+Table of Contents
Orientation X
Symmetry Operations
In the C2 Point Group, with orientation X there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
C2 | {1,0,0} , |
Different Settings
Character Table
E(1) | C2(1) | |
---|---|---|
A | 1 | 1 |
B | 1 | −1 |
Product Table
A | B | |
---|---|---|
A | A | B |
B | B | A |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the C2 Point group with orientation X the form of the expansion coefficients is:
Expansion
Ak,m={A(0,0)k=0∧m=0−A(1,1)k=1∧m=−1A(1,1)k=1∧m=1A(2,2)k=2∧(m=−2∨m=2)iB(2,1)k=2∧(m=−1∨m=1)A(2,0)k=2∧m=0−A(3,3)k=3∧m=−3−iB(3,2)k=3∧m=−2−A(3,1)k=3∧m=−1A(3,1)k=3∧m=1iB(3,2)k=3∧m=2A(3,3)k=3∧m=3A(4,4)k=4∧(m=−4∨m=4)iB(4,3)k=4∧(m=−3∨m=3)A(4,2)k=4∧(m=−2∨m=2)iB(4,1)k=4∧(m=−1∨m=1)A(4,0)k=4∧m=0−A(5,5)k=5∧m=−5−iB(5,4)k=5∧m=−4−A(5,3)k=5∧m=−3−iB(5,2)k=5∧m=−2−A(5,1)k=5∧m=−1A(5,1)k=5∧m=1iB(5,2)k=5∧m=2A(5,3)k=5∧m=3iB(5,4)k=5∧m=4A(5,5)k=5∧m=5A(6,6)k=6∧(m=−6∨m=6)iB(6,5)k=6∧(m=−5∨m=5)A(6,4)k=6∧(m=−4∨m=4)iB(6,3)k=6∧(m=−3∨m=3)A(6,2)k=6∧(m=−2∨m=2)iB(6,1)k=6∧(m=−1∨m=1)A(6,0)k=6∧m=0
Input format suitable for Mathematica (Quanty.nb)
- Akm_C2_X.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {-A[1, 1], k == 1 && m == -1}, {A[1, 1], k == 1 && m == 1}, {A[2, 2], k == 2 && (m == -2 || m == 2)}, {I*B[2, 1], k == 2 && (m == -1 || m == 1)}, {A[2, 0], k == 2 && m == 0}, {-A[3, 3], k == 3 && m == -3}, {(-I)*B[3, 2], k == 3 && m == -2}, {-A[3, 1], k == 3 && m == -1}, {A[3, 1], k == 3 && m == 1}, {I*B[3, 2], k == 3 && m == 2}, {A[3, 3], k == 3 && m == 3}, {A[4, 4], k == 4 && (m == -4 || m == 4)}, {I*B[4, 3], k == 4 && (m == -3 || m == 3)}, {A[4, 2], k == 4 && (m == -2 || m == 2)}, {I*B[4, 1], k == 4 && (m == -1 || m == 1)}, {A[4, 0], k == 4 && m == 0}, {-A[5, 5], k == 5 && m == -5}, {(-I)*B[5, 4], k == 5 && m == -4}, {-A[5, 3], k == 5 && m == -3}, {(-I)*B[5, 2], k == 5 && m == -2}, {-A[5, 1], k == 5 && m == -1}, {A[5, 1], k == 5 && m == 1}, {I*B[5, 2], k == 5 && m == 2}, {A[5, 3], k == 5 && m == 3}, {I*B[5, 4], k == 5 && m == 4}, {A[5, 5], k == 5 && m == 5}, {A[6, 6], k == 6 && (m == -6 || m == 6)}, {I*B[6, 5], k == 6 && (m == -5 || m == 5)}, {A[6, 4], k == 6 && (m == -4 || m == 4)}, {I*B[6, 3], k == 6 && (m == -3 || m == 3)}, {A[6, 2], k == 6 && (m == -2 || m == 2)}, {I*B[6, 1], k == 6 && (m == -1 || m == 1)}, {A[6, 0], k == 6 && m == 0}}, 0]
Input format suitable for Quanty
- Akm_C2_X.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1))} , {1, 1, A(1,1)} , {2, 0, A(2,0)} , {2,-1, (I)*(B(2,1))} , {2, 1, (I)*(B(2,1))} , {2,-2, A(2,2)} , {2, 2, A(2,2)} , {3,-1, (-1)*(A(3,1))} , {3, 1, A(3,1)} , {3,-2, (-I)*(B(3,2))} , {3, 2, (I)*(B(3,2))} , {3,-3, (-1)*(A(3,3))} , {3, 3, A(3,3)} , {4, 0, A(4,0)} , {4,-1, (I)*(B(4,1))} , {4, 1, (I)*(B(4,1))} , {4,-2, A(4,2)} , {4, 2, A(4,2)} , {4,-3, (I)*(B(4,3))} , {4, 3, (I)*(B(4,3))} , {4,-4, A(4,4)} , {4, 4, A(4,4)} , {5,-1, (-1)*(A(5,1))} , {5, 1, A(5,1)} , {5,-2, (-I)*(B(5,2))} , {5, 2, (I)*(B(5,2))} , {5,-3, (-1)*(A(5,3))} , {5, 3, A(5,3)} , {5,-4, (-I)*(B(5,4))} , {5, 4, (I)*(B(5,4))} , {5,-5, (-1)*(A(5,5))} , {5, 5, A(5,5)} , {6, 0, A(6,0)} , {6,-1, (I)*(B(6,1))} , {6, 1, (I)*(B(6,1))} , {6,-2, A(6,2)} , {6, 2, A(6,2)} , {6,-3, (I)*(B(6,3))} , {6, 3, (I)*(B(6,3))} , {6,-4, A(6,4)} , {6, 4, A(6,4)} , {6,-5, (I)*(B(6,5))} , {6, 5, (I)*(B(6,5))} , {6,-6, A(6,6)} , {6, 6, A(6,6)} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m)
we can express the operator as O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter.
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y(0)0 | Ass(0,0) | −Asp(1,1)√3 | 0 | Asp(1,1)√3 | Asd(2,2)√5 | −iBsd(2,1)√5 | Asd(2,0)√5 | −iBsd(2,1)√5 | Asd(2,2)√5 | −Asf(3,3)√7 | iBsf(3,2)√7 | −Asf(3,1)√7 | 0 | Asf(3,1)√7 | −iBsf(3,2)√7 | Asf(3,3)√7 |
Y(1)−1 | −Asp(1,1)√3 | App(0,0)−15App(2,0) | 15i√3Bpp(2,1) | −15√6App(2,2) | 17√35Apd(3,1)−√25Apd(1,1) | 0 | Apd(1,1)√15−37√25Apd(3,1) | 17i√6Bpd(3,2) | −37Apd(3,3) | 3Apf(2,2)√35−Apf(4,2)3√21 | iBpf(4,1)3√7−i√635Bpf(2,1) | 35√27Apf(2,0)−13√27Apf(4,0) | 13i√1021Bpf(4,1)−3iBpf(2,1)5√7 | 15√37Apf(2,2)−13√57Apf(4,2) | 13iBpf(4,3) | −2Apf(4,4)3√3 |
Y(1)0 | 0 | −15i√3Bpp(2,1) | App(0,0)+25App(2,0) | −15i√3Bpp(2,1) | 17i√3Bpd(3,2) | −Apd(1,1)√5−27√65Apd(3,1) | 0 | Apd(1,1)√5+27√65Apd(3,1) | −17i√3Bpd(3,2) | −iBpf(4,3)3√3 | √335Apf(2,2)+2Apf(4,2)3√7 | −25i√67Bpf(2,1)−13i√57Bpf(4,1) | 35√37Apf(2,0)+4Apf(4,0)3√21 | −25i√67Bpf(2,1)−13i√57Bpf(4,1) | √335Apf(2,2)+2Apf(4,2)3√7 | −iBpf(4,3)3√3 |
Y(1)1 | Asp(1,1)√3 | −15√6App(2,2) | 15i√3Bpp(2,1) | App(0,0)−15App(2,0) | 37Apd(3,3) | −17i√6Bpd(3,2) | 37√25Apd(3,1)−Apd(1,1)√15 | 0 | √25Apd(1,1)−17√35Apd(3,1) | −2Apf(4,4)3√3 | 13iBpf(4,3) | 15√37Apf(2,2)−13√57Apf(4,2) | 13i√1021Bpf(4,1)−3iBpf(2,1)5√7 | 35√27Apf(2,0)−13√27Apf(4,0) | iBpf(4,1)3√7−i√635Bpf(2,1) | 3Apf(2,2)√35−Apf(4,2)3√21 |
Y(2)−2 | Asd(2,2)√5 | 17√35Apd(3,1)−√25Apd(1,1) | −17i√3Bpd(3,2) | 37Apd(3,3) | Add(0,0)−27Add(2,0)+121Add(4,0) | 17i√6Bdd(2,1)−121i√5Bdd(4,1) | 17√53Add(4,2)−27Add(2,2) | −13i√57Bdd(4,3) | 13√107Add(4,4) | −√37Adf(1,1)+13√27Adf(3,1)−133√57Adf(5,1) | 0 | Adf(1,1)√35−2√2105Adf(3,1)+5Adf(5,1)11√21 | 2iBdf(3,2)3√7−533iBdf(5,2) | 533√2Adf(5,3)−13√27Adf(3,3) | −111i√10Bdf(5,4) | 511√23Adf(5,5) |
Y(2)−1 | iBsd(2,1)√5 | 0 | −Apd(1,1)√5−27√65Apd(3,1) | 17i√6Bpd(3,2) | 121i√5Bdd(4,1)−17i√6Bdd(2,1) | Add(0,0)+17Add(2,0)−421Add(4,0) | 17iBdd(2,1)+17i√103Bdd(4,1) | −17√6Add(2,2)−221√10Add(4,2) | 13i√57Bdd(4,3) | 13i√57Bdf(3,2)−133i√5Bdf(5,2) | −√27Adf(1,1)−Adf(3,1)√21+211√1021Adf(5,1) | 0 | √335Adf(1,1)−13√235Adf(3,1)−20Adf(5,1)33√7 | iBdf(3,2)√21+5iBdf(5,2)11√3 | −13√57Adf(3,3)−433√5Adf(5,3) | 211i√53Bdf(5,4) |
Y(2)0 | Asd(2,0)√5 | Apd(1,1)√15−37√25Apd(3,1) | 0 | 37√25Apd(3,1)−Apd(1,1)√15 | 17√53Add(4,2)−27Add(2,2) | −17iBdd(2,1)−17i√103Bdd(4,1) | Add(0,0)+27Add(2,0)+27Add(4,0) | −17iBdd(2,1)−17i√103Bdd(4,1) | 17√53Add(4,2)−27Add(2,2) | 13√57Adf(3,3)−233√5Adf(5,3) | 111i√5Bdf(5,2) | −√635Adf(1,1)−Adf(3,1)√35−511√27Adf(5,1) | 0 | √635Adf(1,1)+Adf(3,1)√35+511√27Adf(5,1) | −111i√5Bdf(5,2) | 233√5Adf(5,3)−13√57Adf(3,3) |
Y(2)1 | iBsd(2,1)√5 | −17i√6Bpd(3,2) | Apd(1,1)√5+27√65Apd(3,1) | 0 | 13i√57Bdd(4,3) | −17√6Add(2,2)−221√10Add(4,2) | 17iBdd(2,1)+17i√103Bdd(4,1) | Add(0,0)+17Add(2,0)−421Add(4,0) | 121i√5Bdd(4,1)−17i√6Bdd(2,1) | −211i√53Bdf(5,4) | 13√57Adf(3,3)+433√5Adf(5,3) | −iBdf(3,2)√21−5iBdf(5,2)11√3 | −√335Adf(1,1)+13√235Adf(3,1)+20Adf(5,1)33√7 | 0 | √27Adf(1,1)+Adf(3,1)√21−211√1021Adf(5,1) | 133i√5Bdf(5,2)−13i√57Bdf(3,2) |
Y(2)2 | Asd(2,2)√5 | −37Apd(3,3) | 17i√3Bpd(3,2) | √25Apd(1,1)−17√35Apd(3,1) | 13√107Add(4,4) | −13i√57Bdd(4,3) | 17√53Add(4,2)−27Add(2,2) | 17i√6Bdd(2,1)−121i√5Bdd(4,1) | Add(0,0)−27Add(2,0)+121Add(4,0) | −511√23Adf(5,5) | 111i√10Bdf(5,4) | 13√27Adf(3,3)−533√2Adf(5,3) | 533iBdf(5,2)−2iBdf(3,2)3√7 | −Adf(1,1)√35+2√2105Adf(3,1)−5Adf(5,1)11√21 | 0 | √37Adf(1,1)−13√27Adf(3,1)+133√57Adf(5,1) |
Y(3)−3 | −Asf(3,3)√7 | 3Apf(2,2)√35−Apf(4,2)3√21 | iBpf(4,3)3√3 | −2Apf(4,4)3√3 | −√37Adf(1,1)+13√27Adf(3,1)−133√57Adf(5,1) | 133i√5Bdf(5,2)−13i√57Bdf(3,2) | 13√57Adf(3,3)−233√5Adf(5,3) | 211i√53Bdf(5,4) | −511√23Adf(5,5) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | 13iBff(2,1)−111i√103Bff(4,1)+5429i√7Bff(6,1) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | 10143i√73Bff(6,3)−111i√7Bff(4,3) | 111√143Aff(4,4)−5143√703Aff(6,4) | 513i√1433Bff(6,5) | −1013√733Aff(6,6) |
Y(3)−2 | −iBsf(3,2)√7 | i√635Bpf(2,1)−iBpf(4,1)3√7 | √335Apf(2,2)+2Apf(4,2)3√7 | −13iBpf(4,3) | 0 | −√27Adf(1,1)−Adf(3,1)√21+211√1021Adf(5,1) | −111i√5Bdf(5,2) | 13√57Adf(3,3)+433√5Adf(5,3) | −111i√10Bdf(5,4) | −13iBff(2,1)+111i√103Bff(4,1)−5429i√7Bff(6,1) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | iBff(2,1)√15+433i√2Bff(4,1)−5143i√353Bff(6,1) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | −133i√14Bff(4,3)−5143i√42Bff(6,3) | 133√70Aff(4,4)+10143√14Aff(6,4) | −513i√1433Bff(6,5) |
Y(3)−1 | −Asf(3,1)√7 | 35√27Apf(2,0)−13√27Apf(4,0) | 25i√67Bpf(2,1)+13i√57Bpf(4,1) | 15√37Apf(2,2)−13√57Apf(4,2) | Adf(1,1)√35−2√2105Adf(3,1)+5Adf(5,1)11√21 | 0 | −√635Adf(1,1)−Adf(3,1)√35−511√27Adf(5,1) | iBdf(3,2)√21+5iBdf(5,2)11√3 | 13√27Adf(3,3)−533√2Adf(5,3) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | −iBff(2,1)√15−433i√2Bff(4,1)+5143i√353Bff(6,1) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 115i√2Bff(2,1)+111i√53Bff(4,1)+25429i√14Bff(6,1) | −25√23Aff(2,2)−233√10Aff(4,2)−10143√353Aff(6,2) | 133i√14Bff(4,3)+5143i√42Bff(6,3) | 111√143Aff(4,4)−5143√703Aff(6,4) |
Y(3)0 | 0 | 3iBpf(2,1)5√7−13i√1021Bpf(4,1) | 35√37Apf(2,0)+4Apf(4,0)3√21 | 3iBpf(2,1)5√7−13i√1021Bpf(4,1) | 533iBdf(5,2)−2iBdf(3,2)3√7 | √335Adf(1,1)−13√235Adf(3,1)−20Adf(5,1)33√7 | 0 | −√335Adf(1,1)+13√235Adf(3,1)+20Adf(5,1)33√7 | 2iBdf(3,2)3√7−533iBdf(5,2) | 111i√7Bff(4,3)−10143i√73Bff(6,3) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | −115i√2Bff(2,1)−111i√53Bff(4,1)−25429i√14Bff(6,1) | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | −115i√2Bff(2,1)−111i√53Bff(4,1)−25429i√14Bff(6,1) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | 111i√7Bff(4,3)−10143i√73Bff(6,3) |
Y(3)1 | Asf(3,1)√7 | 15√37Apf(2,2)−13√57Apf(4,2) | 25i√67Bpf(2,1)+13i√57Bpf(4,1) | 35√27Apf(2,0)−13√27Apf(4,0) | 533√2Adf(5,3)−13√27Adf(3,3) | −iBdf(3,2)√21−5iBdf(5,2)11√3 | √635Adf(1,1)+Adf(3,1)√35+511√27Adf(5,1) | 0 | −Adf(1,1)√35+2√2105Adf(3,1)−5Adf(5,1)11√21 | 111√143Aff(4,4)−5143√703Aff(6,4) | 133i√14Bff(4,3)+5143i√42Bff(6,3) | −25√23Aff(2,2)−233√10Aff(4,2)−10143√353Aff(6,2) | 115i√2Bff(2,1)+111i√53Bff(4,1)+25429i√14Bff(6,1) | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | −iBff(2,1)√15−433i√2Bff(4,1)+5143i√353Bff(6,1) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) |
Y(3)2 | iBsf(3,2)√7 | −13iBpf(4,3) | √335Apf(2,2)+2Apf(4,2)3√7 | i√635Bpf(2,1)−iBpf(4,1)3√7 | 111i√10Bdf(5,4) | −13√57Adf(3,3)−433√5Adf(5,3) | 111i√5Bdf(5,2) | √27Adf(1,1)+Adf(3,1)√21−211√1021Adf(5,1) | 0 | −513i√1433Bff(6,5) | 133√70Aff(4,4)+10143√14Aff(6,4) | −133i√14Bff(4,3)−5143i√42Bff(6,3) | −2Aff(2,2)3√5−Aff(4,2)11√3+20429√14Aff(6,2) | iBff(2,1)√15+433i√2Bff(4,1)−5143i√353Bff(6,1) | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | −13iBff(2,1)+111i√103Bff(4,1)−5429i√7Bff(6,1) |
Y(3)3 | Asf(3,3)√7 | −2Apf(4,4)3√3 | iBpf(4,3)3√3 | 3Apf(2,2)√35−Apf(4,2)3√21 | 511√23Adf(5,5) | −211i√53Bdf(5,4) | 233√5Adf(5,3)−13√57Adf(3,3) | 13i√57Bdf(3,2)−133i√5Bdf(5,2) | √37Adf(1,1)−13√27Adf(3,1)+133√57Adf(5,1) | −1013√733Aff(6,6) | 513i√1433Bff(6,5) | 111√143Aff(4,4)−5143√703Aff(6,4) | 10143i√73Bff(6,3)−111i√7Bff(4,3) | −13√25Aff(2,2)+111√6Aff(4,2)−10429√7Aff(6,2) | 13iBff(2,1)−111i√103Bff(4,1)+5429i√7Bff(6,1) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pz | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
px | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
py | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dyz | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxz | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d3x2−r2 | 0 | 0 | 0 | 0 | √322 | 0 | −12 | 0 | √322 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxz | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dy2−z2 | 0 | 0 | 0 | 0 | −12√2 | 0 | −√32 | 0 | −12√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fz(3y2−z2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −√34 | 0 | −√522 | 0 | −√34 | 0 |
fxyz | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 |
fz(5x2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √54 | 0 | −√322 | 0 | √54 | 0 |
fx(5x2−3r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √54 | 0 | −√34 | 0 | √34 | 0 | −√54 |
fy(5x2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14i√152 | 0 | −i4√2 | 0 | −i4√2 | 0 | 14i√152 |
fx(y2−z2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −√34 | 0 | −√54 | 0 | √54 | 0 | √34 |
fy(y2−3z2) | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{i}{4 \sqrt{2}} | 0 | -\frac{1}{4} i \sqrt{\frac{15}{2}} | 0 | -\frac{1}{4} i \sqrt{\frac{15}{2}} | 0 | -\frac{i}{4 \sqrt{2}} |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
\text{s} | p_z | p_x | p_y | d_{\text{yz}} | d_{\text{xz}} | d_{3x^2-r^2} | d_{\text{xz}} | d_{y^2-z^2} | f_{z\left(3y^2-z^2\right)} | f_{\text{xyz}} | f_{z\left(5x^2-r^2\right)} | f_{x\left(5x^2-3r^2\right)} | f_{y\left(5x^2-r^2\right)} | f_{x\left(y^2-z^2\right)} | f_{y\left(y^2-3z^2\right)} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{3}} \text{Asp}(1,1) } | \color{darkred}{ 0 } | \sqrt{\frac{2}{5}} \text{Bsd}(2,1) | 0 | \sqrt{\frac{3}{10}} \text{Asd}(2,2)-\frac{\text{Asd}(2,0)}{2 \sqrt{5}} | 0 | -\frac{1}{2} \sqrt{\frac{3}{5}} \text{Asd}(2,0)-\frac{\text{Asd}(2,2)}{\sqrt{10}} | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bsf}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,1)-\frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,1)+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,3) } | \color{darkred}{ 0 } |
p_z | \color{darkred}{ 0 } | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | 0 | \frac{1}{5} \sqrt{6} \text{Bpp}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{4}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | -\frac{3}{2} \sqrt{\frac{3}{70}} \text{Apf}(2,0)-\frac{3 \text{Apf}(2,2)}{2 \sqrt{35}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0)-\frac{\text{Apf}(4,2)}{\sqrt{21}} | 0 | -\frac{9 \text{Apf}(2,0)}{10 \sqrt{14}}+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Apf}(2,2)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Apf}(4,2) | 0 | -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Bpf}(2,1)-\frac{1}{6} \sqrt{\frac{5}{14}} \text{Bpf}(4,1)+\frac{1}{6} \sqrt{\frac{5}{2}} \text{Bpf}(4,3) | 0 | -\frac{3 \text{Bpf}(2,1)}{\sqrt{35}}-\frac{5 \text{Bpf}(4,1)}{2 \sqrt{42}}-\frac{\text{Bpf}(4,3)}{6 \sqrt{6}} |
p_x | \color{darkred}{ -\sqrt{\frac{2}{3}} \text{Asp}(1,1) } | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0)+\frac{1}{5} \sqrt{6} \text{App}(2,2) | 0 | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ -2 \sqrt{\frac{2}{15}} \text{Apd}(1,1)+\frac{9 \text{Apd}(3,1)}{14 \sqrt{5}}-\frac{3}{14} \sqrt{3} \text{Apd}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{14} \sqrt{15} \text{Apd}(3,1)+\frac{3}{14} \text{Apd}(3,3) } | 0 | \sqrt{\frac{6}{35}} \text{Bpf}(2,1)-\frac{\text{Bpf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Bpf}(4,3) | 0 | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | 0 | -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | 0 |
p_y | \color{darkred}{ 0 } | \frac{1}{5} \sqrt{6} \text{Bpp}(2,1) | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0)-\frac{1}{5} \sqrt{6} \text{App}(2,2) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{7} \text{Apd}(3,3) } | \color{darkred}{ 0 } | \frac{3 \text{Bpf}(2,1)}{\sqrt{35}}-\frac{13 \text{Bpf}(4,1)}{6 \sqrt{42}}-\frac{\text{Bpf}(4,3)}{2 \sqrt{6}} | 0 | -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Bpf}(2,1)-\frac{1}{6} \sqrt{\frac{5}{14}} \text{Bpf}(4,1)+\frac{1}{6} \sqrt{\frac{5}{2}} \text{Bpf}(4,3) | 0 | -\frac{3 \text{Apf}(2,0)}{10 \sqrt{14}}+\frac{1}{10} \sqrt{21} \text{Apf}(2,2)+\frac{\text{Apf}(4,0)}{6 \sqrt{14}}-\frac{1}{6} \sqrt{5} \text{Apf}(4,4) | 0 | -\frac{3}{2} \sqrt{\frac{3}{70}} \text{Apf}(2,0)-\frac{3 \text{Apf}(2,2)}{2 \sqrt{35}}+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Apf}(4,0)+\frac{4 \text{Apf}(4,2)}{3 \sqrt{21}}+\frac{\text{Apf}(4,4)}{6 \sqrt{3}} |
d_{\text{yz}} | \sqrt{\frac{2}{5}} \text{Bsd}(2,1) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)-\frac{2}{21} \sqrt{10} \text{Add}(4,2) | 0 | -\frac{2}{7} \sqrt{2} \text{Bdd}(2,1)-\frac{1}{14} \sqrt{\frac{5}{3}} \text{Bdd}(4,1)+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bdd}(4,3) | 0 | -\frac{1}{6} \sqrt{5} \text{Bdd}(4,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2)+\frac{5 \text{Bdf}(5,2)}{33 \sqrt{2}}-\frac{5 \text{Bdf}(5,4)}{11 \sqrt{6}} } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{4}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)+\frac{2}{21} \sqrt{10} \text{Add}(4,2) | 0 | \frac{1}{7} \sqrt{6} \text{Bdd}(2,1)-\frac{1}{21} \sqrt{5} \text{Bdd}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) | 0 | \color{darkred}{ \frac{5 \text{Adf}(3,1)}{6 \sqrt{14}}+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Adf}(3,3)+\frac{1}{33} \sqrt{35} \text{Adf}(5,1)+\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{4 \text{Adf}(1,1)}{\sqrt{35}}-\frac{1}{2} \sqrt{\frac{3}{70}} \text{Adf}(3,1)-\frac{5 \text{Adf}(3,3)}{6 \sqrt{14}}+\frac{5}{11} \sqrt{\frac{3}{7}} \text{Adf}(5,1)-\frac{5}{33} \sqrt{2} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{\text{Bdf}(3,2)}{\sqrt{21}}+\frac{5 \text{Bdf}(5,2)}{22 \sqrt{3}}-\frac{5}{22} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,2)+\frac{7}{66} \sqrt{5} \text{Bdf}(5,2)+\frac{1}{22} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) } |
d_{3x^2-r^2} | \sqrt{\frac{3}{10}} \text{Asd}(2,2)-\frac{\text{Asd}(2,0)}{2 \sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ -2 \sqrt{\frac{2}{15}} \text{Apd}(1,1)+\frac{9 \text{Apd}(3,1)}{14 \sqrt{5}}-\frac{3}{14} \sqrt{3} \text{Apd}(3,3) } | \color{darkred}{ 0 } | -\frac{2}{7} \sqrt{2} \text{Bdd}(2,1)-\frac{1}{14} \sqrt{\frac{5}{3}} \text{Bdd}(4,1)+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bdd}(4,3) | 0 | \text{Add}(0,0)-\frac{1}{7} \text{Add}(2,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,2)+\frac{3}{28} \text{Add}(4,0)-\frac{1}{7} \sqrt{\frac{5}{2}} \text{Add}(4,2)+\frac{1}{2} \sqrt{\frac{5}{14}} \text{Add}(4,4) | 0 | \frac{1}{7} \sqrt{3} \text{Add}(2,0)+\frac{1}{7} \sqrt{2} \text{Add}(2,2)+\frac{5 \text{Add}(4,0)}{28 \sqrt{3}}-\frac{1}{7} \sqrt{\frac{5}{6}} \text{Add}(4,2)-\frac{1}{2} \sqrt{\frac{5}{42}} \text{Add}(4,4) | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,2)-\frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ -3 \sqrt{\frac{2}{35}} \text{Adf}(1,1)+\frac{2 \text{Adf}(3,1)}{\sqrt{105}}-\frac{2 \text{Adf}(3,3)}{3 \sqrt{7}}-\frac{25 \text{Adf}(5,1)}{22 \sqrt{42}}+\frac{25}{132} \text{Adf}(5,3)-\frac{5}{44} \sqrt{5} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{22} \sqrt{\frac{35}{2}} \text{Adf}(5,1)+\frac{1}{44} \sqrt{15} \text{Adf}(5,3)+\frac{5}{44} \sqrt{3} \text{Adf}(5,5) } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{7} \text{Apd}(3,3) } | 0 | \frac{1}{7} \sqrt{6} \text{Bdd}(2,1)-\frac{1}{21} \sqrt{5} \text{Bdd}(4,1)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) | 0 | \color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,2)+\frac{5}{66} \sqrt{5} \text{Bdf}(5,2)+\frac{1}{22} \sqrt{15} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{\text{Bdf}(3,2)}{\sqrt{21}}+\frac{5 \text{Bdf}(5,2)}{22 \sqrt{3}}-\frac{5}{22} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{4 \text{Adf}(1,1)}{\sqrt{35}}+\frac{1}{2} \sqrt{\frac{7}{30}} \text{Adf}(3,1)+\frac{\text{Adf}(3,3)}{6 \sqrt{14}}-\frac{5 \text{Adf}(5,1)}{22 \sqrt{21}}-\frac{5 \text{Adf}(5,3)}{66 \sqrt{2}}+\frac{5}{22} \sqrt{\frac{5}{2}} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{5 \text{Adf}(3,1)}{6 \sqrt{14}}+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Adf}(3,3)-\frac{1}{66} \sqrt{35} \text{Adf}(5,1)-\frac{5}{22} \sqrt{\frac{5}{6}} \text{Adf}(5,3)-\frac{5 \text{Adf}(5,5)}{22 \sqrt{6}} } |
d_{y^2-z^2} | -\frac{1}{2} \sqrt{\frac{3}{5}} \text{Asd}(2,0)-\frac{\text{Asd}(2,2)}{\sqrt{10}} | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{14} \sqrt{15} \text{Apd}(3,1)+\frac{3}{14} \text{Apd}(3,3) } | \color{darkred}{ 0 } | -\frac{1}{6} \sqrt{5} \text{Bdd}(4,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) | 0 | \frac{1}{7} \sqrt{3} \text{Add}(2,0)+\frac{1}{7} \sqrt{2} \text{Add}(2,2)+\frac{5 \text{Add}(4,0)}{28 \sqrt{3}}-\frac{1}{7} \sqrt{\frac{5}{6}} \text{Add}(4,2)-\frac{1}{2} \sqrt{\frac{5}{42}} \text{Add}(4,4) | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{1}{7} \sqrt{6} \text{Add}(2,2)+\frac{19}{84} \text{Add}(4,0)+\frac{1}{7} \sqrt{\frac{5}{2}} \text{Add}(4,2)+\frac{1}{6} \sqrt{\frac{5}{14}} \text{Add}(4,4) | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,1)-\frac{\text{Adf}(3,3)}{\sqrt{21}}-\frac{5}{66} \sqrt{\frac{7}{2}} \text{Adf}(5,1)+\frac{5 \text{Adf}(5,3)}{44 \sqrt{3}}+\frac{5}{44} \sqrt{\frac{5}{3}} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{13}{22} \sqrt{\frac{5}{42}} \text{Adf}(5,1)-\frac{1}{12} \sqrt{5} \text{Adf}(5,3)-\frac{5}{44} \text{Adf}(5,5) } | \color{darkred}{ 0 } |
f_{z\left(3y^2-z^2\right)} | \color{darkred}{ 0 } | -\frac{3}{2} \sqrt{\frac{3}{70}} \text{Apf}(2,0)-\frac{3 \text{Apf}(2,2)}{2 \sqrt{35}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0)-\frac{\text{Apf}(4,2)}{\sqrt{21}} | 0 | \frac{3 \text{Bpf}(2,1)}{\sqrt{35}}-\frac{13 \text{Bpf}(4,1)}{6 \sqrt{42}}-\frac{\text{Bpf}(4,3)}{2 \sqrt{6}} | \color{darkred}{ 0 } | \color{darkred}{ \frac{5 \text{Adf}(3,1)}{6 \sqrt{14}}+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Adf}(3,3)+\frac{1}{33} \sqrt{35} \text{Adf}(5,1)+\frac{1}{11} \sqrt{\frac{10}{3}} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,2)+\frac{5}{66} \sqrt{5} \text{Bdf}(5,2)+\frac{1}{22} \sqrt{15} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \text{Aff}(0,0)+\frac{1}{6} \text{Aff}(2,0)-\frac{\text{Aff}(2,2)}{\sqrt{6}}+\frac{3}{88} \text{Aff}(4,0)-\frac{1}{22} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{44} \sqrt{\frac{35}{2}} \text{Aff}(4,4)+\frac{295 \text{Aff}(6,0)}{1716}+\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,2)+\frac{15}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4) | 0 | \frac{\text{Aff}(2,0)}{2 \sqrt{15}}+\frac{\text{Aff}(2,2)}{3 \sqrt{10}}+\frac{13}{88} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{22 \sqrt{6}}-\frac{5}{44} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)-\frac{10}{429} \sqrt{7} \text{Aff}(6,2)-\frac{5}{286} \sqrt{\frac{105}{2}} \text{Aff}(6,4) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{2 \text{Bff}(4,1)}{11 \sqrt{3}}+\frac{2}{11} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{25 \sqrt{\frac{35}{2}} \text{Bff}(6,1)}{1716}-\frac{35 \sqrt{7} \text{Bff}(6,3)}{1144}-\frac{5}{104} \sqrt{\frac{105}{11}} \text{Bff}(6,5) | 0 | \frac{5}{52} \sqrt{\frac{21}{2}} \text{Bff}(6,1)+\frac{5}{104} \sqrt{\frac{35}{3}} \text{Bff}(6,3)+\frac{5}{104} \sqrt{\frac{7}{11}} \text{Bff}(6,5) |
f_{\text{xyz}} | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bsf}(3,2) } | 0 | \sqrt{\frac{6}{35}} \text{Bpf}(2,1)-\frac{\text{Bpf}(4,1)}{3 \sqrt{7}}+\frac{1}{3} \text{Bpf}(4,3) | 0 | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,2)-\frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,4) } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)-\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)-\frac{10}{143} \sqrt{14} \text{Aff}(6,4) | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{\text{Bff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{5}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)+\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | 0 | -\frac{7}{66} \sqrt{5} \text{Bff}(4,1)-\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Bff}(6,1)-\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | 0 |
f_{z\left(5x^2-r^2\right)} | \color{darkred}{ 0 } | -\frac{9 \text{Apf}(2,0)}{10 \sqrt{14}}+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Apf}(2,2)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0)+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Apf}(4,2) | 0 | -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Bpf}(2,1)-\frac{1}{6} \sqrt{\frac{5}{14}} \text{Bpf}(4,1)+\frac{1}{6} \sqrt{\frac{5}{2}} \text{Bpf}(4,3) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{4 \text{Adf}(1,1)}{\sqrt{35}}-\frac{1}{2} \sqrt{\frac{3}{70}} \text{Adf}(3,1)-\frac{5 \text{Adf}(3,3)}{6 \sqrt{14}}+\frac{5}{11} \sqrt{\frac{3}{7}} \text{Adf}(5,1)-\frac{5}{33} \sqrt{2} \text{Adf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{\text{Bdf}(3,2)}{\sqrt{21}}+\frac{5 \text{Bdf}(5,2)}{22 \sqrt{3}}-\frac{5}{22} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \frac{\text{Aff}(2,0)}{2 \sqrt{15}}+\frac{\text{Aff}(2,2)}{3 \sqrt{10}}+\frac{13}{88} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{22 \sqrt{6}}-\frac{5}{44} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)-\frac{10}{429} \sqrt{7} \text{Aff}(6,2)-\frac{5}{286} \sqrt{\frac{105}{2}} \text{Aff}(6,4) | 0 | \text{Aff}(0,0)+\frac{1}{10} \text{Aff}(2,0)+\frac{\text{Aff}(2,2)}{\sqrt{6}}-\frac{17}{264} \text{Aff}(4,0)+\frac{1}{22} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{5}{132} \sqrt{\frac{35}{2}} \text{Aff}(4,4)+\frac{75}{572} \text{Aff}(6,0)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4) | 0 | \frac{2}{5} \sqrt{\frac{2}{3}} \text{Bff}(2,1)-\frac{1}{33} \sqrt{5} \text{Bff}(4,1)+\frac{1}{33} \sqrt{35} \text{Bff}(4,3)+\frac{25}{572} \sqrt{\frac{7}{6}} \text{Bff}(6,1)-\frac{15 \sqrt{105} \text{Bff}(6,3)}{1144}+\frac{25}{104} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | 0 | \frac{1}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{5 \text{Bff}(4,1)}{11 \sqrt{3}}-\frac{1}{11} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{35 \sqrt{\frac{35}{2}} \text{Bff}(6,1)}{1716}-\frac{5}{88} \sqrt{7} \text{Bff}(6,3)-\frac{5}{104} \sqrt{\frac{35}{33}} \text{Bff}(6,5) |
f_{x\left(5x^2-3r^2\right)} | \color{darkred}{ \frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,1)-\frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,3) } | 0 | -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) | 0 | \color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2)+\frac{5 \text{Bdf}(5,2)}{33 \sqrt{2}}-\frac{5 \text{Bdf}(5,4)}{11 \sqrt{6}} } | \color{darkred}{ 0 } | \color{darkred}{ -3 \sqrt{\frac{2}{35}} \text{Adf}(1,1)+\frac{2 \text{Adf}(3,1)}{\sqrt{105}}-\frac{2 \text{Adf}(3,3)}{3 \sqrt{7}}-\frac{25 \text{Adf}(5,1)}{22 \sqrt{42}}+\frac{25}{132} \text{Adf}(5,3)-\frac{5}{44} \sqrt{5} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,1)-\frac{\text{Adf}(3,3)}{\sqrt{21}}-\frac{5}{66} \sqrt{\frac{7}{2}} \text{Adf}(5,1)+\frac{5 \text{Adf}(5,3)}{44 \sqrt{3}}+\frac{5}{44} \sqrt{\frac{5}{3}} \text{Adf}(5,5) } | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{\text{Bff}(4,1)}{22 \sqrt{3}}-\frac{1}{22} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{5}{429} \sqrt{\frac{35}{2}} \text{Bff}(6,1)-\frac{15}{286} \sqrt{7} \text{Bff}(6,3)+\frac{5}{26} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | 0 | \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)+\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}+\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 |
f_{y\left(5x^2-r^2\right)} | \color{darkred}{ 0 } | -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Bpf}(2,1)-\frac{1}{6} \sqrt{\frac{5}{14}} \text{Bpf}(4,1)+\frac{1}{6} \sqrt{\frac{5}{2}} \text{Bpf}(4,3) | 0 | -\frac{3 \text{Apf}(2,0)}{10 \sqrt{14}}+\frac{1}{10} \sqrt{21} \text{Apf}(2,2)+\frac{\text{Apf}(4,0)}{6 \sqrt{14}}-\frac{1}{6} \sqrt{5} \text{Apf}(4,4) | \color{darkred}{ 0 } | \color{darkred}{ -\frac{\text{Bdf}(3,2)}{\sqrt{21}}+\frac{5 \text{Bdf}(5,2)}{22 \sqrt{3}}-\frac{5}{22} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{4 \text{Adf}(1,1)}{\sqrt{35}}+\frac{1}{2} \sqrt{\frac{7}{30}} \text{Adf}(3,1)+\frac{\text{Adf}(3,3)}{6 \sqrt{14}}-\frac{5 \text{Adf}(5,1)}{22 \sqrt{21}}-\frac{5 \text{Adf}(5,3)}{66 \sqrt{2}}+\frac{5}{22} \sqrt{\frac{5}{2}} \text{Adf}(5,5) } | \color{darkred}{ 0 } | -\frac{1}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{2 \text{Bff}(4,1)}{11 \sqrt{3}}+\frac{2}{11} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{25 \sqrt{\frac{35}{2}} \text{Bff}(6,1)}{1716}-\frac{35 \sqrt{7} \text{Bff}(6,3)}{1144}-\frac{5}{104} \sqrt{\frac{105}{11}} \text{Bff}(6,5) | 0 | \frac{2}{5} \sqrt{\frac{2}{3}} \text{Bff}(2,1)-\frac{1}{33} \sqrt{5} \text{Bff}(4,1)+\frac{1}{33} \sqrt{35} \text{Bff}(4,3)+\frac{25}{572} \sqrt{\frac{7}{6}} \text{Bff}(6,1)-\frac{15 \sqrt{105} \text{Bff}(6,3)}{1144}+\frac{25}{104} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | 0 | \text{Aff}(0,0)-\frac{3}{10} \text{Aff}(2,0)+\frac{\text{Aff}(2,2)}{5 \sqrt{6}}+\frac{23}{264} \text{Aff}(4,0)-\frac{5}{66} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{44} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{25 \text{Aff}(6,0)}{1144}+\frac{5 \sqrt{\frac{35}{3}} \text{Aff}(6,2)}{1144}+\frac{25}{572} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{25}{104} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | 0 | \frac{\text{Aff}(2,0)}{2 \sqrt{15}}+\frac{\text{Aff}(2,2)}{3 \sqrt{10}}-\frac{1}{88} \sqrt{\frac{5}{3}} \text{Aff}(4,0)-\frac{13 \text{Aff}(4,2)}{22 \sqrt{6}}-\frac{7}{44} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35 \sqrt{\frac{5}{3}} \text{Aff}(6,0)}{1144}-\frac{5 \sqrt{7} \text{Aff}(6,2)}{3432}+\frac{35}{572} \sqrt{\frac{35}{6}} \text{Aff}(6,4)+\frac{5}{104} \sqrt{\frac{35}{11}} \text{Aff}(6,6) |
f_{x\left(y^2-z^2\right)} | \color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,1)+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,3) } | 0 | -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} | 0 | \color{darkred}{ \frac{1}{11} \sqrt{\frac{15}{2}} \text{Bdf}(5,2)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{22} \sqrt{\frac{35}{2}} \text{Adf}(5,1)+\frac{1}{44} \sqrt{15} \text{Adf}(5,3)+\frac{5}{44} \sqrt{3} \text{Adf}(5,5) } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{13}{22} \sqrt{\frac{5}{42}} \text{Adf}(5,1)-\frac{1}{12} \sqrt{5} \text{Adf}(5,3)-\frac{5}{44} \text{Adf}(5,5) } | 0 | -\frac{7}{66} \sqrt{5} \text{Bff}(4,1)-\frac{1}{66} \sqrt{35} \text{Bff}(4,3)+\frac{5}{143} \sqrt{\frac{21}{2}} \text{Bff}(6,1)-\frac{5}{286} \sqrt{105} \text{Bff}(6,3)-\frac{5}{26} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | 0 | \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) | 0 |
f_{y\left(y^2-3z^2\right)} | \color{darkred}{ 0 } | -\frac{3 \text{Bpf}(2,1)}{\sqrt{35}}-\frac{5 \text{Bpf}(4,1)}{2 \sqrt{42}}-\frac{\text{Bpf}(4,3)}{6 \sqrt{6}} | 0 | -\frac{3}{2} \sqrt{\frac{3}{70}} \text{Apf}(2,0)-\frac{3 \text{Apf}(2,2)}{2 \sqrt{35}}+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Apf}(4,0)+\frac{4 \text{Apf}(4,2)}{3 \sqrt{21}}+\frac{\text{Apf}(4,4)}{6 \sqrt{3}} | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,2)+\frac{7}{66} \sqrt{5} \text{Bdf}(5,2)+\frac{1}{22} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) } | \color{darkred}{ 0 } | \color{darkred}{ \frac{5 \text{Adf}(3,1)}{6 \sqrt{14}}+\frac{1}{2} \sqrt{\frac{5}{42}} \text{Adf}(3,3)-\frac{1}{66} \sqrt{35} \text{Adf}(5,1)-\frac{5}{22} \sqrt{\frac{5}{6}} \text{Adf}(5,3)-\frac{5 \text{Adf}(5,5)}{22 \sqrt{6}} } | \color{darkred}{ 0 } | \frac{5}{52} \sqrt{\frac{21}{2}} \text{Bff}(6,1)+\frac{5}{104} \sqrt{\frac{35}{3}} \text{Bff}(6,3)+\frac{5}{104} \sqrt{\frac{7}{11}} \text{Bff}(6,5) | 0 | \frac{1}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,1)+\frac{5 \text{Bff}(4,1)}{11 \sqrt{3}}-\frac{1}{11} \sqrt{\frac{7}{3}} \text{Bff}(4,3)+\frac{35 \sqrt{\frac{35}{2}} \text{Bff}(6,1)}{1716}-\frac{5}{88} \sqrt{7} \text{Bff}(6,3)-\frac{5}{104} \sqrt{\frac{35}{33}} \text{Bff}(6,5) | 0 | \frac{\text{Aff}(2,0)}{2 \sqrt{15}}+\frac{\text{Aff}(2,2)}{3 \sqrt{10}}-\frac{1}{88} \sqrt{\frac{5}{3}} \text{Aff}(4,0)-\frac{13 \text{Aff}(4,2)}{22 \sqrt{6}}-\frac{7}{44} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35 \sqrt{\frac{5}{3}} \text{Aff}(6,0)}{1144}-\frac{5 \sqrt{7} \text{Aff}(6,2)}{3432}+\frac{35}{572} \sqrt{\frac{35}{6}} \text{Aff}(6,4)+\frac{5}{104} \sqrt{\frac{35}{11}} \text{Aff}(6,6) | 0 | \text{Aff}(0,0)+\frac{1}{6} \text{Aff}(2,0)-\frac{\text{Aff}(2,2)}{\sqrt{6}}+\frac{3}{88} \text{Aff}(4,0)-\frac{1}{22} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{44} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{565 \text{Aff}(6,0)}{3432}-\frac{85 \sqrt{\frac{35}{3}} \text{Aff}(6,2)}{1144}-\frac{25}{572} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{104} \sqrt{\frac{7}{33}} \text{Aff}(6,6) |
Coupling for a single shell
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for s-p orbital mixing
Potential for s-d orbital mixing
Potential for s-f orbital mixing
Potential for p-d orbital mixing
Potential for p-f orbital mixing
Potential for d-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |