In the C4 Point Group, with orientation Z there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
C4 | {0,0,1} , {0,0,−1} , |
C2 | {0,0,1} , |
E(1) | C4(2) | C2(1) | |
---|---|---|---|
A | 1 | 1 | 1 |
B | 1 | −1 | 1 |
E | 2 | 0 | −2 |
A | B | E | |
---|---|---|---|
A | A | B | E |
B | B | A | E |
E | E | E | 2A+2B |
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the C4 Point group with orientation Z the form of the expansion coefficients is:
Ak,m={A(0,0)k=0∧m=0A(1,0)k=1∧m=0A(2,0)k=2∧m=0A(3,0)k=3∧m=0A(4,4)−iB(4,4)k=4∧m=−4A(4,0)k=4∧m=0A(4,4)+iB(4,4)k=4∧m=4A(5,4)−iB(5,4)k=5∧m=−4A(5,0)k=5∧m=0A(5,4)+iB(5,4)k=5∧m=4A(6,4)−iB(6,4)k=6∧m=−4A(6,0)k=6∧m=0A(6,4)+iB(6,4)k=6∧m=4
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[1, 0], k == 1 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[3, 0], k == 3 && m == 0}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 0], k == 4 && m == 0}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {A[5, 4] - I*B[5, 4], k == 5 && m == -4}, {A[5, 0], k == 5 && m == 0}, {A[5, 4] + I*B[5, 4], k == 5 && m == 4}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 0], k == 6 && m == 0}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}}, 0]
Akm = {{0, 0, A(0,0)} , {1, 0, A(1,0)} , {2, 0, A(2,0)} , {3, 0, A(3,0)} , {4, 0, A(4,0)} , {4,-4, A(4,4) + (-I)*(B(4,4))} , {4, 4, A(4,4) + (I)*(B(4,4))} , {5, 0, A(5,0)} , {5,-4, A(5,4) + (-I)*(B(5,4))} , {5, 4, A(5,4) + (I)*(B(5,4))} , {6, 0, A(6,0)} , {6,-4, A(6,4) + (-I)*(B(6,4))} , {6, 4, A(6,4) + (I)*(B(6,4))} }
The operator representing the potential in second quantisation is given as: O=∑n″ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
we can express the operator as O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{Y_{0}^{(0)}} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} } | \color{darkred}{ 0 } | 0 | 0 | \frac{\text{Asd}(2,0)}{\sqrt{5}} | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(1)}} | \color{darkred}{ 0 } | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | 0 | -\frac{2 (\text{Apf}(4,4)-i \text{Bpf}(4,4))}{3 \sqrt{3}} |
{Y_{0}^{(1)}} | \color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} } | 0 | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
{Y_{1}^{(1)}} | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | \color{darkred}{ 0 } | -\frac{2 (\text{Apf}(4,4)+i \text{Bpf}(4,4))}{3 \sqrt{3}} | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
{Y_{-2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | 0 | \frac{1}{3} \sqrt{\frac{10}{7}} (\text{Add}(4,4)-i \text{Bdd}(4,4)) | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) } | \color{darkred}{ 0 } |
{Y_{-1}^{(2)}} | 0 | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) } |
{Y_{0}^{(2)}} | \frac{\text{Asd}(2,0)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | 0 | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{3} \sqrt{\frac{10}{7}} (\text{Add}(4,4)+i \text{Bdd}(4,4)) | 0 | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} } | \color{darkred}{ 0 } |
{Y_{-3}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | -\frac{2 (\text{Apf}(4,4)-i \text{Bpf}(4,4))}{3 \sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | 0 | 0 | \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)-i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)-i \text{Bff}(6,4)) | 0 | 0 |
{Y_{-2}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | \frac{1}{33} \sqrt{70} (\text{Aff}(4,4)-i \text{Bff}(4,4))+\frac{10}{143} \sqrt{14} (\text{Aff}(6,4)-i \text{Bff}(6,4)) | 0 |
{Y_{-1}^{(3)}} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)-i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)-i \text{Bff}(6,4)) |
{Y_{0}^{(3)}} | \color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} } | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
{Y_{1}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)+i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)+i \text{Bff}(6,4)) | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
{Y_{2}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} } | 0 | \frac{1}{33} \sqrt{70} (\text{Aff}(4,4)+i \text{Bff}(4,4))+\frac{10}{143} \sqrt{14} (\text{Aff}(6,4)+i \text{Bff}(6,4)) | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
{Y_{3}^{(3)}} | \color{darkred}{ 0 } | -\frac{2 (\text{Apf}(4,4)+i \text{Bpf}(4,4))}{3 \sqrt{3}} | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)+i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)+i \text{Bff}(6,4)) | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | 1 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_y | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | 1 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_x | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 1 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{y\left(3x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{i}{\sqrt{2}} |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
f_{y\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 |
f_{z\left(5z^2-3r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
f_{x\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | 0 |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
f_{x\left(x^2-3y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{\sqrt{2}} |
After rotation we find
\text{s} | p_y | p_z | p_x | d_{\text{xy}} | d_{\text{yz}} | d_{3z^2-r^2} | d_{\text{xz}} | d_{x^2-y^2} | f_{y\left(3x^2-y^2\right)} | f_{\text{xyz}} | f_{y\left(5z^2-r^2\right)} | f_{z\left(5z^2-3r^2\right)} | f_{x\left(5z^2-r^2\right)} | f_{z\left(x^2-y^2\right)} | f_{x\left(x^2-3y^2\right)} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} } | \color{darkred}{ 0 } | 0 | 0 | \frac{\text{Asd}(2,0)}{\sqrt{5}} | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_y | \color{darkred}{ 0 } | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | 0 | -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} |
p_z | \color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} } | 0 | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
p_x | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | \color{darkred}{ 0 } | -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | \frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) | 0 | 0 | 0 | -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) } |
d_{3z^2-r^2} | \frac{\text{Asd}(2,0)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} } | 0 | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) } |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) | 0 | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)+\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}+\frac{1}{11} \sqrt{10} \text{Adf}(5,4) } | \color{darkred}{ 0 } |
f_{y\left(3x^2-y^2\right)} | \color{darkred}{ 0 } | -\frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} | 0 | -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | \frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4) | 0 | \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) | 0 | 0 |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)-\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)-\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | 0 | 0 | 0 | -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) | 0 |
f_{y\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4) | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) |
f_{z\left(5z^2-3r^2\right)} | \color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} } | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
f_{x\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) } | \color{darkred}{ 0 } | \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | \frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4)-\frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4) |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}+\frac{1}{11} \sqrt{10} \text{Adf}(5,4) } | 0 | -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | 0 |
f_{x\left(x^2-3y^2\right)} | \color{darkred}{ 0 } | -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} | 0 | \frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) } | \color{darkred}{ 0 } | 0 | 0 | \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) | 0 | \frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4)-\frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4) | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Click on one of the subsections to expand it or
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |