Processing math: 63%

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

physics_chemistry:point_groups:s6:orientation_z [2018/03/21 18:42] – created Stefano Agrestiniphysics_chemistry:point_groups:s6:orientation_z [2018/10/08 22:44] (current) Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation Z ====== ====== Orientation Z ======
 +
 +===== Symmetry Operations =====
  
 ### ###
-alligned paragraph text+ 
 +In the S6 Point Group, with orientation Z there are the following symmetry operations 
 ### ###
  
-===== Example =====+### 
 + 
 +{{:physics_chemistry:pointgroup:s6_z.png}}
  
 ### ###
-description text+
 ### ###
  
-==== Input ==== +^ Operator ^ Orientation ^ 
-<code Quanty Example.Quanty> +^ E | {0,0,0} , | 
--- some example code+^ C3 | {0,0,1} , {0,0,1} , | 
 +^ i | {0,0,0} , | 
 +^ S6 | {0,0,1} , {0,0,1} , | 
 + 
 +### 
 + 
 +===== Different Settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:s6:orientation_z|Point Group S6 with orientation Z]] 
 + 
 +### 
 + 
 +===== Character Table ===== 
 + 
 +### 
 + 
 +  ^  E(1)  ^  C3(2)  ^  i(1)  ^  S6(2)  ^ 
 +^ Ag1111
 +^ Eg2121
 +^ Au1111
 +^ Eu2121
 + 
 +### 
 + 
 +===== Product Table ===== 
 + 
 +### 
 + 
 +  ^  Ag  ^  Eg  ^  Au  ^  Eu  ^ 
 +^ Ag  | Ag  | Eg  | Au  | Eu  | 
 +^ Eg  | Eg  | 2Ag+Eg  | Eu  | 2Au+Eu  | 
 +^ Au  | Au  | Eu  | Ag  | Eg  | 
 +^ Eu  | Eu  | 2Au+Eu  | Eg  | 2Ag+Eg  | 
 + 
 +### 
 + 
 +===== Sub Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] 
 +  * [[physics_chemistry:point_groups:c3:orientation_z|Point Group C3 with orientation Z]] 
 +  * [[physics_chemistry:point_groups:ci:orientation_|Point Group Ci with orientation ]] 
 + 
 +### 
 + 
 +===== Super Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c6h:orientation_z|Point Group C6h with orientation Z]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx|Point Group D3d with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx_a|Point Group D3d with orientation Zx_A]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zx_b|Point Group D3d with orientation Zx_B]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_z(x-y)|Point Group D3d with orientation Z(x-y)]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_z(x-y)_a|Point Group D3d with orientation Z(x-y)_A]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_z(x-y)_b|Point Group D3d with orientation Z(x-y)_B]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zy|Point Group D3d with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zy_a|Point Group D3d with orientation Zy_A]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_zy_b|Point Group D3d with orientation Zy_B]] 
 +  * [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]] 
 +  * [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt2-1z|Point Group Oh with orientation 0sqrt2-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt21z|Point Group Oh with orientation 0sqrt21z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_11-1z|Point Group Oh with orientation 11-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_111z|Point Group Oh with orientation 111z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt20-1z|Point Group Oh with orientation sqrt20-1z]] 
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt201z|Point Group Oh with orientation sqrt201z]] 
 + 
 +### 
 + 
 +===== Invariant Potential expanded on renormalized spherical Harmonics ===== 
 + 
 +### 
 + 
 +Any potential (function) can be written as a sum over spherical harmonics. 
 +V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) 
 +Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) 
 +The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the S6 Point group with orientation Z the form of the expansion coefficients is: 
 + 
 +### 
 + 
 +==== Expansion ==== 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + A(0,0) & k=0\land m=0 \\ 
 + A(2,0) & k=2\land m=0 \\ 
 + -A(4,3)+i B(4,3) & k=4\land m=-3 \\ 
 + A(4,0) & k=4\land m=0 \\ 
 + A(4,3)+i B(4,3) & k=4\land m=3 \\ 
 + A(6,6)-i B(6,6) & k=6\land m=-6 \\ 
 + -A(6,3)+i B(6,3) & k=6\land m=-3 \\ 
 + A(6,0) & k=6\land m=0 \\ 
 + A(6,3)+i B(6,3) & k=6\land m=3 \\ 
 + A(6,6)+i B(6,6) & k=6\land m=6 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +==== Input format suitable for Mathematica (Quanty.nb) ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_S6_Z.Quanty.nb
 + 
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {-A[4, 3] + I*B[4, 3], k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}, {A[4, 3] + I*B[4, 3], k == 4 && m == 3}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {-A[6, 3] + I*B[6, 3], k == 6 && m == -3}, {A[6, 0], k == 6 && m == 0}, {A[6, 3] + I*B[6, 3], k == 6 && m == 3}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0] 
 </code> </code>
  
-==== Result ==== +###
-<WRAP center box 100%> +
-text produced as output +
-</WRAP>+
  
-===== Table of contents ===== +==== Input format suitable for Quanty ====
-{{indexmenu>.#1}}+
  
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty>
 +
 +Akm = {{0, 0, A(0,0)} , 
 +       {2, 0, A(2,0)} , 
 +       {4, 0, A(4,0)} , 
 +       {4,-3, (-1)*(A(4,3)) + (I)*(B(4,3))} , 
 +       {4, 3, A(4,3) + (I)*(B(4,3))} , 
 +       {6, 0, A(6,0)} , 
 +       {6,-3, (-1)*(A(6,3)) + (I)*(B(6,3))} , 
 +       {6, 3, A(6,3) + (I)*(B(6,3))} , 
 +       {6,-6, A(6,6) + (-I)*(B(6,6))} , 
 +       {6, 6, A(6,6) + (I)*(B(6,6))} }
 +
 +</code>
 +
 +###
 +
 +==== One particle coupling on a basis of spherical harmonics ====
 +
 +###
 +
 +The operator representing the potential in second quantisation is given as:
 +O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
 +Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l
 +Note the difference between the function Ak,m and the parameter Anl,nl(k,m)
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +we can express the operator as 
 +O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m
 +
 +
 +###
 +
 +
 +
 +###
 +
 +
 +The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^Y(0)0|Ass(0,0)|0|0|0|0|0|Asd(2,0)5|0|0|0|0|0|0|0|0|0|
 +^Y(1)1|0|App(0,0)15App(2,0)|0|0|0|0|0|0|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|13(Apf(4,3)+iBpf(4,3))|0|
 +^Y(1)0|0|0|App(0,0)+25App(2,0)|0|0|0|0|0|0|Apf(4,3)+iBpf(4,3)33|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|Apf(4,3)+iBpf(4,3)33|
 +^Y(1)1|0|0|0|App(0,0)15App(2,0)|0|0|0|0|0|0|13(Apf(4,3)+iBpf(4,3))|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|
 +^Y(2)2|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|1357(Add(4,3)+iBdd(4,3))|0|0|0|0|0|0|0|0|
 +^Y(2)1|0|0|0|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|1357(Add(4,3)+iBdd(4,3))|0|0|0|0|0|0|0|
 +^Y(2)0|Asd(2,0)5|0|0|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|0|0|0|0|
 +^Y(2)1|0|0|0|0|1357(Add(4,3)+iBdd(4,3))|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|0|0|0|0|0|0|
 +^Y(2)2|0|0|0|0|0|1357(Add(4,3)+iBdd(4,3))|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|0|0|0|0|0|
 +^Y(3)3|0|0|Apf(4,3)+iBpf(4,3)33|0|0|0|0|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|0|0|1014373(Aff(6,3)+iBff(6,3))1117(Aff(4,3)+iBff(4,3))|0|0|1013733(Aff(6,6)iBff(6,6))|
 +^Y(3)2|0|0|0|13(Apf(4,3)iBpf(4,3))|0|0|0|0|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|0|13314(Aff(4,3)+iBff(4,3))514342(Aff(6,3)+iBff(6,3))|0|0|
 +^Y(3)1|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|0|0|0|0|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|13314(Aff(4,3)+iBff(4,3))+514342(Aff(6,3)+iBff(6,3))|0|
 +^Y(3)0|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|0|0|0|1117(Aff(4,3)+iBff(4,3))1014373(Aff(6,3)+iBff(6,3))|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|1117(Aff(4,3)+iBff(4,3))1014373(Aff(6,3)+iBff(6,3))|
 +^Y(3)1|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|0|0|0|13314(Aff(4,3)+iBff(4,3))+514342(Aff(6,3)+iBff(6,3))|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|
 +^Y(3)2|0|13(Apf(4,3)iBpf(4,3))|0|0|0|0|0|0|0|0|0|13314(Aff(4,3)+iBff(4,3))514342(Aff(6,3)+iBff(6,3))|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|
 +^Y(3)3|0|0|Apf(4,3)+iBpf(4,3)33|0|0|0|0|0|0|1013733(Aff(6,6)+iBff(6,6))|0|0|1014373(Aff(6,3)+iBff(6,3))1117(Aff(4,3)+iBff(4,3))|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)|
 +
 +
 +###
 +
 +==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
 +
 +###
 +
 +
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  Y(0)0  ^  Y(1)1  ^  Y(1)0  ^  Y(1)1  ^  Y(2)2  ^  Y(2)1  ^  Y(2)0  ^  Y(2)1  ^  Y(2)2  ^  Y(3)3  ^  Y(3)2  ^  Y(3)1  ^  Y(3)0  ^  Y(3)1  ^  Y(3)2  ^  Y(3)3  ^
 +^s|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^py|0|i2|0|i2|0|0|0|0|0|0|0|0|0|0|0|0|
 +^pz|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0|
 +^px|0|12|0|12|0|0|0|0|0|0|0|0|0|0|0|0|
 +^dxy|0|0|0|0|i2|0|0|0|i2|0|0|0|0|0|0|0|
 +^dyz|0|0|0|0|0|i2|0|i2|0|0|0|0|0|0|0|0|
 +^d3z2r2|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|
 +^dxz|0|0|0|0|0|12|0|12|0|0|0|0|0|0|0|0|
 +^dx2y2|0|0|0|0|12|0|0|0|12|0|0|0|0|0|0|0|
 +^fy(3x2y2)|0|0|0|0|0|0|0|0|0|i2|0|0|0|0|0|i2|
 +^fxyz|0|0|0|0|0|0|0|0|0|0|i2|0|0|0|i2|0|
 +^fy(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|i2|0|i2|0|0|
 +^fz(5z23r2)|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|
 +^fx(5z2r2)|0|0|0|0|0|0|0|0|0|0|0|12|0|12|0|0|
 +^fz(x2y2)|0|0|0|0|0|0|0|0|0|0|12|0|0|0|12|0|
 +^fx(x23y2)|0|0|0|0|0|0|0|0|0|12|0|0|0|0|0|12|
 +
 +
 +###
 +
 +==== One particle coupling on a basis of symmetry adapted functions ====
 +
 +###
 +
 +After rotation we find
 +
 +###
 +
 +
 +
 +###
 +
 +  ^  s  ^  py  ^  pz  ^  px  ^  dxy  ^  dyz  ^  d3z2r2  ^  dxz  ^  dx2y2  ^  fy(3x2y2)  ^  fxyz  ^  fy(5z2r2)  ^  fz(5z23r2)  ^  fx(5z2r2)  ^  fz(x2y2)  ^  fx(x23y2)  ^
 +^s|Ass(0,0)|0|0|0|0|0|Asd(2,0)5|0|0|0|0|0|0|0|0|0|
 +^py|0|App(0,0)15App(2,0)|0|0|0|0|0|0|0|0|13Apf(4,3)|3527Apf(2,0)1327Apf(4,0)|0|0|13Bpf(4,3)|0|
 +^pz|0|0|App(0,0)+25App(2,0)|0|0|0|0|0|0|1323Bpf(4,3)|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|1323Apf(4,3)|
 +^px|0|0|0|App(0,0)15App(2,0)|0|0|0|0|0|0|13Bpf(4,3)|0|0|3527Apf(2,0)1327Apf(4,0)|13Apf(4,3)|0|
 +^dxy|0|0|0|0|Add(0,0)27Add(2,0)+121Add(4,0)|1357Add(4,3)|0|1357Bdd(4,3)|0|0|0|0|0|0|0|0|
 +^dyz|0|0|0|0|1357Add(4,3)|Add(0,0)+17Add(2,0)421Add(4,0)|0|0|1357Bdd(4,3)|0|0|0|0|0|0|0|
 +^d3z2r2|Asd(2,0)5|0|0|0|0|0|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|0|0|0|0|0|0|0|
 +^dxz|0|0|0|0|1357Bdd(4,3)|0|0|Add(0,0)+17Add(2,0)421Add(4,0)|1357Add(4,3)|0|0|0|0|0|0|0|
 +^dx2y2|0|0|0|0|0|1357Bdd(4,3)|0|1357Add(4,3)|Add(0,0)27Add(2,0)+121Add(4,0)|0|0|0|0|0|0|0|
 +^fy(3x2y2)|0|0|1323Bpf(4,3)|0|0|0|0|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)1013733Aff(6,6)|0|0|10143143Bff(6,3)11114Bff(4,3)|0|0|1013733Bff(6,6)|
 +^fxyz|0|13Apf(4,3)|0|13Bpf(4,3)|0|0|0|0|0|0|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|13314Aff(4,3)+514342Aff(6,3)|0|13314Bff(4,3)+514342Bff(6,3)|0|0|
 +^fy(5z2r2)|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|0|0|0|0|0|13314Aff(4,3)+514342Aff(6,3)|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|0|0|13314Bff(4,3)+514342Bff(6,3)|0|
 +^fz(5z23r2)|0|0|3537Apf(2,0)+4Apf(4,0)321|0|0|0|0|0|0|10143143Bff(6,3)11114Bff(4,3)|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|11114Aff(4,3)10143143Aff(6,3)|
 +^fx(5z2r2)|0|0|0|3527Apf(2,0)1327Apf(4,0)|0|0|0|0|0|0|13314Bff(4,3)+514342Bff(6,3)|0|0|Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)|13314Aff(4,3)514342Aff(6,3)|0|
 +^fz(x2y2)|0|13Bpf(4,3)|0|13Apf(4,3)|0|0|0|0|0|0|0|13314Bff(4,3)+514342Bff(6,3)|0|13314Aff(4,3)514342Aff(6,3)|Aff(0,0)733Aff(4,0)+10143Aff(6,0)|0|
 +^fx(x23y2)|0|0|1323Apf(4,3)|0|0|0|0|0|0|1013733Bff(6,6)|0|0|11114Aff(4,3)10143143Aff(6,3)|0|0|Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)+1013733Aff(6,6)|
 +
 +
 +###
 +
 +===== Coupling for a single shell =====
 +
 +
 +
 +###
 +
 +Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
 +
 +###
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \text{Eag} & k=0\land m=0 \\
 + 0 & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{Eag, k == 0 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty>
 +
 +Akm = {{0, 0, Eag} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ {Y_{0}^{(0)}} | \text{Eag} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  \text{s}   ^
 +^ \text{s} | \text{Eag} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{0}^{(0)}}   ^
 +^ \text{s} | 1 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Eag} | {{:physics_chemistry:pointgroup:s6_z_orb_0_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{3} (\text{Eau}+2 \text{Eeu}) & k=0\land m=0 \\
 + \frac{5 (\text{Eau}-\text{Eeu})}{3} & k=2\land m=0
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Eau + 2*Eeu)/3, k == 0 && m == 0}, {(5*(Eau - Eeu))/3, k == 2 && m == 0}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty>
 +
 +Akm = {{0, 0, (1/3)*(Eau + (2)*(Eeu))} , 
 +       {2, 0, (5/3)*(Eau + (-1)*(Eeu))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ {Y_{-1}^{(1)}} | \text{Eeu} | 0 | 0 |
 +^ {Y_{0}^{(1)}} | 0 | \text{Eau} | 0 |
 +^ {Y_{1}^{(1)}} | 0 | 0 | \text{Eeu} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  p_y   ^  p_z   ^  p_x   ^
 +^ p_y | \text{Eeu} | 0 | 0 |
 +^ p_z | 0 | \text{Eau} | 0 |
 +^ p_x | 0 | 0 | \text{Eeu} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-1}^{(1)}}   ^  {Y_{0}^{(1)}}   ^  {Y_{1}^{(1)}}   ^
 +^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} |
 +^ p_z | 0 | 1 | 0 |
 +^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Eeu} | {{:physics_chemistry:pointgroup:s6_z_orb_1_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: |
 +^ ^\text{Eau} | {{:physics_chemistry:pointgroup:s6_z_orb_1_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: |
 +^ ^\text{Eeu} | {{:physics_chemistry:pointgroup:s6_z_orb_1_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for d orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{5} (\text{Eag}+2 (\text{Eeu1}+\text{Eeu2})) & k=0\land m=0 \\
 + \text{Eag}+\text{Eeu1}-2 \text{Eeu2} & k=2\land m=0 \\
 + -3 \sqrt{\frac{7}{5}} (\text{Meu1}-i \text{Meu2}) & k=4\land m=-3 \\
 + \frac{3}{5} (3 \text{Eag}-4 \text{Eeu1}+\text{Eeu2}) & k=4\land m=0 \\
 + 3 \sqrt{\frac{7}{5}} (\text{Meu1}+i \text{Meu2}) & k=4\land m=3
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Eag + 2*(Eeu1 + Eeu2))/5, k == 0 && m == 0}, {Eag + Eeu1 - 2*Eeu2, k == 2 && m == 0}, {-3*Sqrt[7/5]*(Meu1 - I*Meu2), k == 4 && m == -3}, {(3*(3*Eag - 4*Eeu1 + Eeu2))/5, k == 4 && m == 0}, {3*Sqrt[7/5]*(Meu1 + I*Meu2), k == 4 && m == 3}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty>
 +
 +Akm = {{0, 0, (1/5)*(Eag + (2)*(Eeu1 + Eeu2))} , 
 +       {2, 0, Eag + Eeu1 + (-2)*(Eeu2)} , 
 +       {4, 0, (3/5)*((3)*(Eag) + (-4)*(Eeu1) + Eeu2)} , 
 +       {4,-3, (-3)*((sqrt(7/5))*(Meu1 + (-I)*(Meu2)))} , 
 +       {4, 3, (3)*((sqrt(7/5))*(Meu1 + (I)*(Meu2)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{-2}^{(2)}} | \text{Eeu2} | 0 | 0 | \text{Meu1}-i \text{Meu2} | 0 |
 +^ {Y_{-1}^{(2)}} | 0 | \text{Eeu1} | 0 | 0 | -\text{Meu1}+i \text{Meu2} |
 +^ {Y_{0}^{(2)}} | 0 | 0 | \text{Eag} | 0 | 0 |
 +^ {Y_{1}^{(2)}} | \text{Meu1}+i \text{Meu2} | 0 | 0 | \text{Eeu1} | 0 |
 +^ {Y_{2}^{(2)}} | 0 | -\text{Meu1}-i \text{Meu2} | 0 | 0 | \text{Eeu2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ d_{\text{xy}} | \text{Eeu2} | \text{Meu1} | 0 | \text{Meu2} | 0 |
 +^ d_{\text{yz}} | \text{Meu1} | \text{Eeu1} | 0 | 0 | \text{Meu2} |
 +^ d_{3z^2-r^2} | 0 | 0 | \text{Eag} | 0 | 0 |
 +^ d_{\text{xz}} | \text{Meu2} | 0 | 0 | \text{Eeu1} | -\text{Meu1} |
 +^ d_{x^2-y^2} | 0 | \text{Meu2} | 0 | -\text{Meu1} | \text{Eeu2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} |
 +^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 |
 +^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 |
 +^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 |
 +^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Eeu2} | {{:physics_chemistry:pointgroup:s6_z_orb_2_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: |
 +^ ^\text{Eeu1} | {{:physics_chemistry:pointgroup:s6_z_orb_2_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: |
 +^ ^\text{Eag} | {{:physics_chemistry:pointgroup:s6_z_orb_2_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: |
 +^ ^\text{Eeu1} | {{:physics_chemistry:pointgroup:s6_z_orb_2_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: |
 +^ ^\text{Eeu2} | {{:physics_chemistry:pointgroup:s6_z_orb_2_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for f orbitals ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + \frac{1}{7} (\text{Eau1}+\text{Eau2}+\text{Eau3}+2 \text{Eeu1}+2 \text{Eeu2}) & k=0\land m=0 \\
 + -\frac{5}{28} (5 \text{Eau1}-4 \text{Eau2}+5 \text{Eau3}-6 \text{Eeu1}) & k=2\land m=0 \\
 + \frac{-9 i \text{Mau12}-9 \text{Mau23}-6 \text{Meu1}+6 i \text{Meu2}}{\sqrt{14}} & k=4\land m=-3 \\
 + \frac{3}{14} (3 \text{Eau1}+6 \text{Eau2}+3 \text{Eau3}+2 \text{Eeu1}-14 \text{Eeu2}) & k=4\land m=0 \\
 + \frac{-9 i \text{Mau12}+9 \text{Mau23}+6 \text{Meu1}+6 i \text{Meu2}}{\sqrt{14}} & k=4\land m=3 \\
 + -\frac{13}{20} \sqrt{\frac{33}{7}} (\text{Eau1}-\text{Eau3}-2 i \text{Mau13}) & k=6\land m=-6 \\
 + \frac{13}{5} \sqrt{\frac{3}{14}} (i \text{Mau12}+\text{Mau23}-3 \text{Meu1}+3 i \text{Meu2}) & k=6\land m=-3 \\
 + -\frac{13}{140} (\text{Eau1}-20 \text{Eau2}+\text{Eau3}+30 \text{Eeu1}-12 \text{Eeu2}) & k=6\land m=0 \\
 + \frac{13}{5} \sqrt{\frac{3}{14}} (i \text{Mau12}-\text{Mau23}+3 \text{Meu1}+3 i \text{Meu2}) & k=6\land m=3 \\
 + -\frac{13}{20} \sqrt{\frac{33}{7}} (\text{Eau1}-\text{Eau3}+2 i \text{Mau13}) & k=6\land m=6
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{(Eau1 + Eau2 + Eau3 + 2*Eeu1 + 2*Eeu2)/7, k == 0 && m == 0}, {(-5*(5*Eau1 - 4*Eau2 + 5*Eau3 - 6*Eeu1))/28, k == 2 && m == 0}, {((-9*I)*Mau12 - 9*Mau23 - 6*Meu1 + (6*I)*Meu2)/Sqrt[14], k == 4 && m == -3}, {(3*(3*Eau1 + 6*Eau2 + 3*Eau3 + 2*Eeu1 - 14*Eeu2))/14, k == 4 && m == 0}, {((-9*I)*Mau12 + 9*Mau23 + 6*Meu1 + (6*I)*Meu2)/Sqrt[14], k == 4 && m == 3}, {(-13*Sqrt[33/7]*(Eau1 - Eau3 - (2*I)*Mau13))/20, k == 6 && m == -6}, {(13*Sqrt[3/14]*(I*Mau12 + Mau23 - 3*Meu1 + (3*I)*Meu2))/5, k == 6 && m == -3}, {(-13*(Eau1 - 20*Eau2 + Eau3 + 30*Eeu1 - 12*Eeu2))/140, k == 6 && m == 0}, {(13*Sqrt[3/14]*(I*Mau12 - Mau23 + 3*Meu1 + (3*I)*Meu2))/5, k == 6 && m == 3}, {(-13*Sqrt[33/7]*(Eau1 - Eau3 + (2*I)*Mau13))/20, k == 6 && m == 6}}, 0]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty>
 +
 +Akm = {{0, 0, (1/7)*(Eau1 + Eau2 + Eau3 + (2)*(Eeu1) + (2)*(Eeu2))} , 
 +       {2, 0, (-5/28)*((5)*(Eau1) + (-4)*(Eau2) + (5)*(Eau3) + (-6)*(Eeu1))} , 
 +       {4, 0, (3/14)*((3)*(Eau1) + (6)*(Eau2) + (3)*(Eau3) + (2)*(Eeu1) + (-14)*(Eeu2))} , 
 +       {4,-3, (1/(sqrt(14)))*((-9*I)*(Mau12) + (-9)*(Mau23) + (-6)*(Meu1) + (6*I)*(Meu2))} , 
 +       {4, 3, (1/(sqrt(14)))*((-9*I)*(Mau12) + (9)*(Mau23) + (6)*(Meu1) + (6*I)*(Meu2))} , 
 +       {6, 0, (-13/140)*(Eau1 + (-20)*(Eau2) + Eau3 + (30)*(Eeu1) + (-12)*(Eeu2))} , 
 +       {6, 3, (13/5)*((sqrt(3/14))*((I)*(Mau12) + (-1)*(Mau23) + (3)*(Meu1) + (3*I)*(Meu2)))} , 
 +       {6,-3, (13/5)*((sqrt(3/14))*((I)*(Mau12) + Mau23 + (-3)*(Meu1) + (3*I)*(Meu2)))} , 
 +       {6,-6, (-13/20)*((sqrt(33/7))*(Eau1 + (-1)*(Eau3) + (-2*I)*(Mau13)))} , 
 +       {6, 6, (-13/20)*((sqrt(33/7))*(Eau1 + (-1)*(Eau3) + (2*I)*(Mau13)))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-3}^{(3)}} | \frac{\text{Eau1}+\text{Eau3}}{2} | 0 | 0 | \frac{\text{Mau23}+i \text{Mau12}}{\sqrt{2}} | 0 | 0 | \frac{1}{2} (\text{Eau1}-\text{Eau3}-2 i \text{Mau13}) |
 +^ {Y_{-2}^{(3)}} | 0 | \text{Eeu2} | 0 | 0 | \text{Meu1}-i \text{Meu2} | 0 | 0 |
 +^ {Y_{-1}^{(3)}} | 0 | 0 | \text{Eeu1} | 0 | 0 | -\text{Meu1}+i \text{Meu2} | 0 |
 +^ {Y_{0}^{(3)}} | \frac{\text{Mau23}-i \text{Mau12}}{\sqrt{2}} | 0 | 0 | \text{Eau2} | 0 | 0 | \frac{-\text{Mau23}-i \text{Mau12}}{\sqrt{2}} |
 +^ {Y_{1}^{(3)}} | 0 | \text{Meu1}+i \text{Meu2} | 0 | 0 | \text{Eeu1} | 0 | 0 |
 +^ {Y_{2}^{(3)}} | 0 | 0 | -\text{Meu1}-i \text{Meu2} | 0 | 0 | \text{Eeu2} | 0 |
 +^ {Y_{3}^{(3)}} | \frac{1}{2} (\text{Eau1}-\text{Eau3}+2 i \text{Mau13}) | 0 | 0 | \frac{i (\text{Mau12}+i \text{Mau23})}{\sqrt{2}} | 0 | 0 | \frac{\text{Eau1}+\text{Eau3}}{2} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ f_{y\left(3x^2-y^2\right)} | \text{Eau1} | 0 | 0 | \text{Mau12} | 0 | 0 | \text{Mau13} |
 +^ f_{\text{xyz}} | 0 | \text{Eeu2} | \text{Meu1} | 0 | \text{Meu2} | 0 | 0 |
 +^ f_{y\left(5z^2-r^2\right)} | 0 | \text{Meu1} | \text{Eeu1} | 0 | 0 | \text{Meu2} | 0 |
 +^ f_{z\left(5z^2-3r^2\right)} | \text{Mau12} | 0 | 0 | \text{Eau2} | 0 | 0 | \text{Mau23} |
 +^ f_{x\left(5z^2-r^2\right)} | 0 | \text{Meu2} | 0 | 0 | \text{Eeu1} | -\text{Meu1} | 0 |
 +^ f_{z\left(x^2-y^2\right)} | 0 | 0 | \text{Meu2} | 0 | -\text{Meu1} | \text{Eeu2} | 0 |
 +^ f_{x\left(x^2-3y^2\right)} | \text{Mau13} | 0 | 0 | \text{Mau23} | 0 | 0 | \text{Eau3} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Rotation matrix used** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ f_{y\left(3x^2-y^2\right)} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{i}{\sqrt{2}} |
 +^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
 +^ f_{y\left(5z^2-r^2\right)} | 0 | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 |
 +^ f_{z\left(5z^2-3r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
 +^ f_{x\left(5z^2-r^2\right)} | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | 0 |
 +^ f_{z\left(x^2-y^2\right)} | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
 +^ f_{x\left(x^2-3y^2\right)} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{\sqrt{2}} |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **Irriducible representations and their onsite energy** >
 +
 +###
 +
 +^ ^\text{Eau1} | {{:physics_chemistry:pointgroup:s6_z_orb_3_1.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right) | ::: |
 +^ ^\text{Eeu2} | {{:physics_chemistry:pointgroup:s6_z_orb_3_2.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: |
 +^ ^\text{Eeu1} | {{:physics_chemistry:pointgroup:s6_z_orb_3_3.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{21}{2 \pi }} \sin (\theta ) (5 \cos (2 \theta )+3) \sin (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} y \left(5 z^2-1\right) | ::: |
 +^ ^\text{Eau2} | {{:physics_chemistry:pointgroup:s6_z_orb_3_4.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta )) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right) | ::: |
 +^ ^\text{Eeu1} | {{:physics_chemistry:pointgroup:s6_z_orb_3_5.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{21}{2 \pi }} (\sin (\theta )+5 \sin (3 \theta )) \cos (\phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{21}{2 \pi }} x \left(5 z^2-1\right) | ::: |
 +^ ^\text{Eeu2} | {{:physics_chemistry:pointgroup:s6_z_orb_3_6.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right) | ::: |
 +^ ^\text{Eau3} | {{:physics_chemistry:pointgroup:s6_z_orb_3_7.png?150}} |
 +|\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi ) | ::: |
 +|\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right) | ::: |
 +
 +
 +###
 +
 +</hidden>
 +===== Coupling between two shells =====
 +
 +
 +
 +###
 +
 +Click on one of the subsections to expand it or <hiddenSwitch expand all> 
 +
 +###
 +
 +==== Potential for s-d orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & k\neq 2\lor m\neq 0 \\
 + \sqrt{5} \text{Mag} & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, Sqrt[5]*Mag]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty>
 +
 +Akm = {{2, 0, (sqrt(5))*(Mag)} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-2}^{(2)}}   ^  {Y_{-1}^{(2)}}   ^  {Y_{0}^{(2)}}   ^  {Y_{1}^{(2)}}   ^  {Y_{2}^{(2)}}   ^
 +^ {Y_{0}^{(0)}} | 0 | 0 | \text{Mag} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  d_{\text{xy}}   ^  d_{\text{yz}}   ^  d_{3z^2-r^2}   ^  d_{\text{xz}}   ^  d_{x^2-y^2}   ^
 +^ \text{s} | 0 | 0 | \text{Mag} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +==== Potential for p-f orbital mixing ====
 +
 +<hidden **Potential parameterized with onsite energies of irriducible representations** >
 +
 +###
 +
 + $$A_{k,m} = \begin{cases}
 + 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -3\land m\neq 0\land m\neq 3) \\
 + \frac{5}{21} \left(\sqrt{21} \text{Mau2}+2 \sqrt{14} \text{Meu}\right) & k=2\land m=0 \\
 + 3 \sqrt{\frac{3}{2}} (\text{Mau3}+i \text{Mau1}) & k=4\land m=-3 \\
 + 3 \sqrt{\frac{3}{7}} \text{Mau2}-\frac{9 \text{Meu}}{\sqrt{14}} & k=4\land m=0 \\
 + 3 i \sqrt{\frac{3}{2}} (\text{Mau1}+i \text{Mau3}) & \text{True}
 +\end{cases}$$
 +
 +###
 +
 +</hidden>
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty.nb>
 +
 +Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || m != 0)) || (m != -3 && m != 0 && m != 3)}, {(5*(Sqrt[21]*Mau2 + 2*Sqrt[14]*Meu))/21, k == 2 && m == 0}, {3*Sqrt[3/2]*(I*Mau1 + Mau3), k == 4 && m == -3}, {3*Sqrt[3/7]*Mau2 - (9*Meu)/Sqrt[14], k == 4 && m == 0}}, (3*I)*Sqrt[3/2]*(Mau1 + I*Mau3)]
 +
 +</code>
 +
 +###
 +
 +</hidden><hidden **Input format suitable for Quanty** >
 +
 +###
 +
 +<code Quanty Akm_S6_Z.Quanty>
 +
 +Akm = {{2, 0, (5/21)*((sqrt(21))*(Mau2) + (2)*((sqrt(14))*(Meu)))} , 
 +       {4, 0, (3)*((sqrt(3/7))*(Mau2)) + (-9)*((1/(sqrt(14)))*(Meu))} , 
 +       {4, 3, (3*I)*((sqrt(3/2))*(Mau1 + (I)*(Mau3)))} , 
 +       {4,-3, (3)*((sqrt(3/2))*((I)*(Mau1) + Mau3))} }
 +
 +</code>
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** >
 +
 +###
 +
 +    ^  {Y_{-3}^{(3)}}   ^  {Y_{-2}^{(3)}}   ^  {Y_{-1}^{(3)}}   ^  {Y_{0}^{(3)}}   ^  {Y_{1}^{(3)}}   ^  {Y_{2}^{(3)}}   ^  {Y_{3}^{(3)}}   ^
 +^ {Y_{-1}^{(1)}} | 0 | 0 | \text{Meu} | 0 | 0 | \sqrt{\frac{3}{2}} (\text{Mau3}+i \text{Mau1}) | 0 |
 +^ {Y_{0}^{(1)}} | \frac{\text{Mau3}-i \text{Mau1}}{\sqrt{2}} | 0 | 0 | \text{Mau2} | 0 | 0 | -\frac{\text{Mau3}+i \text{Mau1}}{\sqrt{2}} |
 +^ {Y_{1}^{(1)}} | 0 | i \sqrt{\frac{3}{2}} (\text{Mau1}+i \text{Mau3}) | 0 | 0 | \text{Meu} | 0 | 0 |
 +
 +
 +###
 +
 +</hidden>
 +<hidden **The Hamiltonian on a basis of symmetric functions** >
 +
 +###
 +
 +    ^  f_{y\left(3x^2-y^2\right)}   ^  f_{\text{xyz}}   ^  f_{y\left(5z^2-r^2\right)}   ^  f_{z\left(5z^2-3r^2\right)}   ^  f_{x\left(5z^2-r^2\right)}   ^  f_{z\left(x^2-y^2\right)}   ^  f_{x\left(x^2-3y^2\right)}   ^
 +^ p_y | 0 | -\sqrt{\frac{3}{2}} \text{Mau3} | \text{Meu} | 0 | 0 | \sqrt{\frac{3}{2}} \text{Mau1} | 0 |
 +^ p_z | \text{Mau1} | 0 | 0 | \text{Mau2} | 0 | 0 | \text{Mau3} |
 +^ p_x | 0 | \sqrt{\frac{3}{2}} \text{Mau1} | 0 | 0 | \text{Meu} | \sqrt{\frac{3}{2}} \text{Mau3} | 0 |
 +
 +
 +###
 +
 +</hidden>
 +
 +===== Table of several point groups =====
 +
 +###
 +
 +[[physics_chemistry:point_groups|Return to Main page on Point Groups]]
 +
 +###
 +
 +###
 +
 +^Nonaxial groups      | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | |
 +^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub>
 +^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub>
 +^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub>
 +^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | | 
 +^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub>
 +^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub>
 +^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> |  | 
 +^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub>
 +^Linear groups      | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|\inftyv]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|\inftyh]]</sub> | | | | | |
 +
 +###
Print/export