 1)}, {A[4, 0], k == 4 && m == 0}, {I*B[5, 5], k == 5 && (m == -5 || m == 5)}, {A[5, 4], k == 5 && (m == -4 || m == 4)}, {I*B[5, 3], k == 5 && (m == -3 || m == 3)}, {A[5, 2], k == 5 && (m == -2 || m == 2)}, {I*B[5, 1], k == 5 && (m == -1 || m == 1)}, {A[5, 0], k == 5 && m == 0}, {A[6, 6], k == 6 && (m == -6 || m == 6)}, {I*B[6, 5], k == 6 && (m == -5 || m == 5)}, {A[6, 4], k == 6 && (m == -4 || m == 4)}, {I*B[6, 3], k == 6 && (m == -3 || m == 3)}, {A[6, 2], k == 6 && (m == -2 || m == 2)}, {I*B[6, 1], k == 6 && (m == -1 || m == 1)}, {A[6, 0], k == 6 && m == 0}}, 0]
Input format suitable for Quanty
- Akm_Cs_X.Quanty
Akm = { 0, A(0,0)} , {1, 0, A(1,0)} , {1,-1, (I)*(B(1,1))} , {1, 1, (I)*(B(1,1))} , {2, 0, A(2,0)} , {2,-1, (I)*(B(2,1))} , {2, 1, (I)*(B(2,1))} , {2,-2, A(2,2)} , {2, 2, A(2,2)} , {3, 0, A(3,0)} , {3,-1, (I)*(B(3,1))} , {3, 1, (I)*(B(3,1))} , {3,-2, A(3,2)} , {3, 2, A(3,2)} , {3,-3, (I)*(B(3,3))} , {3, 3, (I)*(B(3,3))} , {4, 0, A(4,0)} , {4,-1, (I)*(B(4,1))} , {4, 1, (I)*(B(4,1))} , {4,-2, A(4,2)} , {4, 2, A(4,2)} , {4,-3, (I)*(B(4,3))} , {4, 3, (I)*(B(4,3))} , {4,-4, A(4,4)} , {4, 4, A(4,4)} , {5, 0, A(5,0)} , {5,-1, (I)*(B(5,1))} , {5, 1, (I)*(B(5,1))} , {5,-2, A(5,2)} , {5, 2, A(5,2)} , {5,-3, (I)*(B(5,3))} , {5, 3, (I)*(B(5,3))} , {5,-4, A(5,4)} , {5, 4, A(5,4)} , {5,-5, (I)*(B(5,5))} , {5, 5, (I)*(B(5,5))} , {6, 0, A(6,0)} , {6,-1, (I)*(B(6,1))} , {6, 1, (I)*(B(6,1))} , {6,-2, A(6,2)} , {6, 2, A(6,2)} , {6,-3, (I)*(B(6,3))} , {6, 3, (I)*(B(6,3))} , {6,-4, A(6,4)} , {6, 4, A(6,4)} , {6,-5, (I)*(B(6,5))} , {6, 5, (I)*(B(6,5))} , {6,-6, A(6,6)} , {6, 6, A(6,6)} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m)
we can express the operator as O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter.
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y(0)0 | Ass(0,0) | −iBsp(1,1)√3 | Asp(1,0)√3 | −iBsp(1,1)√3 | Asd(2,2)√5 | −iBsd(2,1)√5 | Asd(2,0)√5 | −iBsd(2,1)√5 | Asd(2,2)√5 | −iBsf(3,3)√7 | Asf(3,2)√7 | −iBsf(3,1)√7 | Asf(3,0)√7 | −iBsf(3,1)√7 | Asf(3,2)√7 | −iBsf(3,3)√7 |
Y(1)−1 | iBsp(1,1)√3 | App(0,0)−15App(2,0) | 15i√3Bpp(2,1) | −15√6App(2,2) | 17i√35Bpd(3,1)−i√25Bpd(1,1) | Apd(1,0)√5−3Apd(3,0)7√5 | 37i√25Bpd(3,1)−iBpd(1,1)√15 | −17√6Apd(3,2) | 37iBpd(3,3) | 3Apf(2,2)√35−Apf(4,2)3√21 | iBpf(4,1)3√7−i√635Bpf(2,1) | 35√27Apf(2,0)−13√27Apf(4,0) | 13i√1021Bpf(4,1)−3iBpf(2,1)5√7 | 15√37Apf(2,2)−13√57Apf(4,2) | 13iBpf(4,3) | −2Apf(4,4)3√3 |
Y(1)0 | Asp(1,0)√3 | −15i√3Bpp(2,1) | App(0,0)+25App(2,0) | −15i√3Bpp(2,1) | 17√3Apd(3,2) | −iBpd(1,1)√5−27i√65Bpd(3,1) | 2Apd(1,0)√15+37√35Apd(3,0) | −iBpd(1,1)√5−27i√65Bpd(3,1) | 17√3Apd(3,2) | −iBpf(4,3)3√3 | √335Apf(2,2)+2Apf(4,2)3√7 | −25i√67Bpf(2,1)−13i√57Bpf(4,1) | 35√37Apf(2,0)+4Apf(4,0)3√21 | −25i√67Bpf(2,1)−13i√57Bpf(4,1) | √335Apf(2,2)+2Apf(4,2)3√7 | −iBpf(4,3)3√3 |
Y(1)1 | iBsp(1,1)√3 | −15√6App(2,2) | 15i√3Bpp(2,1) | App(0,0)−15App(2,0) | 37iBpd(3,3) | −17√6Apd(3,2) | 37i√25Bpd(3,1)−iBpd(1,1)√15 | Apd(1,0)√5−3Apd(3,0)7√5 | 17i√35Bpd(3,1)−i√25Bpd(1,1) | −2Apf(4,4)3√3 | 13iBpf(4,3) | 15√37Apf(2,2)−13√57Apf(4,2) | 13i√1021Bpf(4,1)−3iBpf(2,1)5√7 | 35√27Apf(2,0)−13√27Apf(4,0) | iBpf(4,1)3√7−i√635Bpf(2,1) | 3Apf(2,2)√35−Apf(4,2)3√21 |
Y(2)−2 | Asd(2,2)√5 | i√25Bpd(1,1)−17i√35Bpd(3,1) | 17√3Apd(3,2) | −37iBpd(3,3) | Add(0,0)−27Add(2,0)+121Add(4,0) | 17i√6Bdd(2,1)−121i√5Bdd(4,1) | 17√53Add(4,2)−27Add(2,2) | −13i√57Bdd(4,3) | 13√107Add(4,4) | −i√37Bdf(1,1)+13i√27Bdf(3,1)−133i√57Bdf(5,1) | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | −iBdf(1,1)√35+2i√2105Bdf(3,1)−5iBdf(5,1)11√21 | 533Adf(5,2)−2Adf(3,2)3√7 | 13i√27Bdf(3,3)−533i√2Bdf(5,3) | 111√10Adf(5,4) | −511i√23Bdf(5,5) |
Y(2)−1 | iBsd(2,1)√5 | Apd(1,0)√5−3Apd(3,0)7√5 | iBpd(1,1)√5+27i√65Bpd(3,1) | −17√6Apd(3,2) | 121i√5Bdd(4,1)−17i√6Bdd(2,1) | Add(0,0)+17Add(2,0)−421Add(4,0) | 17iBdd(2,1)+17i√103Bdd(4,1) | −17√6Add(2,2)−221√10Add(4,2) | 13i√57Bdd(4,3) | 13√57Adf(3,2)−133√5Adf(5,2) | −i√27Bdf(1,1)−iBdf(3,1)√21+211i√1021Bdf(5,1) | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | −i√335Bdf(1,1)+13i√235Bdf(3,1)+20iBdf(5,1)33√7 | −Adf(3,2)√21−5Adf(5,2)11√3 | 13i√57Bdf(3,3)+433i√5Bdf(5,3) | −211√53Adf(5,4) |
Y(2)0 | Asd(2,0)√5 | iBpd(1,1)√15−37i√25Bpd(3,1) | 2Apd(1,0)√15+37√35Apd(3,0) | iBpd(1,1)√15−37i√25Bpd(3,1) | 17√53Add(4,2)−27Add(2,2) | −17iBdd(2,1)−17i√103Bdd(4,1) | Add(0,0)+27Add(2,0)+27Add(4,0) | −17iBdd(2,1)−17i√103Bdd(4,1) | 17√53Add(4,2)−27Add(2,2) | 13i√57Bdf(3,3)−233i√5Bdf(5,3) | 111√5Adf(5,2) | −i√635Bdf(1,1)−iBdf(3,1)√35−511i√27Bdf(5,1) | 3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0) | −i√635Bdf(1,1)−iBdf(3,1)√35−511i√27Bdf(5,1) | 111√5Adf(5,2) | 13i√57Bdf(3,3)−233i√5Bdf(5,3) |
Y(2)1 | iBsd(2,1)√5 | −17√6Apd(3,2) | iBpd(1,1)√5+27i√65Bpd(3,1) | Apd(1,0)√5−3Apd(3,0)7√5 | 13i√57Bdd(4,3) | −17√6Add(2,2)−221√10Add(4,2) | 17iBdd(2,1)+17i√103Bdd(4,1) | Add(0,0)+17Add(2,0)−421Add(4,0) | 121i√5Bdd(4,1)−17i√6Bdd(2,1) | −211√53Adf(5,4) | 13i√57Bdf(3,3)+433i√5Bdf(5,3) | −Adf(3,2)√21−5Adf(5,2)11√3 | −i√335Bdf(1,1)+13i√235Bdf(3,1)+20iBdf(5,1)33√7 | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | −i√27Bdf(1,1)−iBdf(3,1)√21+211i√1021Bdf(5,1) | 13√57Adf(3,2)−133√5Adf(5,2) |
Y(2)2 | Asd(2,2)√5 | −37iBpd(3,3) | 17√3Apd(3,2) | i√25Bpd(1,1)−17i√35Bpd(3,1) | 13√107Add(4,4) | −13i√57Bdd(4,3) | 17√53Add(4,2)−27Add(2,2) | 17i√6Bdd(2,1)−121i√5Bdd(4,1) | Add(0,0)−27Add(2,0)+121Add(4,0) | −511i√23Bdf(5,5) | 111√10Adf(5,4) | 13i√27Bdf(3,3)−533i√2Bdf(5,3) | 533Adf(5,2)−2Adf(3,2)3√7 | −iBdf(1,1)√35+2i√2105Bdf(3,1)−5iBdf(5,1)11√21 | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | −i√37Bdf(1,1)+13i√27Bdf(3,1)−133i√57Bdf(5,1) |
Y(3)−3 | iBsf(3,3)√7 | 3Apf(2,2)√35−Apf(4,2)3√21 | iBpf(4,3)3√3 | −2Apf(4,4)3√3 | i√37Bdf(1,1)−13i√27Bdf(3,1)+133i√57Bdf(5,1) | 13√57Adf(3,2)−133√5Adf(5,2) | 233i√5Bdf(5,3)−13i√57Bdf(3,3) | −211√53Adf(5,4) | 511i√23Bdf(5,5) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | 13iBff(2,1)−111i√103Bff(4,1)+5429i√7Bff(6,1) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | 10143i√73Bff(6,3)−111i√7Bff(4,3) | 111√143Aff(4,4)−5143√703Aff(6,4) | 513i√1433Bff(6,5) | −1013√733Aff(6,6) |
Y(3)−2 | Asf(3,2)√7 | i√635Bpf(2,1)−iBpf(4,1)3√7 | √335Apf(2,2)+2Apf(4,2)3√7 | −13iBpf(4,3) | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | i√27Bdf(1,1)+iBdf(3,1)√21−211i√1021Bdf(5,1) | 111√5Adf(5,2) | −13i√57Bdf(3,3)−433i√5Bdf(5,3) | 111√10Adf(5,4) | −13iBff(2,1)+111i√103Bff(4,1)−5429i√7Bff(6,1) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | iBff(2,1)√15+433i√2Bff(4,1)−5143i√353Bff(6,1) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | −133i√14Bff(4,3)−5143i√42Bff(6,3) | 133√70Aff(4,4)+10143√14Aff(6,4) | −513i√1433Bff(6,5) |
Y(3)−1 | iBsf(3,1)√7 | 35√27Apf(2,0)−13√27Apf(4,0) | 25i√67Bpf(2,1)+13i√57Bpf(4,1) | 15√37Apf(2,2)−13√57Apf(4,2) | iBdf(1,1)√35−2i√2105Bdf(3,1)+5iBdf(5,1)11√21 | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | i√635Bdf(1,1)+iBdf(3,1)√35+511i√27Bdf(5,1) | −Adf(3,2)√21−5Adf(5,2)11√3 | 533i√2Bdf(5,3)−13i√27Bdf(3,3) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | −iBff(2,1)√15−433i√2Bff(4,1)+5143i√353Bff(6,1) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 115i√2Bff(2,1)+111i√53Bff(4,1)+25429i√14Bff(6,1) | −25√23Aff(2,2)−233√10Aff(4,2)−10143√353Aff(6,2) | 133i√14Bff(4,3)+5143i√42Bff(6,3) | 111√143Aff(4,4)−5143√703Aff(6,4) |
Y(3)0 | Asf(3,0)√7 | 3iBpf(2,1)5√7−13i√1021Bpf(4,1) | 35√37Apf(2,0)+4Apf(4,0)3√21 | 3iBpf(2,1)5√7−13i√1021Bpf(4,1) | 533Adf(5,2)−2Adf(3,2)3√7 | i√335Bdf(1,1)−13i√235Bdf(3,1)−20iBdf(5,1)33√7 | 3Adf(1,0)√35+4Adf(3,0)3√35+1033√57Adf(5,0) | i√335Bdf(1,1)−13i√235Bdf(3,1)−20iBdf(5,1)33√7 | 533Adf(5,2)−2Adf(3,2)3√7 | 111i√7Bff(4,3)−10143i√73Bff(6,3) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | −115i√2Bff(2,1)−111i√53Bff(4,1)−25429i√14Bff(6,1) | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | −115i√2Bff(2,1)−111i√53Bff(4,1)−25429i√14Bff(6,1) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | 111i√7Bff(4,3)−10143i√73Bff(6,3) |
Y(3)1 | iBsf(3,1)√7 | 15√37Apf(2,2)−13√57Apf(4,2) | 25i√67Bpf(2,1)+13i√57Bpf(4,1) | 35√27Apf(2,0)−13√27Apf(4,0) | 533i√2Bdf(5,3)−13i√27Bdf(3,3) | −Adf(3,2)√21−5Adf(5,2)11√3 | i√635Bdf(1,1)+iBdf(3,1)√35+511i√27Bdf(5,1) | 2√235Adf(1,0)+13√235Adf(3,0)−533√107Adf(5,0) | iBdf(1,1)√35−2i√2105Bdf(3,1)+5iBdf(5,1)11√21 | 111√143Aff(4,4)−5143√703Aff(6,4) | 133i√14Bff(4,3)+5143i√42Bff(6,3) | −25√23Aff(2,2)−233√10Aff(4,2)−10143√353Aff(6,2) | 115i√2Bff(2,1)+111i√53Bff(4,1)+25429i√14Bff(6,1) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | −iBff(2,1)√15−433i√2Bff(4,1)+5143i√353Bff(6,1) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) |
Y(3)2 | Asf(3,2)√7 | −13iBpf(4,3) | √335Apf(2,2)+2Apf(4,2)3√7 | i√635Bpf(2,1)−iBpf(4,1)3√7 | 111√10Adf(5,4) | −13i√57Bdf(3,3)−433i√5Bdf(5,3) | 111√5Adf(5,2) | i√27Bdf(1,1)+iBdf(3,1)√21−211i√1021Bdf(5,1) | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7 | −513i√1433Bff(6,5) | 133√70Aff(4,4)+10143√14Aff(6,4) | −133i√14Bff(4,3)−5143i√42Bff(6,3) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | iBff(2,1)√15+433i√2Bff(4,1)−5143i√353Bff(6,1) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | −13iBff(2,1)+111i√103Bff(4,1)−5429i√7Bff(6,1) |
Y(3)3 | iBsf(3,3)√7 | −2Apf(4,4)3√3 | iBpf(4,3)3√3 | 3Apf(2,2)√35−Apf(4,2)3√21 | 511i√23Bdf(5,5) | −211√53Adf(5,4) | 233i√5Bdf(5,3)−13i√57Bdf(3,3) | 13√57Adf(3,2)−133√5Adf(5,2) | i√37Bdf(1,1)−13i√27Bdf(3,1)+133i√57Bdf(5,1) | −1013√733Aff(6,6) | 513i√1433Bff(6,5) | 111√143Aff(4,4)−5143√703Aff(6,4) | 10143i√73Bff(6,3)−111i√7Bff(4,3) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | 13iBff(2,1)−111i√103Bff(4,1)+5429i√7Bff(6,1) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
py | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pz | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
px | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dy2−z2 | 0 | 0 | 0 | 0 | −12√2 | 0 | −√32 | 0 | −12√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d3x2−r2 | 0 | 0 | 0 | 0 | √322 | 0 | −12 | 0 | √322 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxz | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxy | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dyz | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fxyz | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 |
fy(5y2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√54 | 0 | −i√34 | 0 | −i√34 | 0 | −i√54 |
fz(5z2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
fx(5x2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √54 | 0 | −√34 | 0 | √34 | 0 | −√54 |
fy(z2−x2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√34 | 0 | i√54 | 0 | i√54 | 0 | −i√34 |
fz(x2−y2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 1√2 | 0 |
fx(y2−z2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −√34 | 0 | −√54 | 0 | √54 | 0 | √34 |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
s | py | pz | px | dy2−z2 | d3x2−r2 | dxz | dxy | dyz | fxyz | fy(5y2−r2) | fz(5z2−r2) | fx(5x2−r2) | fy(z2−x2) | fz(x2−y2) | fx(y2−z2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | Ass(0,0) | √23Bsp(1,1) | Asp(1,0)√3 | 0 | −12√35Asd(2,0)−Asd(2,2)√10 | √310Asd(2,2)−Asd(2,0)2√5 | 0 | 0 | √25Bsd(2,1) | 0 | −12√37Bsf(3,1)−12√57Bsf(3,3) | Asf(3,0)√7 | 0 | 12√57Bsf(3,1)−12√37Bsf(3,3) | √27Asf(3,2) | 0 |
py | √23Bsp(1,1) | App(0,0)−15App(2,0)−15√6App(2,2) | 15√6Bpp(2,1) | 0 | √25Bpd(1,1)−12√35Bpd(3,1)−314Bpd(3,3) | −√215Bpd(1,1)−3Bpd(3,1)14√5+314√3Bpd(3,3) | 0 | 0 | Apd(1,0)√5−3Apd(3,0)7√5−17√6Apd(3,2) | 0 | −310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4) | 23√521Bpf(4,1)−35√27Bpf(2,1) | 0 | 3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2 | −√635Bpf(2,1)+Bpf(4,1)3√7+13Bpf(4,3) | 0 |
pz | Asp(1,0)√3 | 15√6Bpp(2,1) | App(0,0)+25App(2,0) | 0 | −Apd(1,0)√5−9Apd(3,0)14√5−17√32Apd(3,2) | −Apd(1,0)√15−314√35Apd(3,0)+3Apd(3,2)7√2 | 0 | 0 | √25Bpd(1,1)+47√35Bpd(3,1) | 0 | −35√27Bpf(2,1)−12√521Bpf(4,1)−16√53Bpf(4,3) | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | √635Bpf(2,1)+5Bpf(4,1)6√7−16Bpf(4,3) | √635Apf(2,2)+23√27Apf(4,2) | 0 |
px | 0 | 0 | 0 | App(0,0)−15App(2,0)+15√6App(2,2) | 0 | 0 | Apd(1,0)√5−3Apd(3,0)7√5+17√6Apd(3,2) | √25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3) | 0 | √635Bpf(2,1)−Bpf(4,1)3√7+13Bpf(4,3) | 0 | 0 | −310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4) | 0 | 0 | −3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2 |
dy2−z2 | −12√35Asd(2,0)−Asd(2,2)√10 | √25Bpd(1,1)−12√35Bpd(3,1)−314Bpd(3,3) | −Apd(1,0)√5−9Apd(3,0)14√5−17√32Apd(3,2) | 0 | Add(0,0)+17Add(2,0)−17√6Add(2,2)+1984Add(4,0)+17√52Add(4,2)+16√514Add(4,4) | 17√3Add(2,0)+17√2Add(2,2)+5Add(4,0)28√3−17√56Add(4,2)−12√542Add(4,4) | 0 | 0 | −16√5Bdd(4,1)−16√57Bdd(4,3) | 0 | 3√370Bdf(1,1)−Bdf(3,1)6√35−12√37Bdf(3,3)+5Bdf(5,1)6√14+544√3Bdf(5,3)+544√53Bdf(5,5) | −32√335Adf(1,0)−2Adf(3,0)√105+13√27Adf(3,2)−511√521Adf(5,0)−5Adf(5,2)33√2 | 0 | −Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)−1722√542Bdf(5,1)+1132√5Bdf(5,3)+544Bdf(5,5) | −Adf(1,0)2√7+Adf(3,0)3√7−5Adf(5,0)66√7−111√152Adf(5,2)−111√52Adf(5,4) | 0 |
d3x2−r2 | √310Asd(2,2)−Asd(2,0)2√5 | −√215Bpd(1,1)−3Bpd(3,1)14√5+314√3Bpd(3,3) | −Apd(1,0)√15−314√35Apd(3,0)+3Apd(3,2)7√2 | 0 | 17√3Add(2,0)+17√2Add(2,2)+5Add(4,0)28√3−17√56Add(4,2)−12√542Add(4,4) | Add(0,0)−17Add(2,0)+17√6Add(2,2)+328Add(4,0)−17√52Add(4,2)+12√514Add(4,4) | 0 | 0 | −27√2Bdd(2,1)−114√53Bdd(4,1)+12√521Bdd(4,3) | 0 | −3Bdf(1,1)√70+12√715Bdf(3,1)−Bdf(3,3)6√7+5Bdf(5,1)22√42−5132Bdf(5,3)−544√5Bdf(5,5) | −3Adf(1,0)2√35−2Adf(3,0)3√35−√221Adf(3,2)−533√57Adf(5,0)+5Adf(5,2)11√6 | 0 | −√314Bdf(1,1)−Bdf(3,1)2√7−12√521Bdf(3,3)−322√514Bdf(5,1)+744√53Bdf(5,3)−544√3Bdf(5,5) | 12√37Adf(1,0)−Adf(3,0)√21+5Adf(5,0)22√21−111√52Adf(5,2)+111√152Adf(5,4) | 0 |
dxz | 0 | 0 | 0 | Apd(1,0)√5−3Apd(3,0)7√5+17√6Apd(3,2) | 0 | 0 | Add(0,0)+17Add(2,0)+17√6Add(2,2)−421Add(4,0)+221√10Add(4,2) | 17√6Bdd(2,1)−121√5Bdd(4,1)+13√57Bdd(4,3) | 0 | √27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3) | 0 | 0 | −√335Adf(1,0)−Adf(3,0)2√105+Adf(3,2)3√14+522√521Adf(5,0)−533√2Adf(5,2)+5Adf(5,4)11√6 | 0 | 0 | −Adf(1,0)√7−Adf(3,0)6√7−√542Adf(3,2)+25Adf(5,0)66√7−111√103Adf(5,2)−111√52Adf(5,4) |
dxy | 0 | 0 | 0 | √25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3) | 0 | 0 | 17√6Bdd(2,1)−121√5Bdd(4,1)+13√57Bdd(4,3) | Add(0,0)−27Add(2,0)+121Add(4,0)−13√107Add(4,4) | 0 | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7−111√10Adf(5,4) | 0 | 0 | −√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5) | 0 | 0 | √27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5) |
dyz | √25Bsd(2,1) | Apd(1,0)√5−3Apd(3,0)7√5−17√6Apd(3,2) | √25Bpd(1,1)+47√35Bpd(3,1) | 0 | −16√5Bdd(4,1)−16√57Bdd(4,3) | −27√2Bdd(2,1)−114√53Bdd(4,1)+12√521Bdd(4,3) | 0 | 0 | Add(0,0)+17Add(2,0)−17√6Add(2,2)−421Add(4,0)−221√10Add(4,2) | 0 | −√335Adf(1,0)−Adf(3,0)2√105−Adf(3,2)3√14+522√521Adf(5,0)+533√2Adf(5,2)+5Adf(5,4)11√6 | −√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1) | 0 | Adf(1,0)√7+Adf(3,0)6√7−√542Adf(3,2)−25Adf(5,0)66√7−111√103Adf(5,2)+111√52Adf(5,4) | −√27Bdf(1,1)−Bdf(3,1)√21+13√57Bdf(3,3)+211√1021Bdf(5,1)+433√5Bdf(5,3) | 0 |
fxyz | 0 | 0 | 0 | √635Bpf(2,1)−Bpf(4,1)3√7+13Bpf(4,3) | 0 | 0 | √27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3) | Adf(1,0)√7−2Adf(3,0)3√7+5Adf(5,0)33√7−111√10Adf(5,4) | 0 | Aff(0,0)−733Aff(4,0)−133√70Aff(4,4)+10143Aff(6,0)−10143√14Aff(6,4) | 0 | 0 | −23√25Bff(2,1)+Bff(4,1)22√3−122√73Bff(4,3)+5429√352Bff(6,1)−15286√7Bff(6,3)+526√3533Bff(6,5) | 0 | 0 | −766√5Bff(4,1)−166√35Bff(4,3)+5143√212Bff(6,1)−5286√105Bff(6,3)−526√711Bff(6,5) |
fy(5y2−r2) | −12√37Bsf(3,1)−12√57Bsf(3,3) | −310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4) | −35√27Bpf(2,1)−12√521Bpf(4,1)−16√53Bpf(4,3) | 0 | 3√370Bdf(1,1)−Bdf(3,1)6√35−12√37Bdf(3,3)+5Bdf(5,1)6√14+544√3Bdf(5,3)+544√53Bdf(5,5) | −3Bdf(1,1)√70+12√715Bdf(3,1)−Bdf(3,3)6√7+5Bdf(5,1)22√42−5132Bdf(5,3)−544√5Bdf(5,5) | 0 | 0 | −√335Adf(1,0)−Adf(3,0)2√105−Adf(3,2)3√14+522√521Adf(5,0)+533√2Adf(5,2)+5Adf(5,4)11√6 | 0 | Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6) | −Bff(2,1)5√6−122√5Bff(4,1)+122√35Bff(4,3)−25143√76Bff(6,1)−5143√353Bff(6,3) | 0 | −Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6) | −Bff(2,1)3√10+322√3Bff(4,1)−122√73Bff(4,3)−5429√70Bff(6,1)−15286√7Bff(6,3)−526√3533Bff(6,5) | 0 |
fz(5z2−r2) | Asf(3,0)√7 | 23√521Bpf(4,1)−35√27Bpf(2,1) | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | −32√335Adf(1,0)−2Adf(3,0)√105+13√27Adf(3,2)−511√521Adf(5,0)−5Adf(5,2)33√2 | −3Adf(1,0)2√35−2Adf(3,0)3√35−√221Adf(3,2)−533√57Adf(5,0)+5Adf(5,2)11√6 | 0 | 0 | −√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1) | 0 | −Bff(2,1)5√6−122√5Bff(4,1)+122√35Bff(4,3)−25143√76Bff(6,1)−5143√353Bff(6,3) | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | 0 | Bff(2,1)3√10+5Bff(4,1)22√3+122√21Bff(4,3)+25429√352Bff(6,1)−5143√7Bff(6,3) | −23√25Aff(2,2)−111√23Aff(4,2)+40429√7Aff(6,2) | 0 |
fx(5x2−r2) | 0 | 0 | 0 | −310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4) | 0 | 0 | −√335Adf(1,0)−Adf(3,0)2√105+Adf(3,2)3√14+522√521Adf(5,0)−533√2Adf(5,2)+5Adf(5,4)11√6 | \color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{6 \sqrt{35}}+\frac{\text{Bdf}(3,3)}{2 \sqrt{21}}+\frac{5 \text{Bdf}(5,1)}{33 \sqrt{14}}-\frac{5 \text{Bdf}(5,3)}{22 \sqrt{3}}+\frac{5}{22} \sqrt{\frac{5}{3}} \text{Bdf}(5,5) } | \color{darkred}{ 0 } | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{\text{Bff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{5}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)+\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | 0 | 0 | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)+\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}+\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | 0 | 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) |
f_{y\left(z^2-x^2\right)} | \color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Bsf}(3,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bsf}(3,3) } | \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | \sqrt{\frac{6}{35}} \text{Bpf}(2,1)+\frac{5 \text{Bpf}(4,1)}{6 \sqrt{7}}-\frac{1}{6} \text{Bpf}(4,3) | 0 | \color{darkred}{ -\frac{\text{Bdf}(1,1)}{\sqrt{14}}-\frac{\text{Bdf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)-\frac{17}{22} \sqrt{\frac{5}{42}} \text{Bdf}(5,1)+\frac{1}{132} \sqrt{5} \text{Bdf}(5,3)+\frac{5}{44} \text{Bdf}(5,5) } | \color{darkred}{ -\sqrt{\frac{3}{14}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{2 \sqrt{7}}-\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bdf}(3,3)-\frac{3}{22} \sqrt{\frac{5}{14}} \text{Bdf}(5,1)+\frac{7}{44} \sqrt{\frac{5}{3}} \text{Bdf}(5,3)-\frac{5}{44} \sqrt{3} \text{Bdf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}+\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)-\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | 0 | -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | \frac{\text{Bff}(2,1)}{3 \sqrt{10}}+\frac{5 \text{Bff}(4,1)}{22 \sqrt{3}}+\frac{1}{22} \sqrt{21} \text{Bff}(4,3)+\frac{25}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{5}{143} \sqrt{7} \text{Bff}(6,3) | 0 | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)-\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)-\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | -\frac{\text{Bff}(2,1)}{\sqrt{6}}-\frac{1}{66} \sqrt{5} \text{Bff}(4,1)+\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{14}{3}} \text{Bff}(6,1)+\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | 0 |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Asf}(3,2) } | -\sqrt{\frac{6}{35}} \text{Bpf}(2,1)+\frac{\text{Bpf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Bpf}(4,3) | \sqrt{\frac{6}{35}} \text{Apf}(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2) | 0 | \color{darkred}{ -\frac{\text{Adf}(1,0)}{2 \sqrt{7}}+\frac{\text{Adf}(3,0)}{3 \sqrt{7}}-\frac{5 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{15}{2}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | \color{darkred}{ \frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(1,0)-\frac{\text{Adf}(3,0)}{\sqrt{21}}+\frac{5 \text{Adf}(5,0)}{22 \sqrt{21}}-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,2)+\frac{1}{11} \sqrt{\frac{15}{2}} \text{Adf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) } | 0 | -\frac{\text{Bff}(2,1)}{3 \sqrt{10}}+\frac{3}{22} \sqrt{3} \text{Bff}(4,1)-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)-\frac{5}{429} \sqrt{70} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) | 0 | -\frac{\text{Bff}(2,1)}{\sqrt{6}}-\frac{1}{66} \sqrt{5} \text{Bff}(4,1)+\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{14}{3}} \text{Bff}(6,1)+\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | 0 |
f_{x\left(y^2-z^2\right)} | \color{darkred}{ 0 } | 0 | 0 | -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{\text{Adf}(3,0)}{6 \sqrt{7}}-\sqrt{\frac{5}{42}} \text{Adf}(3,2)+\frac{25 \text{Adf}(5,0)}{66 \sqrt{7}}-\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,2)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Adf}(5,4) } | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bdf}(3,1)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Bdf}(5,1)-\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) } | \color{darkred}{ 0 } | -\frac{7}{66} \sqrt{5} \text{Bff}(4,1)-\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Bff}(6,1)-\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | 0 | 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | 0 | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) |
Coupling for a single shell
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for s-p orbital mixing
Potential for s-d orbital mixing
Potential for s-f orbital mixing
Potential for p-d orbital mixing
Potential for p-f orbital mixing
Potential for d-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |