nIXS L2,3
Besides low energy transitions nIXS can be used as a core level spectroscopy technique. One then measures resonances with non-resonant inelastic x-ray scattering .
The input script:
- nIXS_L23.Quanty
-- using inelastic x-ray scattering one can not only measure low energy excitations, -- but equally well core to core transitions. This allows one to probe for example -- 3p to 3d transitions using octupole operators. -- We set the output of the program to a minimum Verbosity(0) -- we need a 2p and 3d shell NF=16 NB=0 IndexDn_2p={0,2,4} IndexUp_2p={1,3,5} IndexDn_3d={6,8,10,12,14} IndexUp_3d={7,9,11,13,15} OppSx =NewOperator("Sx" ,NF, IndexUp_3d, IndexDn_3d) OppSy =NewOperator("Sy" ,NF, IndexUp_3d, IndexDn_3d) OppSz =NewOperator("Sz" ,NF, IndexUp_3d, IndexDn_3d) OppSsqr =NewOperator("Ssqr" ,NF, IndexUp_3d, IndexDn_3d) OppSplus=NewOperator("Splus",NF, IndexUp_3d, IndexDn_3d) OppSmin =NewOperator("Smin" ,NF, IndexUp_3d, IndexDn_3d) OppLx =NewOperator("Lx" ,NF, IndexUp_3d, IndexDn_3d) OppLy =NewOperator("Ly" ,NF, IndexUp_3d, IndexDn_3d) OppLz =NewOperator("Lz" ,NF, IndexUp_3d, IndexDn_3d) OppLsqr =NewOperator("Lsqr" ,NF, IndexUp_3d, IndexDn_3d) OppLplus=NewOperator("Lplus",NF, IndexUp_3d, IndexDn_3d) OppLmin =NewOperator("Lmin" ,NF, IndexUp_3d, IndexDn_3d) OppJx =NewOperator("Jx" ,NF, IndexUp_3d, IndexDn_3d) OppJy =NewOperator("Jy" ,NF, IndexUp_3d, IndexDn_3d) OppJz =NewOperator("Jz" ,NF, IndexUp_3d, IndexDn_3d) OppJsqr =NewOperator("Jsqr" ,NF, IndexUp_3d, IndexDn_3d) OppJplus=NewOperator("Jplus",NF, IndexUp_3d, IndexDn_3d) OppJmin =NewOperator("Jmin" ,NF, IndexUp_3d, IndexDn_3d) Oppldots=NewOperator("ldots",NF, IndexUp_3d, IndexDn_3d) -- define the coulomb operator -- we here define the part depending on F0 seperately from the part depending on F2 -- when summing we can put in the numerical values of the slater integrals OppF0 =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {1,0,0}) OppF2 =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,1,0}) OppF4 =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,0,1}) Akm = PotentialExpandedOnClm("Oh", 2, {0.6,-0.4}) OpptenDq = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {1,0}) OppNeg = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {0,1}) OppNt2g = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) Oppcldots= NewOperator("ldots", NF, IndexUp_2p, IndexDn_2p) OppUpdF0 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {1,0}, {0,0}) OppUpdF2 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,1}, {0,0}) OppUpdG1 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {1,0}) OppUpdG3 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {0,1}) -- in crystal field theory U drops out of the equation U = 0.000 F2dd = 11.142 F4dd = 6.874 F0dd = U+(F2dd+F4dd)*2/63 -- in crystal field theory U drops out of the equation Upd = 0.000 F2pd = 6.667 G1pd = 4.922 G3pd = 2.796 F0pd = Upd + G1pd*1/15 + G3pd*3/70 tenDq = 1.100 zeta_3d = 0.081 zeta_2p = 11.498 Bz = 0.000001 Hamiltonian = F0dd*OppF0 + F2dd*OppF2 + F4dd*OppF4 + tenDq*OpptenDq + zeta_3d*Oppldots + Bz*(2*OppSz + OppLz) XASHamiltonian = Hamiltonian + zeta_2p * Oppcldots + F2pd * OppUpdF2 + G1pd * OppUpdG1 + G3pd * OppUpdG3 -- we now can create the lowest Npsi eigenstates: Npsi=3 -- in order to make sure we have a filling of 2 electrons we need to define some restrictions StartRestrictions = {NF, NB, {"111111 0000000000",6,6}, {"000000 1111111111",8,8}} psiList = Eigensystem(Hamiltonian, StartRestrictions, Npsi) oppList={Hamiltonian, OppSsqr, OppLsqr, OppJsqr, OppSz, OppLz, Oppldots, OppF2, OppF4, OppNeg, OppNt2g} print(" <E> <S^2> <L^2> <J^2> <S_z> <L_z> <l.s> <F[2]> <F[4]> <Neg> <Nt2g>"); for key,psi in pairs(psiList) do expvalue = psi * oppList * psi for k,v in pairs(expvalue) do io.write(string.format("%6.3f ",v)) end; io.write("\n") end -- in order to calculate nIXS we need to determine the intensity ratio for the different multipole intensities -- ( see PRL 99, 257401 (2007) for the formalism ) -- in short the A^2 interaction is expanded on spherical harmonics and Bessel functions -- The 3d Wannier functions are expanded on spherical harmonics and a radial wave function -- For the radial wave-function we calculate <R(r) | j_k(q r) | R(r)> -- which defines the transition strength for the multipole of order k -- The radial functions here are calculated for a Ni 2+ atom and stored in the folder NiO_Radial -- more sophisticated methods can be used -- read the radial wave functions -- order of functions -- r 1S 2S 2P 3S 3P 3D file = io.open( "NiO_Radial/RnlNi_Atomic_Hartree_Fock", "r") Rnl = {} for line in file:lines() do RnlLine={} for i in string.gmatch(line, "%S+") do table.insert(RnlLine,i) end table.insert(Rnl,RnlLine) end -- some constants a0 = 0.52917721092 Rydberg = 13.60569253 Hartree = 2*Rydberg -- pd transitions from 2p (index 4 in Rnl) to 3d (index 7 in Rnl) -- <R(r) | j_k(q r) | R(r)> function RjRpd (q) Rj1R = 0 Rj3R = 0 dr = Rnl[3][1]-Rnl[2][1] r0 = Rnl[2][1]-2*dr for ir = 2, #Rnl, 1 do r = r0 + ir * dr Rj1R = Rj1R + Rnl[ir][4] * math.SphericalBesselJ(1,q*r) * Rnl[ir][7] * dr Rj3R = Rj3R + Rnl[ir][4] * math.SphericalBesselJ(3,q*r) * Rnl[ir][7] * dr end return Rj1R, Rj3R end -- the angular part is given as C(theta_q, phi_q)^* C(theta_r, phi_r) -- which is a potential expanded on spherical harmonics function ExpandOnClm(k,theta,phi,scale) ret={} for m=-k, k, 1 do table.insert(ret,{k,m,scale * math.SphericalHarmonicC(k,m,theta,phi)}) end return ret end -- define nIXS transition operators function TnIXS_pd(q, theta, phi) Rj1R, Rj3R = RjRpd(q) k=1 A1 = ExpandOnClm(k, theta, phi, I^k*(2*k+1)*Rj1R) T1 = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, A1) k=3 A3 = ExpandOnClm(k, theta, phi, I^k*(2*k+1)*Rj3R) T3 = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, A3) T = T1+T3 T.Chop() return T end -- q in units per a0 (if you want in units per A take 5*a0 to have a q of 5 per A) q=9.0 print("for q=",q," per a0 (",q / a0," per A) The ratio of k=1 and k=3 transition strength is:", RjRpd(q)) -- define some transition operators qtheta=0 qphi=0 Tq001 = TnIXS_pd(q,qtheta,qphi) qtheta=Pi/2 qphi=Pi/4 Tq110 = TnIXS_pd(q,qtheta,qphi) qtheta=math.acos(math.sqrt(1/3)) qphi=Pi/4 Tq111 = TnIXS_pd(q,qtheta,qphi) qtheta=math.acos(math.sqrt(9/14)) qphi=math.acos(math.sqrt(1/5)) Tq123 = TnIXS_pd(q,qtheta,qphi) -- calculate the spectra nIXSSpectra = CreateSpectra(XASHamiltonian, {Tq001, Tq110, Tq111, Tq123}, psiList, {{"Emin",-10}, {"Emax",20}, {"NE",6000}, {"Gamma",1.0}}) -- print the spectra to a file nIXSSpectra.Print({{"file","NiOnIXS_L23.dat"}}); -- a gnuplot script to make the plots gnuplotInput = [[ set autoscale set xtic auto set ytic auto set style line 1 lt 1 lw 1 lc rgb "#FF0000" set style line 2 lt 1 lw 1 lc rgb "#0000FF" set style line 3 lt 1 lw 1 lc rgb "#00C000" set style line 4 lt 1 lw 1 lc rgb "#000000" set style line 5 lt 1 lw 3 lc rgb "#808080" set xlabel "E (eV)" font "Times,12" set ylabel "Intensity (arb. units)" font "Times,12" set out 'NiOnIXS_L23.ps' set size 1.0, 0.3 set terminal postscript portrait enhanced color "Times" 8 energyshift=857.6 plot "NiOnIXS_L23.dat" using ($1+energyshift):(-$9 -$11 -$13 +0.16) title '011' with lines ls 2,\ "NiOnIXS_L23.dat" using ($1+energyshift):(-$15 -$17 -$19 +0.11) title '111' with lines ls 3,\ "NiOnIXS_L23.dat" using ($1+energyshift):(-$21 -$23 -$25 +0.06) title '123' with lines ls 4,\ "NiOnIXS_L23.dat" using ($1+energyshift):(-$3 -$5 -$7 +0.01) title '001' with lines ls 1 ]] -- write the gnuplot script to a file file = io.open("NiOnIXS_L23.gnuplot", "w") file:write(gnuplotInput) file:close() -- call gnuplot to execute the script os.execute("gnuplot NiOnIXS_L23.gnuplot") -- transform to pdf and eps os.execute("ps2pdf NiOnIXS_L23.ps ; ps2eps NiOnIXS_L23.ps ; mv NiOnIXS_L23.eps temp.eps ; eps2eps temp.eps NiOnIXS_L23.eps ; rm temp.eps")
The spectrum produced:
2p to 3d excitations as one would measure using non-resonant inelastic x-ray scattering. |
---|
The output to standard out is:
- nIXS_L23.out
-2.444 1.999 12.000 15.118 -0.994 -0.285 -0.331 -1.020 -0.878 2.011 5.989 -2.444 1.999 12.000 15.118 -0.000 -0.000 -0.331 -1.020 -0.878 2.011 5.989 -2.444 1.999 12.000 15.118 0.994 0.285 -0.331 -1.020 -0.878 2.011 5.989 for q= 9 per a0 ( 17.007535121086 per A) The ratio of k=1 and k=3 transition strength is: 0.081284239649905 0.04426369559805