In the D5d Point Group, with orientation Zy there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
C5 | {0,0,1} , {0,0,−1} , |
C25 | {0,0,1} , {0,0,−1} , |
C2 | {0,1,0} , {−√5+2√5,1,0} , {1,√1+2√5,0} , {1,−√1+2√5,0} , {√5+2√5,1,0} , |
i | {0,0,0} , |
S10 | {0,0,1} , {0,0,−1} , |
S310 | {0,0,1} , {0,0,−1} , |
σd | {0,1,0} , {−√5+2√5,1,0} , {1,√1+2√5,0} , {1,−√1+2√5,0} , {√5+2√5,1,0} , |
E(1) | C5(2) | C25(2) | C2(5) | i(1) | S10(2) | S310(2) | σd(5) | |
---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
A2g | 1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 |
E1g | 2 | 12(−1+√5) | 12(−1−√5) | 0 | 2 | 12(−1−√5) | 12(−1+√5) | 0 |
E2g | 2 | 12(−1−√5) | 12(−1+√5) | 0 | 2 | 12(−1+√5) | 12(−1−√5) | 0 |
A1u | 1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 |
A2u | 1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 |
E1u | 2 | 12(−1+√5) | 12(−1−√5) | 0 | −2 | 12(1+√5) | 12(1−√5) | 0 |
E2u | 2 | 12(−1−√5) | 12(−1+√5) | 0 | −2 | 12(1−√5) | 12(1+√5) | 0 |
A1g | A2g | E1g | E2g | A1u | A2u | E1u | E2u | |
---|---|---|---|---|---|---|---|---|
A1g | A1g | A2g | E1g | E2g | A1u | A2u | E1u | E2u |
A2g | A2g | A1g | E1g | E2g | A2u | A1u | E1u | E2u |
E1g | E1g | E1g | A1g+A2g+E2g | E1g+E2g | E1u | E1u | A1u+A2u+E2u | E1u+E2u |
E2g | E2g | E2g | E1g+E2g | A1g+A2g+E1g | E2u | E2u | E1u+E2u | A1u+A2u+E1u |
A1u | A1u | A2u | E1u | E2u | A1g | A2g | E1g | E2g |
A2u | A2u | A1u | E1u | E2u | A2g | A1g | E1g | E2g |
E1u | E1u | E1u | A1u+A2u+E2u | E1u+E2u | E1g | E1g | A1g+A2g+E2g | E1g+E2g |
E2u | E2u | E2u | E1u+E2u | A1u+A2u+E1u | E2g | E2g | E1g+E2g | A1g+A2g+E1g |
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the D5d Point group with orientation Zy the form of the expansion coefficients is:
Ak,m={A(0,0)k=0∧m=0A(2,0)k=2∧m=0A(4,0)k=4∧m=0−A(6,5)k=6∧m=−5A(6,0)k=6∧m=0A(6,5)k=6∧m=5
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[4, 0], k == 4 && m == 0}, {-A[6, 5], k == 6 && m == -5}, {A[6, 0], k == 6 && m == 0}, {A[6, 5], k == 6 && m == 5}}, 0]
Akm = {{0, 0, A(0,0)} , {2, 0, A(2,0)} , {4, 0, A(4,0)} , {6, 0, A(6,0)} , {6,-5, (-1)*(A(6,5))} , {6, 5, A(6,5)} }
The operator representing the potential in second quantisation is given as: O=∑n″ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
we can express the operator as O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{Y_{0}^{(0)}} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{\text{Asd}(2,0)}{\sqrt{5}} | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(1)}} | \color{darkred}{ 0 } | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | 0 | 0 |
{Y_{0}^{(1)}} | \color{darkred}{ 0 } | 0 | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
{Y_{1}^{(1)}} | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
{Y_{-2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{0}^{(2)}} | \frac{\text{Asd}(2,0)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-3}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | -\frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) | 0 |
{Y_{-2}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | \frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) |
{Y_{-1}^{(3)}} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
{Y_{0}^{(3)}} | \color{darkred}{ 0 } | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
{Y_{1}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
{Y_{2}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
{Y_{3}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | 1 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_y | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | 1 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_x | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 1 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{y\left(3x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{i}{\sqrt{2}} |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
f_{y\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 |
f_{z\left(5z^2-3r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
f_{x\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | 0 |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
f_{x\left(x^2-3y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{\sqrt{2}} |
After rotation we find
\text{s} | p_y | p_z | p_x | d_{\text{xy}} | d_{\text{yz}} | d_{3z^2-r^2} | d_{\text{xz}} | d_{x^2-y^2} | f_{y\left(3x^2-y^2\right)} | f_{\text{xyz}} | f_{y\left(5z^2-r^2\right)} | f_{z\left(5z^2-3r^2\right)} | f_{x\left(5z^2-r^2\right)} | f_{z\left(x^2-y^2\right)} | f_{x\left(x^2-3y^2\right)} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{\text{Asd}(2,0)}{\sqrt{5}} | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_y | \color{darkred}{ 0 } | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
p_x | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | \frac{\text{Asd}(2,0)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{y\left(3x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | \frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) | 0 | 0 | 0 | 0 | 0 |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
f_{y\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
f_{z\left(5z^2-3r^2\right)} | \color{darkred}{ 0 } | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
f_{x\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | -\frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) |
f_{x\left(x^2-3y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | -\frac{5}{13} \sqrt{\frac{14}{33}} \text{Aff}(6,5) | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Click on one of the subsections to expand it or
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |