This orientation is non-standard, but related to the orientation of the Oh pointgroup, which normally would be orrientated with the C3 axes in the 111 direction. We only show one of the options of the D3d subgroups of the Oh group with orientation XYZ.
In the D3d Point Group, with orientation 111 there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
C3 | {1,1,1} , {−1,−1,−1} , |
C2 | {1,−1,0} , {0,1,−1} , {1,0,−1} , |
i | {0,0,0} , |
S6 | {1,1,1} , {−1,−1,−1} , |
σd | {1,−1,0} , {0,1,−1} , {1,0,−1} , |
E(1) | C3(2) | C2(3) | i(1) | S6(2) | σd(3) | |
---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 |
A2g | 1 | 1 | −1 | 1 | 1 | −1 |
Eg | 2 | −1 | 0 | 2 | −1 | 0 |
A1u | 1 | 1 | 1 | −1 | −1 | −1 |
A2u | 1 | 1 | −1 | −1 | −1 | 1 |
Eu | 2 | −1 | 0 | −2 | 1 | 0 |
A1g | A2g | Eg | A1u | A2u | Eu | |
---|---|---|---|---|---|---|
A1g | A1g | A2g | Eg | A1u | A2u | Eu |
A2g | A2g | A1g | Eg | A2u | A1u | Eu |
Eg | Eg | Eg | A1g+A2g+Eg | Eu | Eu | A1u+A2u+Eu |
A1u | A1u | A2u | Eu | A1g | A2g | Eg |
A2u | A2u | A1u | Eu | A2g | A1g | Eg |
Eu | Eu | Eu | A1u+A2u+Eu | Eg | Eg | A1g+A2g+Eg |
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the D3d Point group with orientation 111 the form of the expansion coefficients is:
Ak,m={A(0,0)k=0∧m=0−iA(2,1)k=2∧m=−2(−1−i)A(2,1)k=2∧m=−1(1−i)A(2,1)k=2∧m=1iA(2,1)k=2∧m=2√514A(4,0)k=4∧(m=−4∨m=4)(−1+i)√7A(4,1)k=4∧m=−32i√2A(4,1)k=4∧m=−2(−1−i)A(4,1)k=4∧m=−1A(4,0)k=4∧m=0(1−i)A(4,1)k=4∧m=1−2i√2A(4,1)k=4∧m=2(1+i)√7A(4,1)k=4∧m=3−133i(8√22A(6,1)−√55B(6,2))k=6∧m=−6−(1+i)(A(6,1)+2√10B(6,2))√66k=6∧m=−5−√72A(6,0)k=6∧(m=−4∨m=4)(16−i6)(√10A(6,1)−4B(6,2))k=6∧m=−3−iB(6,2)k=6∧m=−2(−1−i)A(6,1)k=6∧m=−1A(6,0)k=6∧m=0(1−i)A(6,1)k=6∧m=1iB(6,2)k=6∧m=2(−16−i6)(√10A(6,1)−4B(6,2))k=6∧m=3(1−i)(A(6,1)+2√10B(6,2))√66k=6∧m=5133i(8√22A(6,1)−√55B(6,2))k=6∧m=6
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(-I)*A[2, 1], k == 2 && m == -2}, {(-1 - I)*A[2, 1], k == 2 && m == -1}, {(1 - I)*A[2, 1], k == 2 && m == 1}, {I*A[2, 1], k == 2 && m == 2}, {Sqrt[5/14]*A[4, 0], k == 4 && (m == -4 || m == 4)}, {(-1 + I)*Sqrt[7]*A[4, 1], k == 4 && m == -3}, {(2*I)*Sqrt[2]*A[4, 1], k == 4 && m == -2}, {(-1 - I)*A[4, 1], k == 4 && m == -1}, {A[4, 0], k == 4 && m == 0}, {(1 - I)*A[4, 1], k == 4 && m == 1}, {(-2*I)*Sqrt[2]*A[4, 1], k == 4 && m == 2}, {(1 + I)*Sqrt[7]*A[4, 1], k == 4 && m == 3}, {(-I/33)*(8*Sqrt[22]*A[6, 1] - Sqrt[55]*B[6, 2]), k == 6 && m == -6}, {((-1 - I)*(A[6, 1] + 2*Sqrt[10]*B[6, 2]))/Sqrt[66], k == 6 && m == -5}, {-(Sqrt[7/2]*A[6, 0]), k == 6 && (m == -4 || m == 4)}, {(1/6 - I/6)*(Sqrt[10]*A[6, 1] - 4*B[6, 2]), k == 6 && m == -3}, {(-I)*B[6, 2], k == 6 && m == -2}, {(-1 - I)*A[6, 1], k == 6 && m == -1}, {A[6, 0], k == 6 && m == 0}, {(1 - I)*A[6, 1], k == 6 && m == 1}, {I*B[6, 2], k == 6 && m == 2}, {(-1/6 - I/6)*(Sqrt[10]*A[6, 1] - 4*B[6, 2]), k == 6 && m == 3}, {((1 - I)*(A[6, 1] + 2*Sqrt[10]*B[6, 2]))/Sqrt[66], k == 6 && m == 5}, {(I/33)*(8*Sqrt[22]*A[6, 1] - Sqrt[55]*B[6, 2]), k == 6 && m == 6}}, 0]
Akm = {{0, 0, A(0,0)} , {2,-1, (-1+-1*I)*(A(2,1))} , {2, 1, (1+-1*I)*(A(2,1))} , {2,-2, (-I)*(A(2,1))} , {2, 2, (I)*(A(2,1))} , {4, 0, A(4,0)} , {4,-1, (-1+-1*I)*(A(4,1))} , {4, 1, (1+-1*I)*(A(4,1))} , {4, 2, (-2*I)*((sqrt(2))*(A(4,1)))} , {4,-2, (2*I)*((sqrt(2))*(A(4,1)))} , {4,-3, (-1+1*I)*((sqrt(7))*(A(4,1)))} , {4, 3, (1+1*I)*((sqrt(7))*(A(4,1)))} , {4,-4, (sqrt(5/14))*(A(4,0))} , {4, 4, (sqrt(5/14))*(A(4,0))} , {6, 0, A(6,0)} , {6,-1, (-1+-1*I)*(A(6,1))} , {6, 1, (1+-1*I)*(A(6,1))} , {6,-2, (-I)*(B(6,2))} , {6, 2, (I)*(B(6,2))} , {6, 3, (-1/6+-1/6*I)*((sqrt(10))*(A(6,1)) + (-4)*(B(6,2)))} , {6,-3, (1/6+-1/6*I)*((sqrt(10))*(A(6,1)) + (-4)*(B(6,2)))} , {6,-4, (-1)*((sqrt(7/2))*(A(6,0)))} , {6, 4, (-1)*((sqrt(7/2))*(A(6,0)))} , {6,-5, (-1+-1*I)*((1/(sqrt(66)))*(A(6,1) + (2)*((sqrt(10))*(B(6,2)))))} , {6, 5, (1+-1*I)*((1/(sqrt(66)))*(A(6,1) + (2)*((sqrt(10))*(B(6,2)))))} , {6,-6, (-1/33*I)*((8)*((sqrt(22))*(A(6,1))) + (-1)*((sqrt(55))*(B(6,2))))} , {6, 6, (1/33*I)*((8)*((sqrt(22))*(A(6,1))) + (-1)*((sqrt(55))*(B(6,2))))} }
The operator representing the potential in second quantisation is given as: O=∑n″ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
we can express the operator as O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{Y_{0}^{(0)}} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i \text{Asd}(2,1)}{\sqrt{5}} | -\frac{(1-i) \text{Asd}(2,1)}{\sqrt{5}} | 0 | \frac{(1+i) \text{Asd}(2,1)}{\sqrt{5}} | -\frac{i \text{Asd}(2,1)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(1)}} | \color{darkred}{ 0 } | \text{App}(0,0) | \left(-\frac{1}{5}-\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) | \frac{1}{5} i \sqrt{6} \text{App}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{3 i \text{Apf}(2,1)}{\sqrt{35}}+\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) | \frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}}-(1-i) \sqrt{\frac{6}{35}} \text{Apf}(2,1) | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \frac{\left(\frac{3}{5}+\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}}-\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1) | -\frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)-\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) |
{Y_{0}^{(1)}} | \color{darkred}{ 0 } | \left(-\frac{1}{5}+\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) | \text{App}(0,0) | \left(\frac{1}{5}+\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) | i \sqrt{\frac{3}{35}} \text{Apf}(2,1)-\frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1) | \left(-\frac{2}{5}+\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)-\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \left(\frac{2}{5}+\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)+\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | \frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1)-i \sqrt{\frac{3}{35}} \text{Apf}(2,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) |
{Y_{1}^{(1)}} | \color{darkred}{ 0 } | -\frac{1}{5} i \sqrt{6} \text{App}(2,1) | \left(\frac{1}{5}-\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) | \text{App}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) | \frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)+\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1)-\frac{\left(\frac{3}{5}-\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}} | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | (1+i) \sqrt{\frac{6}{35}} \text{Apf}(2,1)-\frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}} | -\frac{3 i \text{Apf}(2,1)}{\sqrt{35}}-\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) |
{Y_{-2}^{(2)}} | -\frac{i \text{Asd}(2,1)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | \left(\frac{1}{21}+\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1)-\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1) | \frac{2}{7} i \text{Add}(2,1)+\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) | \frac{5}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(2)}} | -\frac{(1+i) \text{Asd}(2,1)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{1}{21}-\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1)-\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1) | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | \left(-\frac{1}{7}-\frac{i}{7}\right) \text{Add}(2,1)-\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \frac{1}{7} i \sqrt{6} \text{Add}(2,1)-\frac{8}{21} i \sqrt{5} \text{Add}(4,1) | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{0}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{2}{7} i \text{Add}(2,1)-\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) | \left(-\frac{1}{7}+\frac{i}{7}\right) \text{Add}(2,1)-\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | \left(\frac{1}{7}+\frac{i}{7}\right) \text{Add}(2,1)+\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \frac{2}{7} i \text{Add}(2,1)+\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{1}^{(2)}} | \frac{(1-i) \text{Asd}(2,1)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) | \frac{8}{21} i \sqrt{5} \text{Add}(4,1)-\frac{1}{7} i \sqrt{6} \text{Add}(2,1) | \left(\frac{1}{7}-\frac{i}{7}\right) \text{Add}(2,1)+\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) | \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) | \left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1)-\left(\frac{1}{21}+\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{2}^{(2)}} | \frac{i \text{Asd}(2,1)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{5}{21} \text{Add}(4,0) | \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) | -\frac{2}{7} i \text{Add}(2,1)-\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) | \left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1)-\left(\frac{1}{21}-\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1) | \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-3}^{(3)}} | \color{darkred}{ 0 } | -\frac{3 i \text{Apf}(2,1)}{\sqrt{35}}-\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) | \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | \left(-\frac{1}{3}-\frac{i}{3}\right) \text{Aff}(2,1)+\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)-\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) | \frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)+\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)+\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) | \left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)+\left(\frac{7}{11}-\frac{7 i}{11}\right) \text{Aff}(4,1) | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | \left(-\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) | \frac{10}{429} i \sqrt{\frac{7}{33}} \left(8 \sqrt{22} \text{Aff}(6,1)-\sqrt{55} \text{Bff}(6,2)\right) |
{Y_{-2}^{(3)}} | \color{darkred}{ 0 } | \frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}}-(1+i) \sqrt{\frac{6}{35}} \text{Apf}(2,1) | \frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1)-i \sqrt{\frac{3}{35}} \text{Apf}(2,1) | \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(-\frac{1}{3}+\frac{i}{3}\right) \text{Aff}(2,1)+\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)-\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | -\frac{(1+i) \text{Aff}(2,1)}{\sqrt{15}}-\left(\frac{4}{33}+\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)+\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}-\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)-\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \left(\frac{7}{33}-\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) | \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) | \left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) |
{Y_{-1}^{(3)}} | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \left(-\frac{2}{5}-\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)-\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | -\frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)-\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)-\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) | -\frac{(1-i) \text{Aff}(2,1)}{\sqrt{15}}-\left(\frac{4}{33}-\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)+\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | \left(-\frac{1}{15}-\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)-\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)-\left(\frac{25}{429}+\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \frac{2}{5} i \sqrt{\frac{2}{3}} \text{Aff}(2,1)-\frac{8}{33} i \sqrt{5} \text{Aff}(4,1)+\frac{10}{143} i \sqrt{\frac{35}{3}} \text{Bff}(6,2) | \left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)-\left(\frac{7}{33}-\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1) | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) |
{Y_{0}^{(3)}} | \color{darkred}{ 0 } | \frac{\left(\frac{3}{5}-\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}}-\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1) | \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1)-\frac{\left(\frac{3}{5}+\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)+\left(\frac{7}{11}+\frac{7 i}{11}\right) \text{Aff}(4,1) | -\frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}+\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)+\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \left(-\frac{1}{15}+\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)-\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)-\left(\frac{25}{429}-\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | \left(\frac{1}{15}+\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)+\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)+\left(\frac{25}{429}+\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}-\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)-\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \left(-\frac{7}{11}+\frac{7 i}{11}\right) \text{Aff}(4,1)-\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) |
{Y_{1}^{(3)}} | \color{darkred}{ 0 } | \frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)+\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) | \left(\frac{2}{5}-\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)+\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) | -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | \left(\frac{7}{33}+\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) | -\frac{2}{5} i \sqrt{\frac{2}{3}} \text{Aff}(2,1)+\frac{8}{33} i \sqrt{5} \text{Aff}(4,1)-\frac{10}{143} i \sqrt{\frac{35}{3}} \text{Bff}(6,2) | \left(\frac{1}{15}-\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)+\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)+\left(\frac{25}{429}-\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | \frac{(1+i) \text{Aff}(2,1)}{\sqrt{15}}+\left(\frac{4}{33}+\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)+\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)+\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) |
{Y_{2}^{(3)}} | \color{darkred}{ 0 } | \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) | i \sqrt{\frac{3}{35}} \text{Apf}(2,1)-\frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1) | (1-i) \sqrt{\frac{6}{35}} \text{Apf}(2,1)-\frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(-\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) | \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) | \left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)-\left(\frac{7}{33}+\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1) | -\frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}+\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)+\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) | \frac{(1-i) \text{Aff}(2,1)}{\sqrt{15}}+\left(\frac{4}{33}-\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | \left(\frac{1}{3}+\frac{i}{3}\right) \text{Aff}(2,1)-\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)+\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) |
{Y_{3}^{(3)}} | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) | \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) | \frac{3 i \text{Apf}(2,1)}{\sqrt{35}}+\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{10}{429} i \sqrt{\frac{7}{33}} \left(8 \sqrt{22} \text{Aff}(6,1)-\sqrt{55} \text{Bff}(6,2)\right) | \left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) | \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) | \left(-\frac{7}{11}-\frac{7 i}{11}\right) \text{Aff}(4,1)-\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) | -\frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)-\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) | \left(\frac{1}{3}-\frac{i}{3}\right) \text{Aff}(2,1)-\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)+\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) | \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | 1 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_{x+y+z} | \color{darkred}{ 0 } | \frac{1+i}{\sqrt{6}} | \frac{1}{\sqrt{3}} | -\frac{1-i}{\sqrt{6}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_{x-y} | \color{darkred}{ 0 } | \frac{1}{2}-\frac{i}{2} | 0 | -\frac{1}{2}-\frac{i}{2} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_{3z-r} | \color{darkred}{ 0 } | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | \sqrt{\frac{2}{3}} | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d_{\text{yz}+\text{xz}+\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{6}} | \frac{1+i}{\sqrt{6}} | 0 | -\frac{1-i}{\sqrt{6}} | -\frac{i}{\sqrt{6}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}-\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | -\frac{1}{2}+\frac{i}{2} | 0 | \frac{1}{2}+\frac{i}{2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{2\text{xy}-\text{xz}-\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{3}} | -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} | 0 | \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} | -\frac{i}{\sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 1 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
f_{x^3+y^3+z^3} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} | 0 | -\frac{1}{4}-\frac{i}{4} | \frac{1}{\sqrt{3}} | \frac{1}{4}-\frac{i}{4} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} |
f_{x^3-y^3} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} |
f_{2z^3-x^3-y^3} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} | 0 | \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} | \sqrt{\frac{2}{3}} | -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} |
f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{1}{4}-\frac{i}{4} | \frac{1}{\sqrt{6}} | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} | \frac{1}{\sqrt{6}} | \frac{1}{4}-\frac{i}{4} |
f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} | \frac{1}{\sqrt{3}} | \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} | \frac{1}{\sqrt{3}} | -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} |
f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} | 0 | \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} | 0 | \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} |
After rotation we find
\text{s} | p_{x+y+z} | p_{x-y} | p_{3z-r} | d_{\text{yz}+\text{xz}+\text{xy}} | d_{\text{yz}-\text{xz}} | d_{2\text{xy}-\text{xz}-\text{yz}} | d_{x^2-y^2} | d_{3z^2-r^2} | f_{\text{xyz}} | f_{x^3+y^3+z^3} | f_{x^3-y^3} | f_{2z^3-x^3-y^3} | f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} | f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} | f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\sqrt{\frac{6}{5}} \text{Asd}(2,1) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_{x+y+z} | \color{darkred}{ 0 } | \text{App}(0,0)-\frac{2}{5} \sqrt{6} \text{App}(2,1) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{8 \text{Apf}(4,1)}{\sqrt{21}}-3 \sqrt{\frac{2}{35}} \text{Apf}(2,1) | \frac{6}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}-\frac{4}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 | 0 | 0 | 0 |
p_{x-y} | \color{darkred}{ 0 } | 0 | \text{App}(0,0)+\frac{1}{5} \sqrt{6} \text{App}(2,1) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) | 0 |
p_{3z-r} | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)+\frac{1}{5} \sqrt{6} \text{App}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) |
d_{\text{yz}+\text{xz}+\text{xy}} | -\sqrt{\frac{6}{5}} \text{Asd}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)-\frac{2}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)+\frac{16}{21} \sqrt{5} \text{Add}(4,1) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}-\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)-\frac{8}{21} \sqrt{5} \text{Add}(4,1) | 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{2\text{xy}-\text{xz}-\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)-\frac{8}{21} \sqrt{5} \text{Add}(4,1) | 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{\text{xyz}} | \color{darkred}{ 0 } | \frac{8 \text{Apf}(4,1)}{\sqrt{21}}-3 \sqrt{\frac{2}{35}} \text{Apf}(2,1) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{4}{11} \text{Aff}(4,0)+\frac{80}{143} \text{Aff}(6,0) | 2 \sqrt{\frac{2}{15}} \text{Aff}(2,1)-\frac{4}{11} \text{Aff}(4,1)-\frac{40}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 | 0 | 0 | 0 | 0 |
f_{x^3+y^3+z^3} | \color{darkred}{ 0 } | \frac{6}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}-\frac{4}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 2 \sqrt{\frac{2}{15}} \text{Aff}(2,1)-\frac{4}{11} \text{Aff}(4,1)-\frac{40}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | \text{Aff}(0,0)+\frac{1}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,1)+\frac{2}{11} \text{Aff}(4,0)+\frac{8}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)+\frac{100}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{20}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 | 0 | 0 | 0 |
f_{x^3-y^3} | \color{darkred}{ 0 } | 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{2}{11} \text{Aff}(4,0)-\frac{4}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)-\frac{50}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{10}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 |
f_{2z^3-x^3-y^3} | \color{darkred}{ 0 } | 0 | 0 | -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{2}{11} \text{Aff}(4,0)-\frac{4}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)-\frac{50}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{10}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) |
f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\sqrt{\frac{2}{3}} \text{Aff}(2,1)-\frac{2}{33} \text{Aff}(4,0)+\frac{8}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)-\frac{20}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{20}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 | 0 |
f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} | \color{darkred}{ 0 } | 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{\sqrt{6}}-\frac{2}{33} \text{Aff}(4,0)-\frac{4}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) | 0 |
f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} | \color{darkred}{ 0 } | 0 | 0 | -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) | 0 | 0 | \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{\sqrt{6}}-\frac{2}{33} \text{Aff}(4,0)-\frac{4}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) |
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Click on one of the subsections to expand it or
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |