Table of Contents
This is an old revision of the document!
Atomic coulomb repulsion
Note: parts of the functionality of this function will be available in the release of October 2019
NewOperator(“AtomicU”,indices,RadialWavefunctions1,RadialWavefunctions2,options) calculates the full Coulomb interaction operator between all given atomic orbitals.
Input
-
indices : indices of atomic orbitals belonging to the radial wave-functions
-
RadialWavefunctions1 : table of InterpolatingFunction objects
-
RadialWavefunctions2 : optional - table of InterpolatingFunction objects - if given, the function calculates relativistic Slater integrals where RadialWavefunctions1 are the large parts and RadialWavefunctions2 the small ones
-
options : possible Options are {“conserve”, bool} and {“MeanField”, bool}
-
“conserve”
-
if true only occupation conserving Slater integrals are calculated
-
“MeanField” : only if “conserve” is true and additional arguments are given
-
Example
The example below shows how to create the full Coulomb interaction between multiple atomic orbitals with relativistic wave-functions. It is recommended to use CreateAtomicIndicesList(orbitallabels,kappas_true) for index creation, since it automatically calculates the quantum numbers kappa and stores them in the field ind.kappas which needs to be set when calling NewOperator(“AtomicU”,…) with relativistic wave-functions.
Input
- Example.Quanty
orbitallabels = {"1s1/2","2s1/2","2p1/2","2p3/2"} ind, NF = CreateAtomicIndicesList(orbitallabels,{{"Kappas",true}}) G, F = ReadFPLOBasisFunctions(orbitallabels,"+fval.001.1", "+fval.001.2") U = NewOperator("AtomicU",NF,ind,G,F) -- creates full Coulomb interaction -- now occupation of the s-orbitals shall be conserved function Take(list,n1,n2) local result={} if n2== nil then if n1 > 0 then for i = 1, n1 do result[i]=list[i] end else for i=1,-n1 do result[i]=list[#list+n1+i] end end else for i = n1, n2 do result[i+1-n1] = list[i] end end return result end n0 = 3 n1 = 4 indConserved = Take(ind,1,n0-1) indConserved.kappas = Take(ind.kappas,1,n0-1) GConserved = Take(G,1,n0-1) FConserved = Take(F,1,n0-1) indNonCnsrvd = Take(ind,n0,n1) indNonCnsrvd.kappas = Take(ind.kappas,n0,n1) GNonCnsrvd = Take(G,n0,n1) FNonCnsrvd = Take(F,n0,n1) U0 = NewOperator("AU",NF,indConserved,GConserved,FConserved,{{"conserve",true}}) -- Coulomb interaction between conserved orbitals only U1 = NewOperator("AU",NF,ind,G,F,indConserved.kappas,indNonCnsrvd.kappas,{{"conserve",true},{"MeanField",true}}) -- Coulomb interaction between conserved orbitals and others transformed to a one-particle operator U2 = NewOperator("AU",NF,indNonCnsrvd,GNonCnsrvd,FNonCnsrvd) -- Coulomb interaction between non-conserved orbitals Uconserved = U0 + U1 + U2
Table of contents
-