+Table of Contents
Orientation 111z
Symmetry Operations
In the Oh Point Group, with orientation 111z there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
C3 | {0,0,1} , {0,0,−1} , {2+√3,−1,12(1+√3)} , {2,2,−1} , {1,−2−√3,11−√3} , {−2−√3,1,11−√3} , {−2,−2,1} , {−1,2+√3,12(1+√3)} , |
C2 | {1,−1,0} , {2+√3,1,0} , {1,2+√3,0} , {1,1,−2} , {−2−√3,1,−2(1+√3)} , {1,−2−√3,−2(1+√3)} , |
C4 | {1,1,1} , {−1,−1,−1} , {1,−2−√3,1+√3} , {−2−√3,1,1+√3} , {−1,2+√3,−1−√3} , {2+√3,−1,−1−√3} , |
C2 | {1,1,1} , {1,−2−√3,1+√3} , {−2−√3,1,1+√3} , |
i | {0,0,0} , |
S4 | {1,1,1} , {−1,−1,−1} , {1,−2−√3,1+√3} , {−2−√3,1,1+√3} , {−1,2+√3,−1−√3} , {2+√3,−1,−1−√3} , |
S6 | {0,0,1} , {0,0,−1} , {2+√3,−1,12(1+√3)} , {2,2,−1} , {1,−2−√3,11−√3} , {−2−√3,1,11−√3} , {−2,−2,1} , {−1,2+√3,12(1+√3)} , |
σh | {1,1,1} , {1,−2−√3,1+√3} , {−2−√3,1,1+√3} , |
σd | {1,−1,0} , {2+√3,1,0} , {1,2+√3,0} , {1,1,−2} , {−2−√3,1,−2(1+√3)} , {1,−2−√3,−2(1+√3)} , |
Different Settings
Character Table
E(1) | C3(8) | C2(6) | C4(6) | C2(3) | i(1) | S4(6) | S6(8) | σh(3) | σd(6) | |
---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
A2g | 1 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | 1 | −1 |
Eg | 2 | −1 | 0 | 0 | 2 | 2 | 0 | −1 | 2 | 0 |
T1g | 3 | 0 | −1 | 1 | −1 | 3 | 1 | 0 | −1 | −1 |
T2g | 3 | 0 | 1 | −1 | −1 | 3 | −1 | 0 | −1 | 1 |
A1u | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 |
A2u | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 |
Eu | 2 | −1 | 0 | 0 | 2 | −2 | 0 | 1 | −2 | 0 |
T1u | 3 | 0 | −1 | 1 | −1 | −3 | −1 | 0 | 1 | 1 |
T2u | 3 | 0 | 1 | −1 | −1 | −3 | 1 | 0 | 1 | −1 |
Product Table
A1g | A2g | Eg | T1g | T2g | A1u | A2u | Eu | T1u | T2u | |
---|---|---|---|---|---|---|---|---|---|---|
A1g | A1g | A2g | Eg | T1g | T2g | A1u | A2u | Eu | T1u | T2u |
A2g | A2g | A1g | Eg | T2g | T1g | A2u | A1u | Eu | T2u | T1u |
Eg | Eg | Eg | A1g+A2g+Eg | T1g+T2g | T1g+T2g | Eu | Eu | A1u+A2u+Eu | T1u+T2u | T1u+T2u |
T1g | T1g | T2g | T1g+T2g | A1g+Eg+T1g+T2g | A2g+Eg+T1g+T2g | T1u | T2u | T1u+T2u | A1u+Eu+T1u+T2u | A2u+Eu+T1u+T2u |
T2g | T2g | T1g | T1g+T2g | A2g+Eg+T1g+T2g | A1g+Eg+T1g+T2g | T2u | T1u | T1u+T2u | A2u+Eu+T1u+T2u | A1u+Eu+T1u+T2u |
A1u | A1u | A2u | Eu | T1u | T2u | A1g | A2g | Eg | T1g | T2g |
A2u | A2u | A1u | Eu | T2u | T1u | A2g | A1g | Eg | T2g | T1g |
Eu | Eu | Eu | A1u+A2u+Eu | T1u+T2u | T1u+T2u | Eg | Eg | A1g+A2g+Eg | T1g+T2g | T1g+T2g |
T1u | T1u | T2u | T1u+T2u | A1u+Eu+T1u+T2u | A2u+Eu+T1u+T2u | T1g | T2g | T1g+T2g | A1g+Eg+T1g+T2g | A2g+Eg+T1g+T2g |
T2u | T2u | T1u | T1u+T2u | A2u+Eu+T1u+T2u | A1u+Eu+T1u+T2u | T2g | T1g | T1g+T2g | A2g+Eg+T1g+T2g | A1g+Eg+T1g+T2g |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Oh Point group with orientation 111z the form of the expansion coefficients is:
Expansion
Ak,m={A(0,0)k=0∧m=0(1−i)√57A(4,0)k=4∧m=−3A(4,0)k=4∧m=0(−1−i)√57A(4,0)k=4∧m=3−18i√773A(6,0)k=6∧m=−6(−18+i8)√353A(6,0)k=6∧m=−3A(6,0)k=6∧m=0(18+i8)√353A(6,0)k=6∧m=318i√773A(6,0)k=6∧m=6
Input format suitable for Mathematica (Quanty.nb)
- Akm_Oh_111z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(1 - I)*Sqrt[5/7]*A[4, 0], k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}, {(-1 - I)*Sqrt[5/7]*A[4, 0], k == 4 && m == 3}, {(-I/8)*Sqrt[77/3]*A[6, 0], k == 6 && m == -6}, {(-1/8 + I/8)*Sqrt[35/3]*A[6, 0], k == 6 && m == -3}, {A[6, 0], k == 6 && m == 0}, {(1/8 + I/8)*Sqrt[35/3]*A[6, 0], k == 6 && m == 3}, {(I/8)*Sqrt[77/3]*A[6, 0], k == 6 && m == 6}}, 0]
Input format suitable for Quanty
- Akm_Oh_111z.Quanty
Akm = {{0, 0, A(0,0)} , {4, 0, A(4,0)} , {4, 3, (-1+-1*I)*((sqrt(5/7))*(A(4,0)))} , {4,-3, (1+-1*I)*((sqrt(5/7))*(A(4,0)))} , {6, 0, A(6,0)} , {6,-3, (-1/8+1/8*I)*((sqrt(35/3))*(A(6,0)))} , {6, 3, (1/8+1/8*I)*((sqrt(35/3))*(A(6,0)))} , {6,-6, (-1/8*I)*((sqrt(77/3))*(A(6,0)))} , {6, 6, (1/8*I)*((sqrt(77/3))*(A(6,0)))} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: O=∑n″ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
we can express the operator as O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{Y_{0}^{(0)}} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(1)}} | \color{darkred}{ 0 } | \text{App}(0,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,0) | 0 |
{Y_{0}^{(1)}} | \color{darkred}{ 0 } | 0 | \text{App}(0,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{21}} \text{Apf}(4,0) | 0 | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{21}} \text{Apf}(4,0) |
{Y_{1}^{(1)}} | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,0) | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
{Y_{-2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | \left(-\frac{5}{21}+\frac{5 i}{21}\right) \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | \left(\frac{5}{21}-\frac{5 i}{21}\right) \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{0}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(-\frac{5}{21}-\frac{5 i}{21}\right) \text{Add}(4,0) | 0 | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \left(\frac{5}{21}+\frac{5 i}{21}\right) \text{Add}(4,0) | 0 | 0 | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-3}^{(3)}} | \color{darkred}{ 0 } | 0 | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{21}} \text{Apf}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | 0 | \left(-\frac{1}{11}+\frac{i}{11}\right) \sqrt{5} \text{Aff}(4,0)-\left(\frac{35}{1716}-\frac{35 i}{1716}\right) \sqrt{5} \text{Aff}(6,0) | 0 | 0 | \frac{35}{156} i \text{Aff}(6,0) |
{Y_{-2}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | \left(\frac{35}{572}-\frac{35 i}{572}\right) \sqrt{\frac{5}{2}} \text{Aff}(6,0)-\left(\frac{1}{33}-\frac{i}{33}\right) \sqrt{10} \text{Aff}(4,0) | 0 | 0 |
{Y_{-1}^{(3)}} | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | \left(\frac{1}{33}-\frac{i}{33}\right) \sqrt{10} \text{Aff}(4,0)-\left(\frac{35}{572}-\frac{35 i}{572}\right) \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 |
{Y_{0}^{(3)}} | \color{darkred}{ 0 } | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(-\frac{1}{11}-\frac{i}{11}\right) \sqrt{5} \text{Aff}(4,0)-\left(\frac{35}{1716}+\frac{35 i}{1716}\right) \sqrt{5} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | \left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{5} \text{Aff}(4,0)+\left(\frac{35}{1716}-\frac{35 i}{1716}\right) \sqrt{5} \text{Aff}(6,0) |
{Y_{1}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \left(\frac{35}{572}+\frac{35 i}{572}\right) \sqrt{\frac{5}{2}} \text{Aff}(6,0)-\left(\frac{1}{33}+\frac{i}{33}\right) \sqrt{10} \text{Aff}(4,0) | 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
{Y_{2}^{(3)}} | \color{darkred}{ 0 } | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \left(\frac{1}{33}+\frac{i}{33}\right) \sqrt{10} \text{Aff}(4,0)-\left(\frac{35}{572}+\frac{35 i}{572}\right) \sqrt{\frac{5}{2}} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
{Y_{3}^{(3)}} | \color{darkred}{ 0 } | 0 | \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{21}} \text{Apf}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{35}{156} i \text{Aff}(6,0) | 0 | 0 | \left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{5} \text{Aff}(4,0)+\left(\frac{35}{1716}+\frac{35 i}{1716}\right) \sqrt{5} \text{Aff}(6,0) | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | 1 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_x | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_y | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | 1 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d_{(x-y)(x+y-2z)} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{6}} | -\frac{1-i}{\sqrt{6}} | 0 | \frac{1+i}{\sqrt{6}} | \frac{1}{\sqrt{6}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}+\text{xz}+\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{6}} | \frac{1+i}{\sqrt{6}} | 0 | -\frac{1-i}{\sqrt{6}} | -\frac{i}{\sqrt{6}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{(x-y)(x+y+z)} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{3}} | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} | 0 | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | \frac{1}{\sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{2\text{xy}-\text{xz}-\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{3}} | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | 0 | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} | -\frac{i}{\sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 1 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{(x+y+z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2+2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{3}-\frac{i}{3} | 0 | 0 | -\frac{\sqrt{5}}{3} | 0 | 0 | -\frac{1}{3}-\frac{i}{3} |
f_{\left(x^3+\left.5\left\backslash x^2\right.\right\backslash z-\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2-10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \left(\frac{1}{2}-\frac{i}{2}\right) \sqrt{\frac{5}{6}} | -\frac{1}{2 \sqrt{3}} | 0 | \frac{1}{2 \sqrt{3}} | \left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{\frac{5}{6}} | 0 |
f_{\left(\left.x^2\right\backslash (y-5\backslash z)-10\backslash x\backslash y\backslash z+y\left\backslash \left(y^2+5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \left(-\frac{1}{2}-\frac{i}{2}\right) \sqrt{\frac{5}{6}} | -\frac{i}{2 \sqrt{3}} | 0 | -\frac{i}{2 \sqrt{3}} | \left(-\frac{1}{2}+\frac{i}{2}\right) \sqrt{\frac{5}{6}} | 0 |
f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.-\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z+8\left\backslash z^3\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{1}{6}-\frac{i}{6}\right) \sqrt{5} | 0 | 0 | \frac{2}{3} | 0 | 0 | \left(-\frac{1}{6}-\frac{i}{6}\right) \sqrt{5} |
f_{\left(x^3-\left.x^2\right\backslash z+\left.y^2\right\backslash z+x\left\backslash \left(y^2+2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | -\frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{6}} | -\frac{\sqrt{\frac{5}{3}}}{2} | 0 | \frac{\sqrt{\frac{5}{3}}}{2} | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{6}} | 0 |
f_{\left(2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y+z)+y\left\backslash \left(y^2-y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{6}} | -\frac{1}{2} i \sqrt{\frac{5}{3}} | 0 | -\frac{1}{2} i \sqrt{\frac{5}{3}} | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{6}} | 0 |
f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{2}+\frac{i}{2} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{2}+\frac{i}{2} |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
\text{s} | p_x | p_y | p_z | d_{(x-y)(x+y-2z)} | d_{\text{yz}+\text{xz}+\text{xy}} | d_{(x-y)(x+y+z)} | d_{2\text{xy}-\text{xz}-\text{yz}} | d_{3z^2-r^2} | f_{(x+y+z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2+2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} | f_{\left(x^3+\left.5\left\backslash x^2\right.\right\backslash z-\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2-10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | f_{\left(\left.x^2\right\backslash (y-5\backslash z)-10\backslash x\backslash y\backslash z+y\left\backslash \left(y^2+5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.-\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z+8\left\backslash z^3\right.\right)} | f_{\left(x^3-\left.x^2\right\backslash z+\left.y^2\right\backslash z+x\left\backslash \left(y^2+2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | f_{\left(2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y+z)+y\left\backslash \left(y^2-y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_x | \color{darkred}{ 0 } | \text{App}(0,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 | 0 | 0 |
p_y | \color{darkred}{ 0 } | 0 | \text{App}(0,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | 0 |
d_{(x-y)(x+y-2z)} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}+\text{xz}+\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{(x-y)(x+y+z)} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{2\text{xy}-\text{xz}-\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{(x+y+z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2+2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)+\frac{6}{11} \text{Aff}(4,0)+\frac{45}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | 0 |
f_{\left(x^3+\left.5\left\backslash x^2\right.\right\backslash z-\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2-10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
f_{\left(\left.x^2\right\backslash (y-5\backslash z)-10\backslash x\backslash y\backslash z+y\left\backslash \left(y^2+5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.-\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z+8\left\backslash z^3\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | \frac{2 \text{Apf}(4,0)}{\sqrt{21}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) | 0 | 0 | 0 |
f_{\left(x^3-\left.x^2\right\backslash z+\left.y^2\right\backslash z+x\left\backslash \left(y^2+2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) | 0 | 0 |
f_{\left(2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y+z)+y\left\backslash \left(y^2-y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) | 0 |
f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) |
Coupling for a single shell
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for p-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |