Orientation Zy
Symmetry Operations
In the D3h Point Group, with orientation Zy there are the following symmetry operations
Operator Orientation
E { 0 , 0 , 0 } ,
C 3 { 0 , 0 , 1 } , { 0 , 0 , − 1 } ,
C 2 { 0 , 1 , 0 } , { √ 3 , 1 , 0 } , { − √ 3 , 1 , 0 } ,
σ h { 0 , 0 , 1 } ,
S 3 { 0 , 0 , 1 } , { 0 , 0 , − 1 } ,
σ v { 1 , 0 , 0 } , { 1 , √ 3 , 0 } , { 1 , − √ 3 , 0 } ,
Different Settings
Character Table
E (1) C 3 (2) C 2 (3) σ h (1) S 3 (2) σ v (3)
A ′ 1 1 1 1 1 1 1
A ′ 2 1 1 − 1 1 1 − 1
E' 2 − 1 0 2 − 1 0
A ″ 1 1 1 1 − 1 − 1 − 1
A ″ 2 1 1 − 1 − 1 − 1 1
E'' 2 − 1 0 − 2 1 0
Product Table
A ′ 1 A ′ 2 E' A ″ 1 A ″ 2 E''
A ′ 1 A ′ 1 A ′ 2 E' A ″ 1 A ″ 2 E''
A ′ 2 A ′ 2 A ′ 1 E' A ″ 2 A ″ 1 E''
E' E' E' A ′ 1 + A ′ 2 + E' E'' E'' A ″ 1 + A ″ 2 + E''
A ″ 1 A ″ 1 A ″ 2 E'' A ′ 1 A ′ 2 E'
A ″ 2 A ″ 2 A ″ 1 E'' A ′ 2 A ′ 1 E'
E'' E'' E'' A ″ 1 + A ″ 2 + E'' E' E' A ′ 1 + A ′ 2 + E'
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics.
V ( r , θ , ϕ ) = ∞ ∑ k = 0 k ∑ m = − k A k , m ( r ) C ( m ) k ( θ , ϕ )
Here A k , m ( r ) is a radial function and C ( m ) k ( θ , ϕ ) a renormalised spherical harmonics. C ( m ) k ( θ , ϕ ) = √ 4 π 2 k + 1 Y ( m ) k ( θ , ϕ )
The presence of symmetry induces relations between the expansion coefficients such that V ( r , θ , ϕ ) is invariant under all symmetry operations. For the D3h Point group with orientation Zy the form of the expansion coefficients is:
Expansion
A k , m = { A ( 0 , 0 ) k = 0 ∧ m = 0 A ( 2 , 0 ) k = 2 ∧ m = 0 i B ( 3 , 3 ) k = 3 ∧ ( m = − 3 ∨ m = 3 ) A ( 4 , 0 ) k = 4 ∧ m = 0 i B ( 5 , 3 ) k = 5 ∧ ( m = − 3 ∨ m = 3 ) A ( 6 , 6 ) k = 6 ∧ ( m = − 6 ∨ m = 6 ) A ( 6 , 0 ) k = 6 ∧ m = 0
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {I*B[3, 3], k == 3 && (m == -3 || m == 3)}, {A[4, 0], k == 4 && m == 0}, {I*B[5, 3], k == 5 && (m == -3 || m == 3)}, {A[6, 6], k == 6 && (m == -6 || m == 6)}, {A[6, 0], k == 6 && m == 0}}, 0]
Akm_D3h_Zy.Quanty
Akm = {{0, 0, A(0,0)} ,
{2, 0, A(2,0)} ,
{3,-3, (I)*(B(3,3))} ,
{3, 3, (I)*(B(3,3))} ,
{4, 0, A(4,0)} ,
{5,-3, (I)*(B(5,3))} ,
{5, 3, (I)*(B(5,3))} ,
{6, 0, A(6,0)} ,
{6,-6, A(6,6)} ,
{6, 6, A(6,6)} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as:
O = ∑ n ″ , l ″ , m ″ , n ′ , l ′ , m ′ ⟨ ψ n ″ , l ″ , m ″ ( r , θ , ϕ ) | V ( r , θ , ϕ ) | ψ n ′ , l ′ , m ′ ( r , θ , ϕ ) ⟩ a † n ″ , l ″ , m ″ a † n ′ , l ′ , m ′
For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψ n , l , m ( r , θ , ϕ ) = R n , l ( r ) Y ( l ) m ( θ , ϕ ) . With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
A n ″ l ″ , n ′ l ′ ( k , m ) = ⟨ R n ″ , l ″ | A k , m ( r ) | R n ′ , l ′ ⟩
Note the difference between the function A k , m and the parameter A n ″ l ″ , n ′ l ′ ( k , m )
we can express the operator as
O = ∑ n ″ , l ″ , m ″ , n ′ , l ′ , m ′ , k , m A n ″ l ″ , n ′ l ′ ( k , m ) ⟨ Y ( m ″ ) l ″ ( θ , ϕ ) | C ( m ) k ( θ , ϕ ) | Y ( m ′ ) l ′ ( θ , ϕ ) ⟩ a † n ″ , l ″ , m ″ a † n ′ , l ′ , m ′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A l ″ , l ′ ( k , m ) can be complex. Instead of allowing complex parameters we took A l ″ , l ′ ( k , m ) + I B l ″ , l ′ ( k , m ) (with both A and B real) as the expansion parameter.
Y ( 0 ) 0 Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1 Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2 Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
Y ( 0 ) 0 Ass ( 0 , 0 ) 0 0 0 0 0 Asd ( 2 , 0 ) √ 5 0 0 − i Bsf ( 3 , 3 ) √ 7 0 0 0 0 0 − i Bsf ( 3 , 3 ) √ 7
Y ( 1 ) − 1 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 0 0 0 3 7 i Bpd ( 3 , 3 ) 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0
Y ( 1 ) 0 0 0 App ( 0 , 0 ) + 2 5 App ( 2 , 0 ) 0 0 0 0 0 0 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0
Y ( 1 ) 1 0 0 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 3 7 i Bpd ( 3 , 3 ) 0 0 0 0 0 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0
Y ( 2 ) − 2 0 0 0 − 3 7 i Bpd ( 3 , 3 ) Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 1 3 i √ 2 7 Bdf ( 3 , 3 ) − 5 33 i √ 2 Bdf ( 5 , 3 ) 0 0
Y ( 2 ) − 1 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 1 3 i √ 5 7 Bdf ( 3 , 3 ) + 4 33 i √ 5 Bdf ( 5 , 3 ) 0
Y ( 2 ) 0 Asd ( 2 , 0 ) √ 5 0 0 0 0 0 Add ( 0 , 0 ) + 2 7 Add ( 2 , 0 ) + 2 7 Add ( 4 , 0 ) 0 0 1 3 i √ 5 7 Bdf ( 3 , 3 ) − 2 33 i √ 5 Bdf ( 5 , 3 ) 0 0 0 0 0 1 3 i √ 5 7 Bdf ( 3 , 3 ) − 2 33 i √ 5 Bdf ( 5 , 3 )
Y ( 2 ) 1 0 0 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 1 3 i √ 5 7 Bdf ( 3 , 3 ) + 4 33 i √ 5 Bdf ( 5 , 3 ) 0 0 0 0 0
Y ( 2 ) 2 0 − 3 7 i Bpd ( 3 , 3 ) 0 0 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 1 3 i √ 2 7 Bdf ( 3 , 3 ) − 5 33 i √ 2 Bdf ( 5 , 3 ) 0 0 0 0
Y ( 3 ) − 3 i Bsf ( 3 , 3 ) √ 7 0 0 0 0 0 2 33 i √ 5 Bdf ( 5 , 3 ) − 1 3 i √ 5 7 Bdf ( 3 , 3 ) 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 ) 0 0 0 0 0 − 10 13 √ 7 33 Aff ( 6 , 6 )
Y ( 3 ) − 2 0 0 0 0 0 0 0 − 1 3 i √ 5 7 Bdf ( 3 , 3 ) − 4 33 i √ 5 Bdf ( 5 , 3 ) 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0 0 0 0 0
Y ( 3 ) − 1 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0 0 0 5 33 i √ 2 Bdf ( 5 , 3 ) − 1 3 i √ 2 7 Bdf ( 3 , 3 ) 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0 0 0
Y ( 3 ) 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) + 4 15 Aff ( 2 , 0 ) + 2 11 Aff ( 4 , 0 ) + 100 429 Aff ( 6 , 0 ) 0 0 0
Y ( 3 ) 1 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 5 33 i √ 2 Bdf ( 5 , 3 ) − 1 3 i √ 2 7 Bdf ( 3 , 3 ) 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0
Y ( 3 ) 2 0 0 0 0 0 − 1 3 i √ 5 7 Bdf ( 3 , 3 ) − 4 33 i √ 5 Bdf ( 5 , 3 ) 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0
Y ( 3 ) 3 i Bsf ( 3 , 3 ) √ 7 0 0 0 0 0 2 33 i √ 5 Bdf ( 5 , 3 ) − 1 3 i √ 5 7 Bdf ( 3 , 3 ) 0 0 − 10 13 √ 7 33 Aff ( 6 , 6 ) 0 0 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 )
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y ( 0 ) 0 Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1 Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2 Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
s 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p y 0 i √ 2 0 i √ 2 0 0 0 0 0 0 0 0 0 0 0 0
p z 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p x 0 1 √ 2 0 − 1 √ 2 0 0 0 0 0 0 0 0 0 0 0 0
d xy 0 0 0 0 i √ 2 0 0 0 − i √ 2 0 0 0 0 0 0 0
d yz 0 0 0 0 0 i √ 2 0 i √ 2 0 0 0 0 0 0 0 0
d 3 z 2 − r 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
d xz 0 0 0 0 0 1 √ 2 0 − 1 √ 2 0 0 0 0 0 0 0 0
d x 2 − y 2 0 0 0 0 1 √ 2 0 0 0 1 √ 2 0 0 0 0 0 0 0
f y ( 3 x 2 − y 2 ) 0 0 0 0 0 0 0 0 0 i √ 2 0 0 0 0 0 i √ 2
f xyz 0 0 0 0 0 0 0 0 0 0 i √ 2 0 0 0 − i √ 2 0
f y ( 5 z 2 − r 2 ) 0 0 0 0 0 0 0 0 0 0 0 i √ 2 0 i √ 2 0 0
f z ( 5 z 2 − 3 r 2 ) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
f x ( 5 z 2 − r 2 ) 0 0 0 0 0 0 0 0 0 0 0 1 √ 2 0 − 1 √ 2 0 0
f z ( x 2 − y 2 ) 0 0 0 0 0 0 0 0 0 0 1 √ 2 0 0 0 1 √ 2 0
f x ( x 2 − 3 y 2 ) 0 0 0 0 0 0 0 0 0 1 √ 2 0 0 0 0 0 − 1 √ 2
One particle coupling on a basis of symmetry adapted functions
After rotation we find
s p y p z p x d xy d yz d 3 z 2 − r 2 d xz d x 2 − y 2 f y ( 3 x 2 − y 2 ) f xyz f y ( 5 z 2 − r 2 ) f z ( 5 z 2 − 3 r 2 ) f x ( 5 z 2 − r 2 ) f z ( x 2 − y 2 ) f x ( x 2 − 3 y 2 )
s Ass ( 0 , 0 ) 0 0 0 0 0 Asd ( 2 , 0 ) √ 5 0 0 √ 2 7 Bsf ( 3 , 3 ) 0 0 0 0 0 0
p y 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 0 0 0 0 0 0 3 7 Bpd ( 3 , 3 ) 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0
p z 0 0 App ( 0 , 0 ) + 2 5 App ( 2 , 0 ) 0 0 0 0 0 0 0 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0
p x 0 0 0 App ( 0 , 0 ) − 1 5 App ( 2 , 0 ) 3 7 Bpd ( 3 , 3 ) 0 0 0 0 0 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0
d xy 0 0 0 3 7 Bpd ( 3 , 3 ) Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 5 33 √ 2 Bdf ( 5 , 3 ) − 1 3 √ 2 7 Bdf ( 3 , 3 ) 0 0
d yz 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 0 0 0 0 0 0 1 3 √ 5 7 Bdf ( 3 , 3 ) + 4 33 √ 5 Bdf ( 5 , 3 ) 0
d 3 z 2 − r 2 Asd ( 2 , 0 ) √ 5 0 0 0 0 0 Add ( 0 , 0 ) + 2 7 Add ( 2 , 0 ) + 2 7 Add ( 4 , 0 ) 0 0 2 33 √ 10 Bdf ( 5 , 3 ) − 1 3 √ 10 7 Bdf ( 3 , 3 ) 0 0 0 0 0 0
d xz 0 0 0 0 0 0 0 Add ( 0 , 0 ) + 1 7 Add ( 2 , 0 ) − 4 21 Add ( 4 , 0 ) 0 0 1 3 √ 5 7 Bdf ( 3 , 3 ) + 4 33 √ 5 Bdf ( 5 , 3 ) 0 0 0 0 0
d x 2 − y 2 0 3 7 Bpd ( 3 , 3 ) 0 0 0 0 0 0 Add ( 0 , 0 ) − 2 7 Add ( 2 , 0 ) + 1 21 Add ( 4 , 0 ) 0 0 5 33 √ 2 Bdf ( 5 , 3 ) − 1 3 √ 2 7 Bdf ( 3 , 3 ) 0 0 0 0
f y ( 3 x 2 − y 2 ) √ 2 7 Bsf ( 3 , 3 ) 0 0 0 0 0 2 33 √ 10 Bdf ( 5 , 3 ) − 1 3 √ 10 7 Bdf ( 3 , 3 ) 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 ) − 10 13 √ 7 33 Aff ( 6 , 6 ) 0 0 0 0 0 0
f xyz 0 0 0 0 0 0 0 1 3 √ 5 7 Bdf ( 3 , 3 ) + 4 33 √ 5 Bdf ( 5 , 3 ) 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0 0 0 0 0
f y ( 5 z 2 − r 2 ) 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 0 0 0 0 0 0 5 33 √ 2 Bdf ( 5 , 3 ) − 1 3 √ 2 7 Bdf ( 3 , 3 ) 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0 0 0
f z ( 5 z 2 − 3 r 2 ) 0 0 3 5 √ 3 7 Apf ( 2 , 0 ) + 4 Apf ( 4 , 0 ) 3 √ 21 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) + 4 15 Aff ( 2 , 0 ) + 2 11 Aff ( 4 , 0 ) + 100 429 Aff ( 6 , 0 ) 0 0 0
f x ( 5 z 2 − r 2 ) 0 0 0 3 5 √ 2 7 Apf ( 2 , 0 ) − 1 3 √ 2 7 Apf ( 4 , 0 ) 5 33 √ 2 Bdf ( 5 , 3 ) − 1 3 √ 2 7 Bdf ( 3 , 3 ) 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) + 1 5 Aff ( 2 , 0 ) + 1 33 Aff ( 4 , 0 ) − 25 143 Aff ( 6 , 0 ) 0 0
f z ( x 2 − y 2 ) 0 0 0 0 0 1 3 √ 5 7 Bdf ( 3 , 3 ) + 4 33 √ 5 Bdf ( 5 , 3 ) 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 7 33 Aff ( 4 , 0 ) + 10 143 Aff ( 6 , 0 ) 0
f x ( x 2 − 3 y 2 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Aff ( 0 , 0 ) − 1 3 Aff ( 2 , 0 ) + 1 11 Aff ( 4 , 0 ) − 5 429 Aff ( 6 , 0 ) + 10 13 √ 7 33 Aff ( 6 , 6 )
Coupling for a single shell
Although the parameters A l ″ , l ′ ( k , m ) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A l ″ , l ′ ( k , m ) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l ″ and l ′ .
Click on one of the subsections to expand it or expand all
Potential for s orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{Ea1p, k == 0 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{0, 0, Ea1p} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Ea1p
ψ ( θ , ϕ ) = √ 1 1 1 2 √ π
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ π
Potential for p orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 3 ( Ea2pp + 2 Eep ) k = 0 ∧ m = 0 5 ( Ea2pp − Eep ) 3 k = 2 ∧ m = 0
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea2pp + 2*Eep)/3, k == 0 && m == 0}, {(5*(Ea2pp - Eep))/3, k == 2 && m == 0}}, 0]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{0, 0, (1/3)*(Ea2pp + (2)*(Eep))} ,
{2, 0, (5/3)*(Ea2pp + (-1)*(Eep))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1
Y ( 1 ) − 1 Eep 0 0
Y ( 1 ) 0 0 Ea2pp 0
Y ( 1 ) 1 0 0 Eep
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
p y p z p x
p y Eep 0 0
p z 0 Ea2pp 0
p x 0 0 Eep
Y ( 1 ) − 1 Y ( 1 ) 0 Y ( 1 ) 1
p y i √ 2 0 i √ 2
p z 0 1 0
p x 1 √ 2 0 − 1 √ 2
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Eep
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π sin ( θ ) sin ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π y
Ea2pp
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π cos ( θ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π z
Eep
ψ ( θ , ϕ ) = √ 1 1 1 2 √ 3 π sin ( θ ) cos ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 3 π x
Potential for d orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 5 ( Ea1p + 2 ( Eep + Eepp ) ) k = 0 ∧ m = 0 Ea1p − 2 Eep + Eepp k = 2 ∧ m = 0 0 k ≠ 4 ∨ m ≠ 0 3 5 ( 3 Ea1p + Eep − 4 Eepp ) True
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea1p + 2*(Eep + Eepp))/5, k == 0 && m == 0}, {Ea1p - 2*Eep + Eepp, k == 2 && m == 0}, {0, k != 4 || m != 0}}, (3*(3*Ea1p + Eep - 4*Eepp))/5]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{0, 0, (1/5)*(Ea1p + (2)*(Eep + Eepp))} ,
{2, 0, Ea1p + (-2)*(Eep) + Eepp} ,
{4, 0, (3/5)*((3)*(Ea1p) + Eep + (-4)*(Eepp))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2
Y ( 2 ) − 2 Eep 0 0 0 0
Y ( 2 ) − 1 0 Eepp 0 0 0
Y ( 2 ) 0 0 0 Ea1p 0 0
Y ( 2 ) 1 0 0 0 Eepp 0
Y ( 2 ) 2 0 0 0 0 Eep
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d xy d yz d 3 z 2 − r 2 d xz d x 2 − y 2
d xy Eep 0 0 0 0
d yz 0 Eepp 0 0 0
d 3 z 2 − r 2 0 0 Ea1p 0 0
d xz 0 0 0 Eepp 0
d x 2 − y 2 0 0 0 0 Eep
Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2
d xy i √ 2 0 0 0 − i √ 2
d yz 0 i √ 2 0 i √ 2 0
d 3 z 2 − r 2 0 0 1 0 0
d xz 0 1 √ 2 0 − 1 √ 2 0
d x 2 − y 2 1 √ 2 0 0 0 1 √ 2
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Eep
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin 2 ( θ ) sin ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π x y
Eepp
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin ( 2 θ ) sin ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π y z
Ea1p
ψ ( θ , ϕ ) = √ 1 1 1 8 √ 5 π ( 3 cos ( 2 θ ) + 1 )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 5 π ( 3 z 2 − 1 )
Eepp
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin ( 2 θ ) cos ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 15 π x z
Eep
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 15 π sin 2 ( θ ) cos ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 15 π ( x 2 − y 2 )
Potential for f orbitals
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A k , m = { 1 7 ( Ea1p + Ea2p + Ea2pp + 2 Eep + 2 Eepp ) k = 0 ∧ m = 0 − 5 28 ( 5 Ea1p + 5 Ea2p − 4 Ea2pp − 6 Eep ) k = 2 ∧ m = 0 0 ( k ≠ 6 ∧ ( k ≠ 4 ∨ m ≠ 0 ) ) ∨ ( m ≠ − 6 ∧ m ≠ 0 ∧ m ≠ 6 ) 3 14 ( 3 Ea1p + 3 Ea2p + 2 ( 3 Ea2pp + Eep − 7 Eepp ) ) k = 4 ∧ m = 0 − 13 20 √ 33 7 ( Ea1p − Ea2p ) k = 6 ∧ ( m = − 6 ∨ m = 6 ) − 13 140 ( Ea1p + Ea2p − 20 Ea2pp + 30 Eep − 12 Eepp ) True
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{(Ea1p + Ea2p + Ea2pp + 2*Eep + 2*Eepp)/7, k == 0 && m == 0}, {(-5*(5*Ea1p + 5*Ea2p - 4*Ea2pp - 6*Eep))/28, k == 2 && m == 0}, {0, (k != 6 && (k != 4 || m != 0)) || (m != -6 && m != 0 && m != 6)}, {(3*(3*Ea1p + 3*Ea2p + 2*(3*Ea2pp + Eep - 7*Eepp)))/14, k == 4 && m == 0}, {(-13*Sqrt[33/7]*(Ea1p - Ea2p))/20, k == 6 && (m == -6 || m == 6)}}, (-13*(Ea1p + Ea2p - 20*Ea2pp + 30*Eep - 12*Eepp))/140]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{0, 0, (1/7)*(Ea1p + Ea2p + Ea2pp + (2)*(Eep) + (2)*(Eepp))} ,
{2, 0, (-5/28)*((5)*(Ea1p) + (5)*(Ea2p) + (-4)*(Ea2pp) + (-6)*(Eep))} ,
{4, 0, (3/14)*((3)*(Ea1p) + (3)*(Ea2p) + (2)*((3)*(Ea2pp) + Eep + (-7)*(Eepp)))} ,
{6, 0, (-13/140)*(Ea1p + Ea2p + (-20)*(Ea2pp) + (30)*(Eep) + (-12)*(Eepp))} ,
{6,-6, (-13/20)*((sqrt(33/7))*(Ea1p + (-1)*(Ea2p)))} ,
{6, 6, (-13/20)*((sqrt(33/7))*(Ea1p + (-1)*(Ea2p)))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
Y ( 3 ) − 3 Ea1p + Ea2p 2 0 0 0 0 0 Ea1p − Ea2p 2
Y ( 3 ) − 2 0 Eepp 0 0 0 0 0
Y ( 3 ) − 1 0 0 Eep 0 0 0 0
Y ( 3 ) 0 0 0 0 Ea2pp 0 0 0
Y ( 3 ) 1 0 0 0 0 Eep 0 0
Y ( 3 ) 2 0 0 0 0 0 Eepp 0
Y ( 3 ) 3 Ea1p − Ea2p 2 0 0 0 0 0 Ea1p + Ea2p 2
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f y ( 3 x 2 − y 2 ) f xyz f y ( 5 z 2 − r 2 ) f z ( 5 z 2 − 3 r 2 ) f x ( 5 z 2 − r 2 ) f z ( x 2 − y 2 ) f x ( x 2 − 3 y 2 )
f y ( 3 x 2 − y 2 ) Ea1p 0 0 0 0 0 0
f xyz 0 Eepp 0 0 0 0 0
f y ( 5 z 2 − r 2 ) 0 0 Eep 0 0 0 0
f z ( 5 z 2 − 3 r 2 ) 0 0 0 Ea2pp 0 0 0
f x ( 5 z 2 − r 2 ) 0 0 0 0 Eep 0 0
f z ( x 2 − y 2 ) 0 0 0 0 0 Eepp 0
f x ( x 2 − 3 y 2 ) 0 0 0 0 0 0 Ea2p
Y ( 3 ) − 3 Y ( 3 ) − 2 Y ( 3 ) − 1 Y ( 3 ) 0 Y ( 3 ) 1 Y ( 3 ) 2 Y ( 3 ) 3
f y ( 3 x 2 − y 2 ) i √ 2 0 0 0 0 0 i √ 2
f xyz 0 i √ 2 0 0 0 − i √ 2 0
f y ( 5 z 2 − r 2 ) 0 0 i √ 2 0 i √ 2 0 0
f z ( 5 z 2 − 3 r 2 ) 0 0 0 1 0 0 0
f x ( 5 z 2 − r 2 ) 0 0 1 √ 2 0 − 1 √ 2 0 0
f z ( x 2 − y 2 ) 0 1 √ 2 0 0 0 1 √ 2 0
f x ( x 2 − 3 y 2 ) 1 √ 2 0 0 0 0 0 − 1 √ 2
Irriducible representations and their onsite energy
Irriducible representations and their onsite energy
Ea1p
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 35 2 π sin 3 ( θ ) sin ( 3 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 − 1 4 √ 35 2 π y ( y 2 − 3 x 2 )
Eepp
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 105 π sin 2 ( θ ) cos ( θ ) sin ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 2 √ 105 π x y z
Eep
ψ ( θ , ϕ ) = √ 1 1 1 8 √ 21 2 π sin ( θ ) ( 5 cos ( 2 θ ) + 3 ) sin ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 21 2 π y ( 5 z 2 − 1 )
Ea2pp
ψ ( θ , ϕ ) = √ 1 1 1 16 √ 7 π ( 3 cos ( θ ) + 5 cos ( 3 θ ) )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 7 π z ( 5 z 2 − 3 )
Eep
ψ ( θ , ϕ ) = √ 1 1 1 16 √ 21 2 π ( sin ( θ ) + 5 sin ( 3 θ ) ) cos ( ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 21 2 π x ( 5 z 2 − 1 )
Eepp
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 105 π sin 2 ( θ ) cos ( θ ) cos ( 2 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 105 π z ( x 2 − y 2 )
Ea2p
ψ ( θ , ϕ ) = √ 1 1 1 4 √ 35 2 π sin 3 ( θ ) cos ( 3 ϕ )
ψ ( ˆ x , ˆ y , ˆ z ) = √ 1 1 1 4 √ 35 2 π x ( x 2 − 3 y 2 )
Coupling between two shells
Click on one of the subsections to expand it or expand all
Potential for s-d orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{2, 0, A(2,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
Y ( 2 ) − 2 Y ( 2 ) − 1 Y ( 2 ) 0 Y ( 2 ) 1 Y ( 2 ) 2
Y ( 0 ) 0 0 0 A ( 2 , 0 ) √ 5 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d xy d yz d 3 z 2 − r 2 d xz d x 2 − y 2
s 0 0 \frac{A(2,0)}{\sqrt{5}} 0 0
Potential for s-f orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & k\neq 3\lor (m\neq -3\land m\neq 3) \\
i B(3,3) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -3 && m != 3)}}, I*B[3, 3]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{3,-3, (I)*(B(3,3))} ,
{3, 3, (I)*(B(3,3))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{0}^{(0)}} -\frac{i B(3,3)}{\sqrt{7}} 0 0 0 0 0 -\frac{i B(3,3)}{\sqrt{7}}
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f_{y\left(3x^2-y^2\right)} f_{\text{xyz}} f_{y\left(5z^2-r^2\right)} f_{z\left(5z^2-3r^2\right)} f_{x\left(5z^2-r^2\right)} f_{z\left(x^2-y^2\right)} f_{x\left(x^2-3y^2\right)}
\text{s} \sqrt{\frac{2}{7}} B(3,3) 0 0 0 0 0 0
Potential for p-d orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & k\neq 3\lor (m\neq -3\land m\neq 3) \\
i B(3,3) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -3 && m != 3)}}, I*B[3, 3]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{3,-3, (I)*(B(3,3))} ,
{3, 3, (I)*(B(3,3))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{-1}^{(1)}} 0 0 0 0 \frac{3}{7} i B(3,3)
{Y_{0}^{(1)}} 0 0 0 0 0
{Y_{1}^{(1)}} \frac{3}{7} i B(3,3) 0 0 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
d_{\text{xy}} d_{\text{yz}} d_{3z^2-r^2} d_{\text{xz}} d_{x^2-y^2}
p_y 0 0 0 0 \frac{3}{7} B(3,3)
p_z 0 0 0 0 0
p_x \frac{3}{7} B(3,3) 0 0 0 0
Potential for p-f orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\
A(2,0) & k=2\land m=0 \\
A(4,0) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, (k != 2 && k != 4) || m != 0}, {A[2, 0], k == 2 && m == 0}}, A[4, 0]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{2, 0, A(2,0)} ,
{4, 0, A(4,0)} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0 0 0
{Y_{0}^{(1)}} 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0
{Y_{1}^{(1)}} 0 0 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f_{y\left(3x^2-y^2\right)} f_{\text{xyz}} f_{y\left(5z^2-r^2\right)} f_{z\left(5z^2-3r^2\right)} f_{x\left(5z^2-r^2\right)} f_{z\left(x^2-y^2\right)} f_{x\left(x^2-3y^2\right)}
p_y 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0 0 0
p_z 0 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 0
p_x 0 0 0 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 0
Potential for d-f orbital mixing
Potential parameterized with onsite energies of irriducible representations
Potential parameterized with onsite energies of irriducible representations
A_{k,m} = \begin{cases}
0 & (k\neq 3\land k\neq 5)\lor (m\neq -3\land m\neq 3) \\
i B(3,3) & k=3\land (m=-3\lor m=3) \\
i B(5,3) & \text{True}
\end{cases}
Input format suitable for Mathematica (Quanty.nb)
Input format suitable for Mathematica (Quanty.nb)
Akm_D3h_Zy.Quanty.nb
Akm[k_,m_]:=Piecewise[{{0, (k != 3 && k != 5) || (m != -3 && m != 3)}, {I*B[3, 3], k == 3 && (m == -3 || m == 3)}}, I*B[5, 3]]
Input format suitable for Quanty
Input format suitable for Quanty
Akm_D3h_Zy.Quanty
Akm = {{3,-3, (I)*(B(3,3))} ,
{3, 3, (I)*(B(3,3))} ,
{5,-3, (I)*(B(5,3))} ,
{5, 3, (I)*(B(5,3))} }
The Hamiltonian on a basis of spherical Harmonics
The Hamiltonian on a basis of spherical Harmonics
{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-2}^{(2)}} 0 0 0 0 \frac{1}{231} i \sqrt{2} \left(11 \sqrt{7} B(3,3)-35 B(5,3)\right) 0 0
{Y_{-1}^{(2)}} 0 0 0 0 0 \frac{1}{231} i \sqrt{5} \left(11 \sqrt{7} B(3,3)+28 B(5,3)\right) 0
{Y_{0}^{(2)}} \frac{1}{231} i \sqrt{5} \left(11 \sqrt{7} B(3,3)-14 B(5,3)\right) 0 0 0 0 0 \frac{1}{231} i \sqrt{5} \left(11 \sqrt{7} B(3,3)-14 B(5,3)\right)
{Y_{1}^{(2)}} 0 \frac{1}{231} i \sqrt{5} \left(11 \sqrt{7} B(3,3)+28 B(5,3)\right) 0 0 0 0 0
{Y_{2}^{(2)}} 0 0 \frac{1}{231} i \sqrt{2} \left(11 \sqrt{7} B(3,3)-35 B(5,3)\right) 0 0 0 0
The Hamiltonian on a basis of symmetric functions
The Hamiltonian on a basis of symmetric functions
f_{y\left(3x^2-y^2\right)} f_{\text{xyz}} f_{y\left(5z^2-r^2\right)} f_{z\left(5z^2-3r^2\right)} f_{x\left(5z^2-r^2\right)} f_{z\left(x^2-y^2\right)} f_{x\left(x^2-3y^2\right)}
d_{\text{xy}} 0 0 0 0 \frac{5}{33} \sqrt{2} B(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} B(3,3) 0 0
d_{\text{yz}} 0 0 0 0 0 \frac{1}{3} \sqrt{\frac{5}{7}} B(3,3)+\frac{4}{33} \sqrt{5} B(5,3) 0
d_{3z^2-r^2} \frac{2}{33} \sqrt{10} B(5,3)-\frac{1}{3} \sqrt{\frac{10}{7}} B(3,3) 0 0 0 0 0 0
d_{\text{xz}} 0 \frac{1}{3} \sqrt{\frac{5}{7}} B(3,3)+\frac{4}{33} \sqrt{5} B(5,3) 0 0 0 0 0
d_{x^2-y^2} 0 0 \frac{5}{33} \sqrt{2} B(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} B(3,3) 0 0 0 0
Table of several point groups