This is an old revision of the document!

# NewOperator

NewOperator(name, …) creates one of the standard operators as described in the section on standard operators.

NewOperator(Nf, Nb, CreationTable) can be used to create any operator of the form: \begin{eqnarray} \nonumber O = && \alpha^{(0,0)} 1 \\ \nonumber + \sum_i && \alpha^{(1,0)}_i a^{\dagger}_i + \alpha^{(0,1)}_i a_i \\ \nonumber + \sum_{i,j} && \alpha^{(2,0)}_{i,j} a^{\dagger}_ia^{\dagger}_j + \alpha^{(1,1)}_{i,j} a^{\dagger}_ia_j + \alpha^{(0,2)}_{i,j} a_ia_j \\ + \sum_{i,j,k} && \ldots . \end{eqnarray} The format of CreationTable for the above listed operator is: NewOperator(Nf, Nb, whereby_positive_indices_create_a_particle_negative_indices_annihilate_a_particle._index_i_for_0_to_nf-1_label_fermions_from_nf_to_nf_nb_label_bosons._alpha_can_be_either_a_real_or_a_complex_number._newoperator_can_take_a_forth_element_specifying_options, name_liberty) print(O) </code> ==== Result ==== <file Quanty_Output NewOperator.out> Operator: Liberty QComplex = 2 (Real==0 or Complex==1 or Mixed==2) MaxLength = 5 (largest number of product of lader operators) NFermionic modes = 5 (Number of fermionic modes (site, spin, orbital, …) in the one particle basis) NBosonic modes = 0 (Number of bosonic modes (phonon modes, …) in the one particle basis) Operator of Length 0 QComplex = 0 (Real==0 or Complex==1) N = 1 (number of operators of length 0) | 1.000000000000000E+01 Operator of Length 5 QComplex = 1 (Real==0 or Complex==1) N = 1 (number of operators of length 5) C 4 C 3 C 2 C 1 C 0 | 1.000000000000000E+00 1.000000000000000E+00 </file> ===== Table of contents =====

Workshops

Script versions External programs Privacy

##### Tools 