In the Td Point Group, with orientation xyz there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
C3 | {1,1,1} , {1,1,−1} , {1,−1,1} , {−1,1,1} , {−1,−1,1} , {−1,1,−1} , {1,−1,−1} , {−1,−1,−1} , |
C2 | {0,0,1} , {0,1,0} , {1,0,0} , |
S4 | {0,0,1} , {0,1,0} , {1,0,0} , {0,0,−1} , {0,−1,0} , {−1,0,0} , |
σd | {1,1,0} , {1,−1,0} , {1,0,−1} , {1,0,1} , {0,1,1} , {0,1,−1} , |
E(1) | C3(8) | C2(3) | S4(6) | σd(6) | |
---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 |
A2 | 1 | 1 | 1 | −1 | −1 |
E | 2 | −1 | 2 | 0 | 0 |
T1 | 3 | 0 | −1 | 1 | −1 |
T2 | 3 | 0 | −1 | −1 | 1 |
A1 | A2 | E | T1 | T2 | |
---|---|---|---|---|---|
A1 | A1 | A2 | E | T1 | T2 |
A2 | A2 | A1 | E | T2 | T1 |
E | E | E | E+A1+A2 | T1+T2 | T1+T2 |
T1 | T1 | T2 | T1+T2 | E+A1+T1+T2 | E+A2+T1+T2 |
T2 | T2 | T1 | T1+T2 | E+A2+T1+T2 | E+A1+T1+T2 |
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Td Point group with orientation xyz the form of the expansion coefficients is:
Ak,m={A(0,0)k=0∧m=0−iB(3,2)k=3∧m=−2iB(3,2)k=3∧m=2√514A(4,0)k=4∧(m=−4∨m=4)A(4,0)k=4∧m=0−√72A(6,0)k=6∧(m=−4∨m=4)A(6,0)k=6∧m=0
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(-I)*B[3, 2], k == 3 && m == -2}, {I*B[3, 2], k == 3 && m == 2}, {Sqrt[5/14]*A[4, 0], k == 4 && (m == -4 || m == 4)}, {A[4, 0], k == 4 && m == 0}, {-(Sqrt[7/2]*A[6, 0]), k == 6 && (m == -4 || m == 4)}, {A[6, 0], k == 6 && m == 0}}, 0]
Akm = {{0, 0, A(0,0)} , {3,-2, (-I)*(B(3,2))} , {3, 2, (I)*(B(3,2))} , {4, 0, A(4,0)} , {4,-4, (sqrt(5/14))*(A(4,0))} , {4, 4, (sqrt(5/14))*(A(4,0))} , {6, 0, A(6,0)} , {6,-4, (-1)*((sqrt(7/2))*(A(6,0)))} , {6, 4, (-1)*((sqrt(7/2))*(A(6,0)))} }
The operator representing the potential in second quantisation is given as: O=∑n″ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
we can express the operator as O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{Y_{0}^{(0)}} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{i \text{Bsf}(3,2)}{\sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{i \text{Bsf}(3,2)}{\sqrt{7}} } | \color{darkred}{ 0 } |
{Y_{-1}^{(1)}} | \color{darkred}{ 0 } | \text{App}(0,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | 0 | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) |
{Y_{0}^{(1)}} | \color{darkred}{ 0 } | 0 | \text{App}(0,0) | 0 | \color{darkred}{ \frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) } | 0 | 0 | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
{Y_{1}^{(1)}} | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
{Y_{-2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | 0 | \frac{5}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) } | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{i \text{Bdf}(3,2)}{\sqrt{21}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{0}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{1}^{(2)}} | 0 | \color{darkred}{ -\frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{i \text{Bdf}(3,2)}{\sqrt{21}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) } |
{Y_{2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \frac{5}{21} \text{Add}(4,0) | 0 | 0 | 0 | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-3}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | 0 | 0 | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | 0 |
{Y_{-2}^{(3)}} | \color{darkred}{ -\frac{i \text{Bsf}(3,2)}{\sqrt{7}} } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) | 0 |
{Y_{-1}^{(3)}} | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{i \text{Bdf}(3,2)}{\sqrt{21}} } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) |
{Y_{0}^{(3)}} | \color{darkred}{ 0 } | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ -\frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
{Y_{1}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{i \text{Bdf}(3,2)}{\sqrt{21}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
{Y_{2}^{(3)}} | \color{darkred}{ \frac{i \text{Bsf}(3,2)}{\sqrt{7}} } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
{Y_{3}^{(3)}} | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | 0 | 0 | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | 1 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_x | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_y | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | 1 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 1 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
f_{x\left(5x^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{\sqrt{5}}{4} | 0 | -\frac{\sqrt{3}}{4} | 0 | \frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} |
f_{y\left(5y^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{5}}{4} |
f_{z\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
f_{x\left(y^2-z^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{3}}{4} |
f_{y\left(z^2-x^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{i \sqrt{3}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
After rotation we find
\text{s} | p_x | p_y | p_z | d_{x^2-y^2} | d_{3z^2-r^2} | d_{\text{yz}} | d_{\text{xz}} | d_{\text{xy}} | f_{\text{xyz}} | f_{x\left(5x^2-r^2\right)} | f_{y\left(5y^2-r^2\right)} | f_{z\left(5z^2-r^2\right)} | f_{x\left(y^2-z^2\right)} | f_{y\left(z^2-x^2\right)} | f_{z\left(x^2-y^2\right)} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bsf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_x | \color{darkred}{ 0 } | \text{App}(0,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 | 0 | 0 |
p_y | \color{darkred}{ 0 } | 0 | \text{App}(0,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | 0 | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | 0 | 0 | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | 0 | 0 | 0 | 0 | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{\text{xyz}} | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bsf}(3,2) } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{4}{11} \text{Aff}(4,0)+\frac{80}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | 0 |
f_{x\left(5x^2-r^2\right)} | \color{darkred}{ 0 } | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
f_{y\left(5y^2-r^2\right)} | \color{darkred}{ 0 } | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
f_{z\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
f_{x\left(y^2-z^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) | 0 | 0 |
f_{y\left(z^2-x^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) | 0 |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) |
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Click on one of the subsections to expand it or
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |