This is an old revision of the document!
Orientation Z
Symmetry Operations
In the C6 Point Group, with orientation Z there are the following symmetry operations
Operator Orientation
E { 0 , 0 , 0 } ,
C 6 { 0 , 0 , 1 } , { 0 , 0 , − 1 } ,
C 3 { 0 , 0 , 1 } , { 0 , 0 , − 1 } ,
C 2 { 0 , 0 , 1 } ,
Different Settings
Character Table
E (1) C 6 (2) C 3 (2) C 2 (1)
A 1 1 1 1
B 1 − 1 1 − 1
E 1 2 1 − 1 − 2
E 2 2 − 1 − 1 2
Product Table
A B E 1 E 2
A A B E 1 E 2
B B A E 2 E 1
E 1 E 1 E 2 2 A + E 2 2 B + E 1
E 2 E 2 E 1 2 B + E 1 2 A + E 2
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics.
V ( r , θ , ϕ ) = ∞ ∑ k = 0 k ∑ m = − k A k , m ( r ) C ( m ) k ( θ , ϕ )
Here A k , m ( r ) is a radial function and C ( m ) k ( θ , ϕ ) a renormalised spherical harmonics. C ( m ) k ( θ , ϕ ) = √ 4 π 2 k + 1 Y ( m ) k ( θ , ϕ )
The presence of symmetry induces relations between the expansion coefficients such that V ( r , θ , ϕ ) is invariant under all symmetry operations. For the C6 Point group with orientation Z the form of the expansion coefficients is:
Expansion
A k , m = { A ( 0 , 0 ) k = 0 ∧ m = 0 A ( 1 , 0 ) k = 1 ∧ m = 0 A ( 2 , 0 ) k = 2 ∧ m = 0 A ( 3 , 0 ) k = 3 ∧ m = 0 A ( 4 , 0 ) k = 4 ∧ m = 0 A ( 5 , 0 ) k = 5 ∧ m = 0 A ( 6 , 6 ) − i B ( 6 , 6 ) k = 6 ∧ m = − 6 A ( 6 , 0 ) k = 6 ∧ m = 0 A ( 6 , 6 ) + i B ( 6 , 6 ) k = 6 ∧ m = 6
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[1, 0], k == 1 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[3, 0], k == 3 && m == 0}, {A[4, 0], k == 4 && m == 0}, {A[5, 0], k == 5 && m == 0}, {A[6, 6] - I*B[6, 6], k == 6 && m == -6}, {A[6, 0], k == 6 && m == 0}, {A[6, 6] + I*B[6, 6], k == 6 && m == 6}}, 0]
Akm_C6_Z.Quanty
Akm = {{0, 0, A(0,0)} ,
{1, 0, A(1,0)} ,
{2, 0, A(2,0)} ,
{3, 0, A(3,0)} ,
{4, 0, A(4,0)} ,
{5, 0, A(5,0)} ,
{6, 0, A(6,0)} ,
{6,-6, A(6,6) + (-I)*(B(6,6))} ,
{6, 6, A(6,6) + (I)*(B(6,6))} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as:
O = ∑ n ″ , l ″ , m ″ , n ′ , l ′ , m ′ ⟨ ψ n ″ , l ″ , m ″ ( r , θ , ϕ ) | V ( r , θ , ϕ ) | ψ n ′ , l ′ , m ′ ( r , θ , ϕ ) ⟩ a † n ″ , l ″ , m ″ a † n ′ , l ′ , m ′
For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψ n , l , m ( r , θ , ϕ ) = R n , l ( r ) Y ( l ) m ( θ , ϕ ) . With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
A n ″ l ″ , n ′ l ′ ( k , m ) = ⟨ R n ″ , l ″ | A k , m ( r ) | R n ′ , l ′ ⟩
Note the difference between the function A k , m and the parameter A n ″ l ″ , n ′ l ′ ( k , m )
we can express the operator as
O = ∑ n ″ , l ″ , m ″ , n ′ , l ′ , m ′ , k , m A n ″ l ″ , n ′ l ′ ( k , m ) ⟨ Y ( m ″ ) l ″ ( θ , ϕ ) | C ( m ) k ( θ , ϕ ) | Y ( m ′ ) l ′ ( θ , ϕ ) ⟩ a † n ″ , l ″ , m ″ a † n ′ , l ′ , m ′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A l ″ , l ′ ( k , m ) can be complex. Instead of allowing complex parameters we took A l ″ , l ′ ( k , m ) + I B l ″ , l ′ ( k , m ) (with both A and B real) as the expansion parameter.
Y ( 0 ) 0 Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1 Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2 Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
Y ( 0 ) 0 Ass ( 0 , 0 ) 0 Asp ( 1 , 0 ) √ 3 0 0 0 Asd ( 2 , 0 ) √ 5 0 0 0 0 0 Asf ( 3 , 0 ) √ 7 0 0 0
Y ( 1 ) − 1 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0
Y ( 1 ) 0 Asp ( 1 , 0 ) √ 3 0 App ( 0 , 0 ) + 2 5 App ( 2 , 0 ) 0 0 0 2 Apd ( 1 , 0 ) √ 15 + 3 7 √ 3 5 Apd ( 3 , 0 ) 0 0 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0
Y ( 1 ) 1 0 0 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0
Y ( 2 ) − 2 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0 0 0 0 0
Y ( 2 ) − 1 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0 0 0
Y ( 2 ) 0 Asd ( 2 , 0 ) √ 5 0 2 Apd ( 1 , 0 ) √ 15 + 3 7 √ 3 5 Apd ( 3 , 0 ) 0 0 0 Add ( 0 , 0 ) + 2 7 Add ( 2 , 0 ) + 2 7 Add ( 4 , 0 ) 0 0 0 0 0 3 Adf ( 1 , 0 ) √ 35 + 4 Adf ( 3 , 0 ) 3 √ 35 + 10 33 √ 5 7 Adf ( 5 , 0 ) 0 0 0
Y ( 2 ) 1 0 0 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0
Y ( 2 ) 2 0 0 0 0 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0
Y ( 3 ) − 3 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 ) 0 0 0 0 0 − 10 13 √ 7 33 ( Aff ( 6 , 6 ) − i Bff ( 6 , 6 ) )
Y ( 3 ) − 2 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0 0 0 0 0
Y ( 3 ) − 1 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0 0 0
Y ( 3 ) 0 Asf ( 3 , 0 ) √ 7 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0 3 Adf ( 1 , 0 ) √ 35 + 4 Adf ( 3 , 0 ) 3 √ 35 + 10 33 √ 5 7 Adf ( 5 , 0 ) 0 0 0 0 0 Aff ( 0 , 0 ) + 4 15 Aff ( 2 , 0 ) + 2 11 Aff ( 4 , 0 ) + 100 429 Aff ( 6 , 0 ) 0 0 0
Y ( 3 ) 1 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0
Y ( 3 ) 2 0 0 0 0 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0
Y ( 3 ) 3 0 0 0 0 0 0 0 0 0 − 10 13 √ 7 33 ( Aff ( 6 , 6 ) + i Bff ( 6 , 6 ) ) 0 0 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 )
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y ( 0 ) 0 Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1 Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2 Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
s 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p y 0 i √ 2 0 i √ 2 0 0 0 0 0 0 0 0 0 0 0 0
p z 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p x 0 1 √ 2 0 − 1 √ 2 0 0 0 0 0 0 0 0 0 0 0 0
d xy 0 0 0 0 i √ 2 0 0 0 − i √ 2 0 0 0 0 0 0 0
d yz 0 0 0 0 0 i √ 2 0 i √ 2 0 0 0 0 0 0 0 0
d 3 z 2 − r 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
d xz 0 0 0 0 0 1 √ 2 0 − 1 √ 2 0 0 0 0 0 0 0 0
d x 2 − y 2 0 0 0 0 1 √ 2 0 0 0 1 √ 2 0 0 0 0 0 0 0
f y ( 3 x 2 − y 2 ) 0 0 0 0 0 0 0 0 0 i √ 2 0 0 0 0 0 i √ 2
f xyz 0 0 0 0 0 0 0 0 0 0 i √ 2 0 0 0 − i √ 2 0
f y ( 5 z 2 − r 2 ) 0 0 0 0 0 0 0 0 0 0 0 i √ 2 0 i √ 2 0 0
f z ( 5 z 2 − 3 r 2 ) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
f x ( 5 z 2 − r 2 ) 0 0 0 0 0 0 0 0 0 0 0 1 √ 2 0 − 1 √ 2 0 0
f z ( x 2 − y 2 ) 0 0 0 0 0 0 0 0 0 0 1 √ 2 0 0 0 1 √ 2 0
f x ( x 2 − 3 y 2 ) 0 0 0 0 0 0 0 0 0 1 √ 2 0 0 0 0 0 − 1 √ 2
One particle coupling on a basis of symmetry adapted functions
After rotation we find
s p y p z p x d xy d yz d 3 z 2 − r 2 d xz d x 2 − y 2 f y ( 3 x 2 − y 2 ) f xyz f y ( 5 z 2 − r 2 ) f z ( 5 z 2 − 3 r 2 ) f x ( 5 z 2 − r 2 ) f z ( x 2 − y 2 ) f x ( x 2 − 3 y 2 )
s Ass ( 0 , 0 ) 0 Asp ( 1 , 0 ) √ 3 0 0 0 Asd ( 2 , 0 ) √ 5 0 0 0 0 0 Asf ( 3 , 0 ) √ 7 0 0 0
p y 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0
p z Asp ( 1 , 0 ) √ 3 0 App ( 0 , 0 ) + 2 5 App ( 2 , 0 ) 0 0 0 2 Apd ( 1 , 0 ) √ 15 + 3 7 √ 3 5 Apd ( 3 , 0 ) 0 0 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0
p x 0 0 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0
d xy 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0 0 0 0 0
d yz 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0 0 0
d 3 z 2 − r 2 Asd ( 2 , 0 ) √ 5 0 2 Apd ( 1 , 0 ) √ 15 + 3 7 √ 3 5 Apd ( 3 , 0 ) 0 0 0 Add ( 0 , 0 ) + 2 7 Add ( 2 , 0 ) + 2 7 Add ( 4 , 0 ) 0 0 0 0 0 3 Adf ( 1 , 0 ) √ 35 + 4 Adf ( 3 , 0 ) 3 √ 35 + 10 33 √ 5 7 Adf ( 5 , 0 ) 0 0 0
d xz 0 0 0 Apd ( 1 , 0 ) √ 5 − 3 Apd ( 3 , 0 ) 7 √ 5 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0
d x 2 − y 2 0 0 0 0 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0
f y ( 3 x 2 − y 2 ) 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 ) − 10 13 √ 7 33 Aff ( 6 , 6 ) 0 0 0 0 0 − 10 13 √ 7 33 Bff ( 6 , 6 )
f xyz 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0 0 0 0 0
f y ( 5 z 2 − r 2 ) 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0 0 0
f z ( 5 z 2 − 3 r 2 ) Asf ( 3 , 0 ) √ 7 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0 3 Adf ( 1 , 0 ) √ 35 + 4 Adf ( 3 , 0 ) 3 √ 35 + 10 33 √ 5 7 Adf ( 5 , 0 ) 0 0 0 0 0 Aff ( 0 , 0 ) + 4 15 Aff ( 2 , 0 ) + 2 11 Aff ( 4 , 0 ) + 100 429 Aff ( 6 , 0 ) 0 0 0
f x ( 5 z 2 − r 2 ) 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 2 √ 2 35 Adf ( 1 , 0 ) + 1 3 √ 2 35 Adf ( 3 , 0 ) − 5 33 √ 10 7 Adf ( 5 , 0 ) 0 0 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0
f z ( x 2 − y 2 ) 0 0 0 0 0 0 0 0 Adf ( 1 , 0 ) √ 7 − 2 Adf ( 3 , 0 ) 3 √ 7 + 5 Adf ( 5 , 0 ) 33 √ 7 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0
f x ( x 2 − 3 y 2 ) 0 0 0 0 0 0 0 0 0 − 10 13 √ 7 33 Bff ( 6 , 6 ) 0 0 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 ) + 10 13 √ 7 33 Aff ( 6 , 6 )
Coupling for a single shell
Although the parameters A l ″ , l ′ ( k , m ) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A l ″ , l ′ ( k , m ) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l ″ and l ′ .
Click on one of the subsections to expand it or expand all
Potential for s orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Ea, k == 0 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{0, 0, Ea} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Ea
ψ ( θ , ϕ ) = √ 1 1 1 2 √ π
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ π
Potential for p orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 3 ( Ea + 2 Ee1 ) k = 0 ∧ m = 0 0 k ≠ 2 ∨ m ≠ 0 5 ( Ea − Ee1 ) 3 True
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea + 2*Ee1)/3, k == 0 && m == 0}, {0, k != 2 || m != 0}}, (5*(Ea - Ee1))/3]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{0, 0, (1/3)*(Ea + (2)*(Ee1))} ,
{2, 0, (5/3)*(Ea + (-1)*(Ee1))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1
Y ( 1 ) − 1 Ee1 0 0
Y ( 1 ) 0 0 Ea 0
Y ( 1 ) 1 0 0 Ee1
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
p y p z p x
p y Ee1 0 0
p z 0 Ea 0
p x 0 0 Ee1
Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1
p y i √ 2 0 i √ 2
p z 0 1 0
p x 1 √ 2 0 − 1 √ 2
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Ee1
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π sin ( θ ) sin ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π y
Ea
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π cos ( θ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π z
Ee1
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π sin ( θ ) cos ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π x
Potential for d orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 5 ( Ea + 2 ( Ee1 + Ee2 ) ) k = 0 ∧ m = 0 0 ( k ≠ 2 ∧ k ≠ 4 ) ∨ m ≠ 0 Ea + Ee1 − 2 Ee2 k = 2 ∧ m = 0 3 5 ( 3 Ea − 4 Ee1 + Ee2 ) True
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea + 2*(Ee1 + Ee2))/5, k == 0 && m == 0}, {0, (k != 2 && k != 4) || m != 0}, {Ea + Ee1 - 2*Ee2, k == 2 && m == 0}}, (3*(3*Ea - 4*Ee1 + Ee2))/5]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{0, 0, (1/5)*(Ea + (2)*(Ee1 + Ee2))} ,
{2, 0, Ea + Ee1 + (-2)*(Ee2)} ,
{4, 0, (3/5)*((3)*(Ea) + (-4)*(Ee1) + Ee2)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2
Y ( 2 ) − 2 Ee2 0 0 0 0
Y ( 2 ) − 1 0 Ee1 0 0 0
Y ( 2 ) 0 0 0 Ea 0 0
Y ( 2 ) 1 0 0 0 Ee1 0
Y ( 2 ) 2 0 0 0 0 Ee2
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d xy d yz d 3 z 2 − r 2 d xz d x 2 − y 2
d xy Ee2 0 0 0 0
d yz 0 Ee1 0 0 0
d 3 z 2 − r 2 0 0 Ea 0 0
d xz 0 0 0 Ee1 0
d x 2 − y 2 0 0 0 0 Ee2
Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2
d xy i √ 2 0 0 0 − i √ 2
d yz 0 i √ 2 0 i √ 2 0
d 3 z 2 − r 2 0 0 1 0 0
d xz 0 1 √ 2 0 − 1 √ 2 0
d x 2 − y 2 1 √ 2 0 0 0 1 √ 2
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Ee2
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin 2 ( θ ) sin ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π x y
Ee1
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin ( 2 θ ) sin ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π y z
Ea
ψ ( θ , ϕ ) = √ 1 1 1 8 √ 5 π ( 3 cos ( 2 θ ) + 1 )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 5 π ( 3 z 2 − 1 )
Ee1
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin ( 2 θ ) cos ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π x z
Ee2
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin 2 ( θ ) cos ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 15 π ( x 2 − y 2 )
Potential for f orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 7 ( Ea + Ebxx2y2 + Ebyx2y2 + 2 Ee1 + 2 Ee2 ) k = 0 ∧ m = 0 0 ( k ≠ 6 ∧ ( ( k ≠ 2 ∧ k ≠ 4 ) ∨ m ≠ 0 ) ) ∨ ( m ≠ − 6 ∧ m ≠ 0 ∧ m ≠ 6 ) 5 28 ( 4 Ea − 5 Ebxx2y2 − 5 Ebyx2y2 + 6 Ee2 ) k = 2 ∧ m = 0 3 14 ( 6 Ea + 3 Ebxx2y2 + 3 Ebyx2y2 − 14 Ee1 + 2 Ee2 ) k = 4 ∧ m = 0 13 20 √ 33 7 ( Ebxx2y2 − Ebyx2y2 + 2 i Mb ) k = 6 ∧ m = − 6 13 140 ( 20 Ea − Ebxx2y2 − Ebyx2y2 + 12 Ee1 − 30 Ee2 ) k = 6 ∧ m = 0 13 20 √ 33 7 ( Ebxx2y2 − Ebyx2y2 − 2 i Mb ) True
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea + Ebxx2y2 + Ebyx2y2 + 2*Ee1 + 2*Ee2)/7, k == 0 && m == 0}, {0, (k != 6 && ((k != 2 && k != 4) || m != 0)) || (m != -6 && m != 0 && m != 6)}, {(5*(4*Ea - 5*Ebxx2y2 - 5*Ebyx2y2 + 6*Ee2))/28, k == 2 && m == 0}, {(3*(6*Ea + 3*Ebxx2y2 + 3*Ebyx2y2 - 14*Ee1 + 2*Ee2))/14, k == 4 && m == 0}, {(13*Sqrt[33/7]*(Ebxx2y2 - Ebyx2y2 + (2*I)*Mb))/20, k == 6 && m == -6}, {(13*(20*Ea - Ebxx2y2 - Ebyx2y2 + 12*Ee1 - 30*Ee2))/140, k == 6 && m == 0}}, (13*Sqrt[33/7]*(Ebxx2y2 - Ebyx2y2 - (2*I)*Mb))/20]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{0, 0, (1/7)*(Ea + Ebxx2y2 + Ebyx2y2 + (2)*(Ee1) + (2)*(Ee2))} ,
{2, 0, (5/28)*((4)*(Ea) + (-5)*(Ebxx2y2) + (-5)*(Ebyx2y2) + (6)*(Ee2))} ,
{4, 0, (3/14)*((6)*(Ea) + (3)*(Ebxx2y2) + (3)*(Ebyx2y2) + (-14)*(Ee1) + (2)*(Ee2))} ,
{6, 0, (13/140)*((20)*(Ea) + (-1)*(Ebxx2y2) + (-1)*(Ebyx2y2) + (12)*(Ee1) + (-30)*(Ee2))} ,
{6, 6, (13/20)*((sqrt(33/7))*(Ebxx2y2 + (-1)*(Ebyx2y2) + (-2*I)*(Mb)))} ,
{6,-6, (13/20)*((sqrt(33/7))*(Ebxx2y2 + (-1)*(Ebyx2y2) + (2*I)*(Mb)))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
Y ( 3 ) − 3 Ebxx2y2 + Ebyx2y2 2 0 0 0 0 0 1 2 ( − Ebxx2y2 + Ebyx2y2 − 2 i Mb )
Y ( 3 ) − 2 0 Ee1 0 0 0 0 0
Y ( 3 ) − 1 0 0 Ee2 0 0 0 0
Y ( 3 ) 0 0 0 0 Ea 0 0 0
Y ( 3 ) 1 0 0 0 0 Ee2 0 0
Y ( 3 ) 2 0 0 0 0 0 Ee1 0
Y ( 3 ) 3 1 2 ( − Ebxx2y2 + Ebyx2y2 + 2 i Mb ) 0 0 0 0 0 Ebxx2y2 + Ebyx2y2 2
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f y ( 3 x 2 − y 2 ) f xyz f y ( 5 z 2 − r 2 ) f z ( 5 z 2 − 3 r 2 ) f x ( 5 z 2 − r 2 ) f z ( x 2 − y 2 ) f_{x\left(x^2-3y^2\right)}
f_{y\left(3x^2-y^2\right)} \text{Ebyx2y2} 0 0 0 0 0 \text{Mb}
f_{\text{xyz}} 0 \text{Ee1} 0 0 0 0 0
f_{y\left(5z^2-r^2\right)} 0 0 \text{Ee2} 0 0 0 0
f_{z\left(5z^2-3r^2\right)} 0 0 0 \text{Ea} 0 0 0
f_{x\left(5z^2-r^2\right)} 0 0 0 0 \text{Ee2} 0 0
f_{z\left(x^2-y^2\right)} 0 0 0 0 0 \text{Ee1} 0
f_{x\left(x^2-3y^2\right)} \text{Mb} 0 0 0 0 0 \text{Ebxx2y2}
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
f_{y\left(3x^2-y^2\right)} \frac{i}{\sqrt{2}} 0 0 0 0 0 \frac{i}{\sqrt{2}}
f_{\text{xyz}} 0 \frac{i}{\sqrt{2}} 0 0 0 -\frac{i}{\sqrt{2}} 0
f_{y\left(5z^2-r^2\right)} 0 0 \frac{i}{\sqrt{2}} 0 \frac{i}{\sqrt{2}} 0 0
f_{z\left(5z^2-3r^2\right)} 0 0 0 1 0 0 0
f_{x\left(5z^2-r^2\right)} 0 0 \frac{1}{\sqrt{2}} 0 -\frac{1}{\sqrt{2}} 0 0
f_{z\left(x^2-y^2\right)} 0 \frac{1}{\sqrt{2}} 0 0 0 \frac{1}{\sqrt{2}} 0
f_{x\left(x^2-3y^2\right)} \frac{1}{\sqrt{2}} 0 0 0 0 0 -\frac{1}{\sqrt{2}}
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
\text{Ebyx2y2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} -\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right)
\text{Ee1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{2} \sqrt{\frac{105}{\pi }} x y z
\text{Ee2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{8} \sqrt{\frac{21}{2 \pi }} \sin (\theta ) (5 \cos (2 \theta )+3) \sin (\phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{21}{2 \pi }} y \left(5 z^2-1\right)
\text{Ea}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta ))
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right)
\text{Ee2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{16} \sqrt{\frac{21}{2 \pi }} (\sin (\theta )+5 \sin (3 \theta )) \cos (\phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{21}{2 \pi }} x \left(5 z^2-1\right)
\text{Ee1}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right)
\text{Ebxx2y2}
\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi )
\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} \frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right)
Coupling between two shells
Click on one of the subsections to expand it or expand all
Potential for s-p orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & k\neq 1\lor m\neq 0 \\
A(1,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 1 || m != 0}}, A[1, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{1, 0, A(1,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-1}^{(1)}} {Y_{0}^{(1)}} {Y_{1}^{(1)}}
{Y_{0}^{(0)}} 0 \frac{A(1,0)}{\sqrt{3}} 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
p_y p_z p_x
\text{s} 0 \frac{A(1,0)}{\sqrt{3}} 0
Potential for s-d orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & k\neq 2\lor m\neq 0 \\
A(2,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{2, 0, A(2,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{0}^{(0)}} 0 0 \frac{A(2,0)}{\sqrt{5}} 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d_{\text{xy}} d_{\text{yz}} d_{3z^2-r^2} d_{\text{xz}} d_{x^2-y^2}
\text{s} 0 0 \frac{A(2,0)}{\sqrt{5}} 0 0
Potential for s-f orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & k\neq 3\lor m\neq 0 \\
A(3,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 3 || m != 0}}, A[3, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{3, 0, A(3,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{0}^{(0)}} 0 0 0 \frac{A(3,0)}{\sqrt{7}} 0 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f_{y\left(3x^2-y^2\right)} f_{\text{xyz}} f_{y\left(5z^2-r^2\right)} f_{z\left(5z^2-3r^2\right)} f_{x\left(5z^2-r^2\right)} f_{z\left(x^2-y^2\right)} f_{x\left(x^2-3y^2\right)}
\text{s} 0 0 0 \frac{A(3,0)}{\sqrt{7}} 0 0 0
Potential for p-d orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & (k\neq 1\land k\neq 3)\lor m\neq 0 \\
A(1,0) & k=1\land m=0 \\
A(3,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, (k != 1 && k != 3) || m != 0}, {A[1, 0], k == 1 && m == 0}}, A[3, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{1, 0, A(1,0)} ,
{3, 0, A(3,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{-1}^{(1)}} 0 \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} 0 0 0
{Y_{0}^{(1)}} 0 0 \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} 0 0
{Y_{1}^{(1)}} 0 0 0 \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d_{\text{xy}} d_{\text{yz}} d_{3z^2-r^2} d_{\text{xz}} d_{x^2-y^2}
p_y 0 \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} 0 0 0
p_z 0 0 \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} 0 0
p_x 0 0 0 \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} 0
Potential for p-f orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\
A(2,0) & k=2\land m=0 \\
A(4,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, (k != 2 && k != 4) || m != 0}, {A[2, 0], k == 2 && m == 0}}, A[4, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{2, 0, A(2,0)} ,
{4, 0, A(4,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0 0 0
{Y_{0}^{(1)}} 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0
{Y_{1}^{(1)}} 0 0 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f_{y\left(3x^2-y^2\right)} f_{\text{xyz}} f_{y\left(5z^2-r^2\right)} f_{z\left(5z^2-3r^2\right)} f_{x\left(5z^2-r^2\right)} f_{z\left(x^2-y^2\right)} f_{x\left(x^2-3y^2\right)}
p_y 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0 0 0
p_z 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0
p_x 0 0 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0
Potential for d-f orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & (k\neq 1\land k\neq 3\land k\neq 5)\lor m\neq 0 \\
A(1,0) & k=1\land m=0 \\
A(3,0) & k=3\land m=0 \\
A(5,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_C6_Z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, (k != 1 && k != 3 && k != 5) || m != 0}, {A[1, 0], k == 1 && m == 0}, {A[3, 0], k == 3 && m == 0}}, A[5, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_C6_Z.Quanty
Akm = {{1, 0, A(1,0)} ,
{3, 0, A(3,0)} ,
{5, 0, A(5,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-2}^{(2)}} 0 \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} 0 0 0 0 0
{Y_{-1}^{(2)}} 0 0 \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) 0 0 0 0
{Y_{0}^{(2)}} 0 0 0 \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} 0 0 0
{Y_{1}^{(2)}} 0 0 0 0 \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) 0 0
{Y_{2}^{(2)}} 0 0 0 0 0 \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f_{y\left(3x^2-y^2\right)} f_{\text{xyz}} f_{y\left(5z^2-r^2\right)} f_{z\left(5z^2-3r^2\right)} f_{x\left(5z^2-r^2\right)} f_{z\left(x^2-y^2\right)} f_{x\left(x^2-3y^2\right)}
d_{\text{xy}} 0 \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} 0 0 0 0 0
d_{\text{yz}} 0 0 \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) 0 0 0 0
d_{3z^2-r^2} 0 0 0 \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} 0 0 0
d_{\text{xz}} 0 0 0 0 \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) 0 0
d_{x^2-y^2} 0 0 0 0 0 \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} 0
Table of several point groups