+Table of Contents
This is an old revision of the document!
Orientation Z
Symmetry Operations
In the Cs Point Group, with orientation Z there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
σh | {0,0,1} , |
Different Settings
Character Table
E(1) | σh(1) | |
---|---|---|
A' | 1 | 1 |
A'' | 1 | −1 |
Product Table
A' | A'' | |
---|---|---|
A' | A' | A'' |
A'' | A'' | A' |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Cs Point group with orientation Z the form of the expansion coefficients is:
Input format suitable for Mathematica (Quanty.nb)
Ak,m={A(0,0)k=0∧m=0−A(1,1)+iAp(1,1)k=1∧m=−1A(1,1)+iAp(1,1)k=1∧m=1A(2,2)−iAp(2,2)k=2∧m=−2A(2,0)k=2∧m=0A(2,2)+iAp(2,2)k=2∧m=2−A(3,3)+iAp(3,3)k=3∧m=−3−A(3,1)+iAp(3,1)k=3∧m=−1A(3,1)+iAp(3,1)k=3∧m=1A(3,3)+iAp(3,3)k=3∧m=3A(4,4)−iAp(4,4)k=4∧m=−4A(4,2)−iAp(4,2)k=4∧m=−2A(4,0)k=4∧m=0A(4,2)+iAp(4,2)k=4∧m=2A(4,4)+iAp(4,4)k=4∧m=4−A(5,5)+iAp(5,5)k=5∧m=−5−A(5,3)+iAp(5,3)k=5∧m=−3−A(5,1)+iAp(5,1)k=5∧m=−1A(5,1)+iAp(5,1)k=5∧m=1A(5,3)+iAp(5,3)k=5∧m=3A(5,5)+iAp(5,5)k=5∧m=5A(6,6)−iAp(6,6)k=6∧m=−6A(6,4)−iAp(6,4)k=6∧m=−4A(6,2)−iAp(6,2)k=6∧m=−2A(6,0)k=6∧m=0A(6,2)+iAp(6,2)k=6∧m=2A(6,4)+iAp(6,4)k=6∧m=4A(6,6)+iAp(6,6)k=6∧m=6
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m)
we can express the operator as O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter.
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y(0)0 | Ass(0,0) | −Asp(1,1)+iBsp(1,1)√3 | 0 | −−Asp(1,1)+iBsp(1,1)√3 | Asd(2,2)+iBsd(2,2)√5 | 0 | Asd(2,0)√5 | 0 | Asd(2,2)−iBsd(2,2)√5 | −Asf(3,3)+iBsf(3,3)√7 | 0 | −Asf(3,1)+iBsf(3,1)√7 | 0 | −−Asf(3,1)+iBsf(3,1)√7 | 0 | −−Asf(3,3)+iBsf(3,3)√7 |
Y(1)−1 | −Asp(1,1)+iBsp(1,1)√3 | App(0,0)−15App(2,0) | 0 | −15√6(App(2,2)−iBpp(2,2)) | 17√35(Apd(3,1)+iBpd(3,1))−√25(Apd(1,1)+iBpd(1,1)) | 0 | 37√25(−Apd(3,1)+iBpd(3,1))−−Apd(1,1)+iBpd(1,1)√15 | 0 | 37(−Apd(3,3)+iBpd(3,3)) | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | 0 | −2(Apf(4,4)−iBpf(4,4))3√3 |
Y(1)0 | 0 | 0 | App(0,0)+25App(2,0) | 0 | 0 | −Apd(1,1)+iBpd(1,1)√5−27√65(Apd(3,1)+iBpd(3,1)) | 0 | −−Apd(1,1)+iBpd(1,1)√5−27√65(−Apd(3,1)+iBpd(3,1)) | 0 | 0 | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | 0 |
Y(1)1 | Asp(1,1)+iBsp(1,1)√3 | −15√6(App(2,2)+iBpp(2,2)) | 0 | App(0,0)−15App(2,0) | 37(Apd(3,3)+iBpd(3,3)) | 0 | 37√25(Apd(3,1)+iBpd(3,1))−Apd(1,1)+iBpd(1,1)√15 | 0 | 17√35(−Apd(3,1)+iBpd(3,1))−√25(−Apd(1,1)+iBpd(1,1)) | −2(Apf(4,4)+iBpf(4,4))3√3 | 0 | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 |
Y(2)−2 | Asd(2,2)−iBsd(2,2)√5 | √25(−Apd(1,1)+iBpd(1,1))−17√35(−Apd(3,1)+iBpd(3,1)) | 0 | −37(−Apd(3,3)+iBpd(3,3)) | Add(0,0)−27Add(2,0)+121Add(4,0) | 0 | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | 0 | 13√107(Add(4,4)−iBdd(4,4)) | −√37(Adf(1,1)+iBdf(1,1))+13√27(Adf(3,1)+iBdf(3,1))−133√57(Adf(5,1)+iBdf(5,1)) | 0 | −−Adf(1,1)+iBdf(1,1)√35+2√2105(−Adf(3,1)+iBdf(3,1))−5(−Adf(5,1)+iBdf(5,1))11√21 | 0 | 13√27(−Adf(3,3)+iBdf(3,3))−533√2(−Adf(5,3)+iBdf(5,3)) | 0 | −511√23(−Adf(5,5)+iBdf(5,5)) |
Y(2)−1 | 0 | 0 | −Apd(1,1)+iBpd(1,1)√5+27√65(−Apd(3,1)+iBpd(3,1)) | 0 | 0 | Add(0,0)+17Add(2,0)−421Add(4,0) | 0 | −17√6(Add(2,2)−iBdd(2,2))−221√10(Add(4,2)−iBdd(4,2)) | 0 | 0 | −√27(Adf(1,1)+iBdf(1,1))−Adf(3,1)+iBdf(3,1)√21+211√1021(Adf(5,1)+iBdf(5,1)) | 0 | −√335(−Adf(1,1)+iBdf(1,1))+13√235(−Adf(3,1)+iBdf(3,1))+20(−Adf(5,1)+iBdf(5,1))33√7 | 0 | 13√57(−Adf(3,3)+iBdf(3,3))+433√5(−Adf(5,3)+iBdf(5,3)) | 0 |
Y(2)0 | Asd(2,0)√5 | Apd(1,1)+iBpd(1,1)√15−37√25(Apd(3,1)+iBpd(3,1)) | 0 | −Apd(1,1)+iBpd(1,1)√15−37√25(−Apd(3,1)+iBpd(3,1)) | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 0 | Add(0,0)+27Add(2,0)+27Add(4,0) | 0 | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | 13√57(Adf(3,3)+iBdf(3,3))−233√5(Adf(5,3)+iBdf(5,3)) | 0 | −√635(Adf(1,1)+iBdf(1,1))−Adf(3,1)+iBdf(3,1)√35−511√27(Adf(5,1)+iBdf(5,1)) | 0 | −√635(−Adf(1,1)+iBdf(1,1))−−Adf(3,1)+iBdf(3,1)√35−511√27(−Adf(5,1)+iBdf(5,1)) | 0 | 13√57(−Adf(3,3)+iBdf(3,3))−233√5(−Adf(5,3)+iBdf(5,3)) |
Y(2)1 | 0 | 0 | Apd(1,1)+iBpd(1,1)√5+27√65(Apd(3,1)+iBpd(3,1)) | 0 | 0 | −17√6(Add(2,2)+iBdd(2,2))−221√10(Add(4,2)+iBdd(4,2)) | 0 | Add(0,0)+17Add(2,0)−421Add(4,0) | 0 | 0 | 13√57(Adf(3,3)+iBdf(3,3))+433√5(Adf(5,3)+iBdf(5,3)) | 0 | −√335(Adf(1,1)+iBdf(1,1))+13√235(Adf(3,1)+iBdf(3,1))+20(Adf(5,1)+iBdf(5,1))33√7 | 0 | −√27(−Adf(1,1)+iBdf(1,1))−−Adf(3,1)+iBdf(3,1)√21+211√1021(−Adf(5,1)+iBdf(5,1)) | 0 |
Y(2)2 | Asd(2,2)+iBsd(2,2)√5 | −37(Apd(3,3)+iBpd(3,3)) | 0 | √25(Apd(1,1)+iBpd(1,1))−17√35(Apd(3,1)+iBpd(3,1)) | 13√107(Add(4,4)+iBdd(4,4)) | 0 | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 0 | Add(0,0)−27Add(2,0)+121Add(4,0) | −511√23(Adf(5,5)+iBdf(5,5)) | 0 | 13√27(Adf(3,3)+iBdf(3,3))−533√2(Adf(5,3)+iBdf(5,3)) | 0 | −Adf(1,1)+iBdf(1,1)√35+2√2105(Adf(3,1)+iBdf(3,1))−5(Adf(5,1)+iBdf(5,1))11√21 | 0 | −√37(−Adf(1,1)+iBdf(1,1))+13√27(−Adf(3,1)+iBdf(3,1))−133√57(−Adf(5,1)+iBdf(5,1)) |
Y(3)−3 | −Asf(3,3)+iBsf(3,3)√7 | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 | 0 | −2(Apf(4,4)−iBpf(4,4))3√3 | √37(−Adf(1,1)+iBdf(1,1))−13√27(−Adf(3,1)+iBdf(3,1))+133√57(−Adf(5,1)+iBdf(5,1)) | 0 | 233√5(−Adf(5,3)+iBdf(5,3))−13√57(−Adf(3,3)+iBdf(3,3)) | 0 | 511√23(−Adf(5,5)+iBdf(5,5)) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | 0 | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) | 0 | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) | 0 | −1013√733(Aff(6,6)−iBff(6,6)) |
Y(3)−2 | 0 | 0 | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | 0 | 0 | √27(−Adf(1,1)+iBdf(1,1))+−Adf(3,1)+iBdf(3,1)√21−211√1021(−Adf(5,1)+iBdf(5,1)) | 0 | −13√57(−Adf(3,3)+iBdf(3,3))−433√5(−Adf(5,3)+iBdf(5,3)) | 0 | 0 | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 0 | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | 0 | 133√70(Aff(4,4)−iBff(4,4))+10143√14(Aff(6,4)−iBff(6,4)) | 0 |
Y(3)−1 | −Asf(3,1)+iBsf(3,1)√7 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | Adf(1,1)+iBdf(1,1)√35−2√2105(Adf(3,1)+iBdf(3,1))+5(Adf(5,1)+iBdf(5,1))11√21 | 0 | √635(−Adf(1,1)+iBdf(1,1))+−Adf(3,1)+iBdf(3,1)√35+511√27(−Adf(5,1)+iBdf(5,1)) | 0 | 533√2(−Adf(5,3)+iBdf(5,3))−13√27(−Adf(3,3)+iBdf(3,3)) | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 0 | −25√23(Aff(2,2)−iBff(2,2))−233√10(Aff(4,2)−iBff(4,2))−10143√353(Aff(6,2)−iBff(6,2)) | 0 | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) |
Y(3)0 | 0 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | 0 | √335(Adf(1,1)+iBdf(1,1))−13√235(Adf(3,1)+iBdf(3,1))−20(Adf(5,1)+iBdf(5,1))33√7 | 0 | √335(−Adf(1,1)+iBdf(1,1))−13√235(−Adf(3,1)+iBdf(3,1))−20(−Adf(5,1)+iBdf(5,1))33√7 | 0 | 0 | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | 0 | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | 0 |
Y(3)1 | Asf(3,1)+iBsf(3,1)√7 | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 533√2(Adf(5,3)+iBdf(5,3))−13√27(Adf(3,3)+iBdf(3,3)) | 0 | √635(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)√35+511√27(Adf(5,1)+iBdf(5,1)) | 0 | −Adf(1,1)+iBdf(1,1)√35−2√2105(−Adf(3,1)+iBdf(3,1))+5(−Adf(5,1)+iBdf(5,1))11√21 | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 0 | −25√23(Aff(2,2)+iBff(2,2))−233√10(Aff(4,2)+iBff(4,2))−10143√353(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 0 | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) |
Y(3)2 | 0 | 0 | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | 0 | 0 | −13√57(Adf(3,3)+iBdf(3,3))−433√5(Adf(5,3)+iBdf(5,3)) | 0 | √27(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)√21−211√1021(Adf(5,1)+iBdf(5,1)) | 0 | 0 | 133√70(Aff(4,4)+iBff(4,4))+10143√14(Aff(6,4)+iBff(6,4)) | 0 | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 0 |
Y(3)3 | Asf(3,3)+iBsf(3,3)√7 | −2(Apf(4,4)+iBpf(4,4))3√3 | 0 | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | 511√23(Adf(5,5)+iBdf(5,5)) | 0 | 233√5(Adf(5,3)+iBdf(5,3))−13√57(Adf(3,3)+iBdf(3,3)) | 0 | √37(Adf(1,1)+iBdf(1,1))−13√27(Adf(3,1)+iBdf(3,1))+133√57(Adf(5,1)+iBdf(5,1)) | −1013√733(Aff(6,6)+iBff(6,6)) | 0 | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 0 | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
px | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
py | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pz | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dx2−y2 | 0 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d3z2−r2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dyz | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxz | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxy | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fxyz | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 |
fx(5x2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √54 | 0 | −√34 | 0 | √34 | 0 | −√54 |
fy(5y2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√54 | 0 | −i√34 | 0 | −i√34 | 0 | −i√54 |
fx(5z2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
fx(y2−z2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −√34 | 0 | −√54 | 0 | √54 | 0 | √34 |
fy(z2−x2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√34 | 0 | i√54 | 0 | i√54 | 0 | −i√34 |
fz(x2−y2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 1√2 | 0 |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
s | px | py | pz | dx2−y2 | d3z2−r2 | dyz | dxz | dxy | fxyz | fx(5x2−r2) | fy(5y2−r2) | fx(5z2−r2) | fx(y2−z2) | fy(z2−x2) | fz(x2−y2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | Ass(0,0) | −√23Asp(1,1) | √23Bsp(1,1) | 0 | √25Asd(2,2) | Asd(2,0)√5 | 0 | 0 | −√25Bsd(2,2) | 0 | 12√37Asf(3,1)−12√57Asf(3,3) | −12√37Bsf(3,1)−12√57Bsf(3,3) | 0 | 12√57Asf(3,1)+12√37Asf(3,3) | 12√57Bsf(3,1)−12√37Bsf(3,3) | 0 |
px | −√23Asp(1,1) | App(0,0)−15App(2,0)+15√6App(2,2) | −15√6Bpp(2,2) | 0 | −√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3) | √215Apd(1,1)−6Apd(3,1)7√5 | 0 | 0 | √25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3) | 0 | −310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4) | 35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4) | 0 | −3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2 | √635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2 | 0 |
py | √23Bsp(1,1) | −15√6Bpp(2,2) | App(0,0)−15App(2,0)−15√6App(2,2) | 0 | −√25Bpd(1,1)+17√35Bpd(3,1)+37Bpd(3,3) | 6Bpd(3,1)7√5−√215Bpd(1,1) | 0 | 0 | −√25Apd(1,1)+17√35Apd(3,1)+37Apd(3,3) | 0 | 35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4) | −310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4) | 0 | −√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2 | 3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2 | 0 |
pz | 0 | 0 | 0 | App(0,0)+25App(2,0) | 0 | 0 | √25Bpd(1,1)+47√35Bpd(3,1) | −√25Apd(1,1)−47√35Apd(3,1) | 0 | −√635Bpf(2,2)−23√27Bpf(4,2) | 0 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | 0 | √635Apf(2,2)+23√27Apf(4,2) |
dx2−y2 | √25Asd(2,2) | −√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3) | −√25Bpd(1,1)+17√35Bpd(3,1)+37Bpd(3,3) | 0 | Add(0,0)−27Add(2,0)+121Add(4,0)+13√107Add(4,4) | 17√103Add(4,2)−27√2Add(2,2) | 0 | 0 | −13√107Bdd(4,4) | 0 | −3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5) | −3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5) | 0 | Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5) | −Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5) | 0 |
d3z2−r2 | Asd(2,0)√5 | √215Apd(1,1)−6Apd(3,1)7√5 | 6Bpd(3,1)7√5−√215Bpd(1,1) | 0 | 17√103Add(4,2)−27√2Add(2,2) | Add(0,0)+27Add(2,0)+27Add(4,0) | 0 | 0 | 27√2Bdd(2,2)−17√103Bdd(4,2) | 0 | 3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3) | −3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3) | 0 | √314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3) | √314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3) | 0 |
dyz | 0 | 0 | 0 | √25Bpd(1,1)+47√35Bpd(3,1) | 0 | 0 | Add(0,0)+17Add(2,0)−17√6Add(2,2)−421Add(4,0)−221√10Add(4,2) | −17√6Bdd(2,2)−221√10Bdd(4,2) | 0 | −√27Adf(1,1)−Adf(3,1)√21+13√57Adf(3,3)+211√1021Adf(5,1)+433√5Adf(5,3) | 0 | 0 | −√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1) | 0 | 0 | −√27Bdf(1,1)−Bdf(3,1)√21+13√57Bdf(3,3)+211√1021Bdf(5,1)+433√5Bdf(5,3) |
dxz | 0 | 0 | 0 | −√25Apd(1,1)−47√35Apd(3,1) | 0 | 0 | −17√6Bdd(2,2)−221√10Bdd(4,2) | Add(0,0)+17Add(2,0)+17√6Add(2,2)−421Add(4,0)+221√10Add(4,2) | 0 | √27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3) | 0 | 0 | √635Adf(1,1)−2Adf(3,1)3√35−2033√27Adf(5,1) | 0 | 0 | −√27Adf(1,1)−Adf(3,1)√21−13√57Adf(3,3)+211√1021Adf(5,1)−433√5Adf(5,3) |
dxy | −√25Bsd(2,2) | √25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3) | −√25Apd(1,1)+17√35Apd(3,1)+37Apd(3,3) | 0 | −13√107Bdd(4,4) | 27√2Bdd(2,2)−17√103Bdd(4,2) | 0 | 0 | Add(0,0)−27Add(2,0)+121Add(4,0)−13√107Add(4,4) | 0 | −√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5) | √635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5) | 0 | √27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5) | √27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5) | 0 |
fxyz | 0 | 0 | 0 | −√635Bpf(2,2)−23√27Bpf(4,2) | 0 | 0 | −√27Adf(1,1)−Adf(3,1)√21+13√57Adf(3,3)+211√1021Adf(5,1)+433√5Adf(5,3) | √27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3) | 0 | Aff(0,0)−733Aff(4,0)−133√70Aff(4,4)+10143Aff(6,0)−10143√14Aff(6,4) | 0 | 0 | 23√25Bff(2,2)+111√23Bff(4,2)−40429√7Bff(6,2) | 0 | 0 | −133√70Bff(4,4)−10143√14Bff(6,4) |
fx(5x2−r2) | 12√37Asf(3,1)−12√57Asf(3,3) | −310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4) | 35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4) | 0 | −3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5) | 3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3) | 0 | 0 | −√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5) | 0 | Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6) | Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6) | 0 | Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6) | Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6) | 0 |
fy(5y2−r2) | −12√37Bsf(3,1)−12√57Bsf(3,3) | 35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4) | −310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4) | 0 | −3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5) | −3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3) | 0 | 0 | √635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5) | 0 | Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6) | Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6) | 0 | −Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6) | −Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6) | 0 |
fx(5z2−r2) | 0 | 0 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | 0 | −√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1) | √635Adf(1,1)−2Adf(3,1)3√35−2033√27Adf(5,1) | 0 | 23√25Bff(2,2)+111√23Bff(4,2)−40429√7Bff(6,2) | 0 | 0 | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | 0 | 0 | −23√25Aff(2,2)−111√23Aff(4,2)+40429√7Aff(6,2) |
fx(y2−z2) | 12√57Asf(3,1)+12√37Asf(3,3) | −3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2 | −√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2 | 0 | Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5) | √314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3) | 0 | 0 | √27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5) | 0 | Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6) | −Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6) | 0 | Aff(0,0)+7132Aff(4,0)+733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)+5572√105Aff(6,2)+25286√72Aff(6,4)+552√2111Aff(6,6) | Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6) | 0 |
fy(z2−x2) | 12√57Bsf(3,1)−12√37Bsf(3,3) | √635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2 | 3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2 | 0 | −Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5) | √314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3) | 0 | 0 | √27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5) | 0 | Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6) | −Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6) | 0 | Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6) | Aff(0,0)+7132Aff(4,0)−733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)−5572√105Aff(6,2)+25286√72Aff(6,4)−552√2111Aff(6,6) | 0 |
fz(x2−y2) | 0 | 0 | 0 | √635Apf(2,2)+23√27Apf(4,2) | 0 | 0 | −√27Bdf(1,1)−Bdf(3,1)√21+13√57Bdf(3,3)+211√1021Bdf(5,1)+433√5Bdf(5,3) | −√27Adf(1,1)−Adf(3,1)√21−13√57Adf(3,3)+211√1021Adf(5,1)−433√5Adf(5,3) | 0 | −133√70Bff(4,4)−10143√14Bff(6,4) | 0 | 0 | −23√25Aff(2,2)−111√23Aff(4,2)+40429√7Aff(6,2) | 0 | 0 | Aff(0,0)−733Aff(4,0)+133√70Aff(4,4)+10143Aff(6,0)+10143√14Aff(6,4) |
Coupling for a single shell
Although the parameters Al″,l′(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters Al″,l′(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l″ and l′.
Potential for s orbitals
Input format suitable for Mathematica (Quanty.nb)
Ak,m={Eagk=0∧m=00True
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, Eag} }
The Hamiltonian on a basis of spherical Harmonics
Y(0)0 | |
---|---|
Y(0)0 | Eag |
The Hamiltonian on a basis of symmetric functions
s | |
---|---|
s | Eag |
Potential for p orbitals
Input format suitable for Mathematica (Quanty.nb)
Ak,m={13(Epxpx+Epypy+Epzpz)k=0∧m=05(Epxpx+2iEpypx−Epypy)2√6k=2∧m=−25(Epzpx+iEpypz)√6k=2∧m=−1−56(Epxpx+Epypy−2Epzpz)k=2∧m=05i(Epypz+iEpzpx)√6k=2∧m=15(Epxpx−2iEpypx−Epypy)2√6k=2∧m=2
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, (1/3)*(Epxpx + Epypy + Epzpz)} , {2, 0, (-5/6)*(Epxpx + Epypy + (-2)*(Epzpz))} , {2,-1, (5)*((1/(sqrt(6)))*((I)*(Epypz) + Epzpx))} , {2, 1, (5*I)*((1/(sqrt(6)))*(Epypz + (I)*(Epzpx)))} , {2, 2, (5/2)*((1/(sqrt(6)))*(Epxpx + (-2*I)*(Epypx) + (-1)*(Epypy)))} , {2,-2, (5/2)*((1/(sqrt(6)))*(Epxpx + (2*I)*(Epypx) + (-1)*(Epypy)))} }
The Hamiltonian on a basis of spherical Harmonics
Y(1)−1 | Y(1)0 | Y(1)1 | |
---|---|---|---|
Y(1)−1 | Epxpx+Epypy2 | Epzpx+iEpypz√2 | 12(−Epxpx−2iEpypx+Epypy) |
Y(1)0 | Epzpx−iEpypz√2 | Epzpz | −Epzpx+iEpypz√2 |
Y(1)1 | 12(−Epxpx+2iEpypx+Epypy) | i(Epypz+iEpzpx)√2 | Epxpx+Epypy2 |
The Hamiltonian on a basis of symmetric functions
px | py | pz | |
---|---|---|---|
px | Epxpx | Epypx | Epzpx |
py | Epypx | Epypy | Epypz |
pz | Epzpx | Epypz | Epzpz |
Potential for d orbitals
Input format suitable for Mathematica (Quanty.nb)
Ak,m={15(Edx2y2dx2y2+Edxydxy+Edxzdxz+Edyzdyz+Edz2dz2)k=0∧m=0−4iEdxydz2+√3Edxzdxz+2i√3Edyzdxz−√3Edyzdyz−4Edz2dx2y22√2k=2∧m=−2i√3Edxydxz+√3Edxydyz+√3Edxzdx2y2−i√3Edyzdx2y2+iEdyzdz2+Edz2dxz√2k=2∧m=−1−Edx2y2dx2y2−Edxydxy+Edxzdxz+Edyzdyz2+Edz2dz2k=2∧m=0i(√3Edxydxz+i√3Edxydyz+i√3Edxzdx2y2−√3Edyzdx2y2+Edyzdz2+iEdz2dxz)√2k=2∧m=14iEdxydz2+√3Edxzdxz−2i√3Edyzdxz−√3Edyzdyz−4Edz2dx2y22√2k=2∧m=232√710(Edx2y2dx2y2+2iEdxydx2y2−Edxydxy)k=4∧m=−432√75(iEdxydxz−Edxydyz+Edxzdx2y2+iEdyzdx2y2)k=4∧m=−33(i√3Edxydz2+Edxzdxz+2iEdyzdxz−Edyzdyz+√3Edz2dx2y2)√10k=4∧m=−23(−iEdxydxz−Edxydyz−Edxzdx2y2+iEdyzdx2y2+2i√3Edyzdz2+2√3Edz2dxz)2√5k=4∧m=−1310(Edx2y2dx2y2+Edxydxy−4(Edxzdxz+Edyzdyz)+6Edz2dz2)k=4∧m=03(−iEdxydxz+Edxydyz+Edxzdx2y2+iEdyzdx2y2+2i√3Edyzdz2−2√3Edz2dxz)2√5k=4∧m=13(−i√3Edxydz2+Edxzdxz−2iEdyzdxz−Edyzdyz+√3Edz2dx2y2)√10k=4∧m=232√75(iEdxydxz+Edxydyz−Edxzdx2y2+iEdyzdx2y2)k=4∧m=332√710(Edx2y2dx2y2−2iEdxydx2y2−Edxydxy)k=4∧m=4
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, (1/5)*(Edx2y2dx2y2 + Edxydxy + Edxzdxz + Edyzdyz + Edz2dz2)} , {2, 0, (-1)*(Edx2y2dx2y2) + (-1)*(Edxydxy) + (1/2)*(Edxzdxz + Edyzdyz) + Edz2dz2} , {2,-1, (1/(sqrt(2)))*((I)*((sqrt(3))*(Edxydxz)) + (sqrt(3))*(Edxydyz) + (sqrt(3))*(Edxzdx2y2) + (-I)*((sqrt(3))*(Edyzdx2y2)) + (I)*(Edyzdz2) + Edz2dxz)} , {2, 1, (I)*((1/(sqrt(2)))*((sqrt(3))*(Edxydxz) + (I)*((sqrt(3))*(Edxydyz)) + (I)*((sqrt(3))*(Edxzdx2y2)) + (-1)*((sqrt(3))*(Edyzdx2y2)) + Edyzdz2 + (I)*(Edz2dxz)))} , {2,-2, (1/2)*((1/(sqrt(2)))*((-4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} , {2, 2, (1/2)*((1/(sqrt(2)))*((4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (-2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} , {4, 0, (3/10)*(Edx2y2dx2y2 + Edxydxy + (-4)*(Edxzdxz + Edyzdyz) + (6)*(Edz2dz2))} , {4,-1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz) + (-1)*(Edxydyz) + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (2)*((sqrt(3))*(Edz2dxz))))} , {4, 1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz) + Edxydyz + Edxzdx2y2 + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (-2)*((sqrt(3))*(Edz2dxz))))} , {4, 2, (3)*((1/(sqrt(10)))*((-I)*((sqrt(3))*(Edxydz2)) + Edxzdxz + (-2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} , {4,-2, (3)*((1/(sqrt(10)))*((I)*((sqrt(3))*(Edxydz2)) + Edxzdxz + (2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} , {4,-3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + (-1)*(Edxydyz) + Edxzdx2y2 + (I)*(Edyzdx2y2)))} , {4, 3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + Edxydyz + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2)))} , {4, 4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (-2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} , {4,-4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} }
The Hamiltonian on a basis of spherical Harmonics
Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | |
---|---|---|---|---|---|
Y(2)−2 | Edx2y2dx2y2+Edxydxy2 | 12(iEdxydxz+Edxydyz+Edxzdx2y2−iEdyzdx2y2) | Edz2dx2y2+iEdxydz2√2 | −12i(Edxydxz+i(Edxydyz−Edxzdx2y2)+Edyzdx2y2) | 12(Edx2y2dx2y2+2iEdxydx2y2−Edxydxy) |
Y(2)−1 | 12(−iEdxydxz+Edxydyz+Edxzdx2y2+iEdyzdx2y2) | Edxzdxz+Edyzdyz2 | Edz2dxz+iEdyzdz2√2 | 12(−Edxzdxz−2iEdyzdxz+Edyzdyz) | 12i(Edxydxz+i(Edxydyz−Edxzdx2y2)+Edyzdx2y2) |
Y(2)0 | Edz2dx2y2−iEdxydz2√2 | Edz2dxz−iEdyzdz2√2 | Edz2dz2 | −Edz2dxz−iEdyzdz2√2 | Edz2dx2y2+iEdxydz2√2 |
Y(2)1 | 12i(Edxydxz−iEdxydyz+iEdxzdx2y2+Edyzdx2y2) | 12(−Edxzdxz+2iEdyzdxz+Edyzdyz) | i(Edyzdz2+iEdz2dxz)√2 | Edxzdxz+Edyzdyz2 | −12i(Edxydxz−i(Edxydyz+Edxzdx2y2)−Edyzdx2y2) |
Y(2)2 | 12(Edx2y2dx2y2−2iEdxydx2y2−Edxydxy) | −12i(Edxydxz−iEdxydyz+iEdxzdx2y2+Edyzdx2y2) | Edz2dx2y2−iEdxydz2√2 | 12i(Edxydxz+i(Edxydyz+Edxzdx2y2+iEdyzdx2y2)) | Edx2y2dx2y2+Edxydxy2 |
The Hamiltonian on a basis of symmetric functions
dx2−y2 | d3z2−r2 | dyz | dxz | dxy | |
---|---|---|---|---|---|
dx2−y2 | Edx2y2dx2y2 | Edz2dx2y2 | Edyzdx2y2 | Edxzdx2y2 | Edxydx2y2 |
d3z2−r2 | Edz2dx2y2 | Edz2dz2 | Edyzdz2 | Edz2dxz | Edxydz2 |
dyz | Edyzdx2y2 | Edyzdz2 | Edyzdyz | Edyzdxz | Edxydyz |
dxz | Edxzdx2y2 | Edz2dxz | Edyzdxz | Edxzdxz | Edxydxz |
dxy | Edxydx2y2 | Edxydz2 | Edxydyz | Edxydxz | Edxydxy |
Potential for f orbitals
Input format suitable for Mathematica (Quanty.nb)
Ak,m={A(0,0)k=0∧m=0−A(1,1)+iAp(1,1)k=1∧m=−1A(1,1)+iAp(1,1)k=1∧m=1A(2,2)−iAp(2,2)k=2∧m=−2A(2,0)k=2∧m=0A(2,2)+iAp(2,2)k=2∧m=2−A(3,3)+iAp(3,3)k=3∧m=−3−A(3,1)+iAp(3,1)k=3∧m=−1A(3,1)+iAp(3,1)k=3∧m=1A(3,3)+iAp(3,3)k=3∧m=3A(4,4)−iAp(4,4)k=4∧m=−4A(4,2)−iAp(4,2)k=4∧m=−2A(4,0)k=4∧m=0A(4,2)+iAp(4,2)k=4∧m=2A(4,4)+iAp(4,4)k=4∧m=4−A(5,5)+iAp(5,5)k=5∧m=−5−A(5,3)+iAp(5,3)k=5∧m=−3−A(5,1)+iAp(5,1)k=5∧m=−1A(5,1)+iAp(5,1)k=5∧m=1A(5,3)+iAp(5,3)k=5∧m=3A(5,5)+iAp(5,5)k=5∧m=5A(6,6)−iAp(6,6)k=6∧m=−6A(6,4)−iAp(6,4)k=6∧m=−4A(6,2)−iAp(6,2)k=6∧m=−2A(6,0)k=6∧m=0A(6,2)+iAp(6,2)k=6∧m=2A(6,4)+iAp(6,4)k=6∧m=4A(6,6)+iAp(6,6)k=6∧m=6
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
The Hamiltonian on a basis of spherical Harmonics
Y(3)−3 | Y(3)−2 | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|
{Y_{-3}^{(3)}} | A(0,0)-\frac{1}{3} A(2,0)+\frac{1}{11} A(4,0)-\frac{5}{429} A(6,0) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)-i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)-i \text{Ap}(6,2)) | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)-i \text{Ap}(6,4))\right) | 0 | -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)-i \text{Ap}(6,6)) |
{Y_{-2}^{(3)}} | 0 | A(0,0)-\frac{7}{33} A(4,0)+\frac{10}{143} A(6,0) | 0 | -\frac{2 (A(2,2)-i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)-i \text{Ap}(6,2)) | 0 | \frac{1}{429} \sqrt{14} \left(13 \sqrt{5} (A(4,4)-i \text{Ap}(4,4))+30 (A(6,4)-i \text{Ap}(6,4))\right) | 0 |
{Y_{-1}^{(3)}} | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)+i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)+i \text{Ap}(6,2)) | 0 | A(0,0)+\frac{1}{5} A(2,0)+\frac{1}{33} A(4,0)-\frac{25}{143} A(6,0) | 0 | \frac{2 \left(-143 \sqrt{6} (A(2,2)-i \text{Ap}(2,2))-65 \sqrt{10} (A(4,2)-i \text{Ap}(4,2))-25 \sqrt{105} (A(6,2)-i \text{Ap}(6,2))\right)}{2145} | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)-i \text{Ap}(6,4))\right) |
{Y_{0}^{(3)}} | 0 | -\frac{2 (A(2,2)+i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)+i \text{Ap}(6,2)) | 0 | A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) | 0 | -\frac{2 (A(2,2)-i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)-i \text{Ap}(6,2)) | 0 |
{Y_{1}^{(3)}} | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)+i \text{Ap}(6,4))\right) | 0 | \frac{2 \left(-143 \sqrt{6} (A(2,2)+i \text{Ap}(2,2))-65 \sqrt{10} (A(4,2)+i \text{Ap}(4,2))-25 \sqrt{105} (A(6,2)+i \text{Ap}(6,2))\right)}{2145} | 0 | A(0,0)+\frac{1}{5} A(2,0)+\frac{1}{33} A(4,0)-\frac{25}{143} A(6,0) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)-i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)-i \text{Ap}(6,2)) |
{Y_{2}^{(3)}} | 0 | \frac{1}{429} \sqrt{14} \left(13 \sqrt{5} (A(4,4)+i \text{Ap}(4,4))+30 (A(6,4)+i \text{Ap}(6,4))\right) | 0 | -\frac{2 (A(2,2)+i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)+i \text{Ap}(6,2)) | 0 | A(0,0)-\frac{7}{33} A(4,0)+\frac{10}{143} A(6,0) | 0 |
{Y_{3}^{(3)}} | -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)+i \text{Ap}(6,6)) | 0 | \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)+i \text{Ap}(6,4))\right) | 0 | -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)+i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)+i \text{Ap}(6,2)) | 0 | A(0,0)-\frac{1}{3} A(2,0)+\frac{1}{11} A(4,0)-\frac{5}{429} A(6,0) |
The Hamiltonian on a basis of symmetric functions
f_{\text{xyz}} | f_{x\left(5x^2-r^2\right)} | f_{y\left(5y^2-r^2\right)} | f_{x\left(5z^2-r^2\right)} | f_{x\left(y^2-z^2\right)} | f_{y\left(z^2-x^2\right)} | f_{z\left(x^2-y^2\right)} | |
---|---|---|---|---|---|---|---|
f_{\text{xyz}} | \frac{1}{429} \left(429 A(0,0)-91 A(4,0)-13 \sqrt{70} A(4,4)+30 A(6,0)-30 \sqrt{14} A(6,4)\right) | 0 | 0 | \frac{286 \sqrt{10} \text{Ap}(2,2)+65 \sqrt{6} \text{Ap}(4,2)-200 \sqrt{7} \text{Ap}(6,2)}{2145} | 0 | 0 | -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} \text{Ap}(4,4)+30 \text{Ap}(6,4)\right) |
f_{x\left(5x^2-r^2\right)} | 0 | \frac{8580 A(0,0)-1144 A(2,0)+1144 \sqrt{6} A(2,2)+585 A(4,0)-390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)+125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)+125 \sqrt{231} A(6,6)}{8580} | \frac{286 \sqrt{6} \text{Ap}(2,2)-780 \sqrt{10} \text{Ap}(4,2)-25 \sqrt{105} \text{Ap}(6,2)+125 \sqrt{231} \text{Ap}(6,6)}{8580} | 0 | \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} | \frac{286 \sqrt{10} \text{Ap}(2,2)+5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)-20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} | 0 |
f_{y\left(5y^2-r^2\right)} | 0 | \frac{286 \sqrt{6} \text{Ap}(2,2)-780 \sqrt{10} \text{Ap}(4,2)-25 \sqrt{105} \text{Ap}(6,2)+125 \sqrt{231} \text{Ap}(6,6)}{8580} | \frac{8580 A(0,0)-1144 A(2,0)-1144 \sqrt{6} A(2,2)+585 A(4,0)+390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)-125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)-125 \sqrt{231} A(6,6)}{8580} | 0 | \frac{-286 \sqrt{10} \text{Ap}(2,2)-5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(-52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)+20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} | \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} | 0 |
f_{x\left(5z^2-r^2\right)} | \frac{286 \sqrt{10} \text{Ap}(2,2)+65 \sqrt{6} \text{Ap}(4,2)-200 \sqrt{7} \text{Ap}(6,2)}{2145} | 0 | 0 | A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) | 0 | 0 | \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145} |
f_{x\left(y^2-z^2\right)} | 0 | \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} | \frac{-286 \sqrt{10} \text{Ap}(2,2)-5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(-52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)+20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} | 0 | \frac{1716 A(0,0)+91 A(4,0)+182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)+15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)+15 \sqrt{231} A(6,6)}{1716} | \frac{286 \sqrt{6} \text{Ap}(2,2)-52 \sqrt{10} \text{Ap}(4,2)+35 \sqrt{105} \text{Ap}(6,2)-15 \sqrt{231} \text{Ap}(6,6)}{1716} | 0 |
f_{y\left(z^2-x^2\right)} | 0 | \frac{286 \sqrt{10} \text{Ap}(2,2)+5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)-20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} | \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} | 0 | \frac{286 \sqrt{6} \text{Ap}(2,2)-52 \sqrt{10} \text{Ap}(4,2)+35 \sqrt{105} \text{Ap}(6,2)-15 \sqrt{231} \text{Ap}(6,6)}{1716} | \frac{1716 A(0,0)+91 A(4,0)-182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)-15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)-15 \sqrt{231} A(6,6)}{1716} | 0 |
f_{z\left(x^2-y^2\right)} | -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} \text{Ap}(4,4)+30 \text{Ap}(6,4)\right) | 0 | 0 | \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145} | 0 | 0 | \frac{1}{429} \left(429 A(0,0)-91 A(4,0)+13 \sqrt{70} A(4,4)+30 A(6,0)+30 \sqrt{14} A(6,4)\right) |
Coupling between two shells
Potential for s-p orbital mixing
Input format suitable for Mathematica (Quanty.nb)
A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
Potential for s-d orbital mixing
Input format suitable for Mathematica (Quanty.nb)
A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
Potential for s-f orbital mixing
Input format suitable for Mathematica (Quanty.nb)
A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
Potential for p-d orbital mixing
Input format suitable for Mathematica (Quanty.nb)
A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
Potential for p-f orbital mixing
Input format suitable for Mathematica (Quanty.nb)
A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
Potential for d-f orbital mixing
Input format suitable for Mathematica (Quanty.nb)
A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |