Processing math: 45%

This is an old revision of the document!


Orientation Z

Symmetry Operations

In the Cs Point Group, with orientation Z there are the following symmetry operations

Operator Orientation
E {0,0,0} ,
σh {0,0,1} ,

Different Settings

Character Table

E(1) σh(1)
A' 1 1
A'' 1 1

Product Table

A' A''
A' A' A''
A'' A'' A'

Sub Groups with compatible settings

Super Groups with compatible settings

Invariant Potential expanded on renormalized spherical Harmonics

Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=k=0km=kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Cs Point group with orientation Z the form of the expansion coefficients is:

Input format suitable for Mathematica (Quanty.nb)

Ak,m={A(0,0)k=0m=0A(1,1)+iAp(1,1)k=1m=1A(1,1)+iAp(1,1)k=1m=1A(2,2)iAp(2,2)k=2m=2A(2,0)k=2m=0A(2,2)+iAp(2,2)k=2m=2A(3,3)+iAp(3,3)k=3m=3A(3,1)+iAp(3,1)k=3m=1A(3,1)+iAp(3,1)k=3m=1A(3,3)+iAp(3,3)k=3m=3A(4,4)iAp(4,4)k=4m=4A(4,2)iAp(4,2)k=4m=2A(4,0)k=4m=0A(4,2)+iAp(4,2)k=4m=2A(4,4)+iAp(4,4)k=4m=4A(5,5)+iAp(5,5)k=5m=5A(5,3)+iAp(5,3)k=5m=3A(5,1)+iAp(5,1)k=5m=1A(5,1)+iAp(5,1)k=5m=1A(5,3)+iAp(5,3)k=5m=3A(5,5)+iAp(5,5)k=5m=5A(6,6)iAp(6,6)k=6m=6A(6,4)iAp(6,4)k=6m=4A(6,2)iAp(6,2)k=6m=2A(6,0)k=6m=0A(6,2)+iAp(6,2)k=6m=2A(6,4)+iAp(6,4)k=6m=4A(6,6)+iAp(6,6)k=6m=6

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

One particle coupling on a basis of spherical harmonics

The operator representing the potential in second quantisation is given as: O=n,l,m,n,l,mψn,l,m(r,θ,ϕ)|V(r,θ,ϕ)|ψn,l,m(r,θ,ϕ)an,l,man,l,m For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. Anl,nl(k,m)=Rn,l|Ak,m(r)|Rn,l Note the difference between the function Ak,m and the parameter Anl,nl(k,m)

we can express the operator as O=n,l,m,n,l,m,k,mAnl,nl(k,m)Y(m)l(θ,ϕ)|C(m)k(θ,ϕ)|Y(m)l(θ,ϕ)an,l,man,l,m

The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al,l(k,m) can be complex. Instead of allowing complex parameters we took Al,l(k,m)+IBl,l(k,m) (with both A and B real) as the expansion parameter.

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
Y(0)0Ass(0,0)Asp(1,1)+iBsp(1,1)30Asp(1,1)+iBsp(1,1)3Asd(2,2)+iBsd(2,2)50Asd(2,0)50Asd(2,2)iBsd(2,2)5Asf(3,3)+iBsf(3,3)70Asf(3,1)+iBsf(3,1)70Asf(3,1)+iBsf(3,1)70Asf(3,3)+iBsf(3,3)7
Y(1)1Asp(1,1)+iBsp(1,1)3App(0,0)15App(2,0)0156(App(2,2)iBpp(2,2))1735(Apd(3,1)+iBpd(3,1))25(Apd(1,1)+iBpd(1,1))03725(Apd(3,1)+iBpd(3,1))Apd(1,1)+iBpd(1,1)15037(Apd(3,3)+iBpd(3,3))3(Apf(2,2)+iBpf(2,2))35Apf(4,2)+iBpf(4,2)32103527Apf(2,0)1327Apf(4,0)01537(Apf(2,2)iBpf(2,2))1357(Apf(4,2)iBpf(4,2))02(Apf(4,4)iBpf(4,4))33
Y(1)000App(0,0)+25App(2,0)00Apd(1,1)+iBpd(1,1)52765(Apd(3,1)+iBpd(3,1))0Apd(1,1)+iBpd(1,1)52765(Apd(3,1)+iBpd(3,1))00335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3703537Apf(2,0)+4Apf(4,0)3210335(Apf(2,2)iBpf(2,2))+2(Apf(4,2)iBpf(4,2))370
Y(1)1Asp(1,1)+iBsp(1,1)3156(App(2,2)+iBpp(2,2))0App(0,0)15App(2,0)37(Apd(3,3)+iBpd(3,3))03725(Apd(3,1)+iBpd(3,1))Apd(1,1)+iBpd(1,1)1501735(Apd(3,1)+iBpd(3,1))25(Apd(1,1)+iBpd(1,1))2(Apf(4,4)+iBpf(4,4))3301537(Apf(2,2)+iBpf(2,2))1357(Apf(4,2)+iBpf(4,2))03527Apf(2,0)1327Apf(4,0)03(Apf(2,2)iBpf(2,2))35Apf(4,2)iBpf(4,2)321
Y(2)2Asd(2,2)iBsd(2,2)525(Apd(1,1)+iBpd(1,1))1735(Apd(3,1)+iBpd(3,1))037(Apd(3,3)+iBpd(3,3))Add(0,0)27Add(2,0)+121Add(4,0)01753(Add(4,2)iBdd(4,2))27(Add(2,2)iBdd(2,2))013107(Add(4,4)iBdd(4,4))37(Adf(1,1)+iBdf(1,1))+1327(Adf(3,1)+iBdf(3,1))13357(Adf(5,1)+iBdf(5,1))0Adf(1,1)+iBdf(1,1)35+22105(Adf(3,1)+iBdf(3,1))5(Adf(5,1)+iBdf(5,1))112101327(Adf(3,3)+iBdf(3,3))5332(Adf(5,3)+iBdf(5,3))051123(Adf(5,5)+iBdf(5,5))
Y(2)100Apd(1,1)+iBpd(1,1)5+2765(Apd(3,1)+iBpd(3,1))00Add(0,0)+17Add(2,0)421Add(4,0)0176(Add(2,2)iBdd(2,2))22110(Add(4,2)iBdd(4,2))0027(Adf(1,1)+iBdf(1,1))Adf(3,1)+iBdf(3,1)21+2111021(Adf(5,1)+iBdf(5,1))0335(Adf(1,1)+iBdf(1,1))+13235(Adf(3,1)+iBdf(3,1))+20(Adf(5,1)+iBdf(5,1))33701357(Adf(3,3)+iBdf(3,3))+4335(Adf(5,3)+iBdf(5,3))0
Y(2)0Asd(2,0)5Apd(1,1)+iBpd(1,1)153725(Apd(3,1)+iBpd(3,1))0Apd(1,1)+iBpd(1,1)153725(Apd(3,1)+iBpd(3,1))1753(Add(4,2)+iBdd(4,2))27(Add(2,2)+iBdd(2,2))0Add(0,0)+27Add(2,0)+27Add(4,0)01753(Add(4,2)iBdd(4,2))27(Add(2,2)iBdd(2,2))1357(Adf(3,3)+iBdf(3,3))2335(Adf(5,3)+iBdf(5,3))0635(Adf(1,1)+iBdf(1,1))Adf(3,1)+iBdf(3,1)3551127(Adf(5,1)+iBdf(5,1))0635(Adf(1,1)+iBdf(1,1))Adf(3,1)+iBdf(3,1)3551127(Adf(5,1)+iBdf(5,1))01357(Adf(3,3)+iBdf(3,3))2335(Adf(5,3)+iBdf(5,3))
Y(2)100Apd(1,1)+iBpd(1,1)5+2765(Apd(3,1)+iBpd(3,1))00176(Add(2,2)+iBdd(2,2))22110(Add(4,2)+iBdd(4,2))0Add(0,0)+17Add(2,0)421Add(4,0)001357(Adf(3,3)+iBdf(3,3))+4335(Adf(5,3)+iBdf(5,3))0335(Adf(1,1)+iBdf(1,1))+13235(Adf(3,1)+iBdf(3,1))+20(Adf(5,1)+iBdf(5,1))337027(Adf(1,1)+iBdf(1,1))Adf(3,1)+iBdf(3,1)21+2111021(Adf(5,1)+iBdf(5,1))0
Y(2)2Asd(2,2)+iBsd(2,2)537(Apd(3,3)+iBpd(3,3))025(Apd(1,1)+iBpd(1,1))1735(Apd(3,1)+iBpd(3,1))13107(Add(4,4)+iBdd(4,4))01753(Add(4,2)+iBdd(4,2))27(Add(2,2)+iBdd(2,2))0Add(0,0)27Add(2,0)+121Add(4,0)51123(Adf(5,5)+iBdf(5,5))01327(Adf(3,3)+iBdf(3,3))5332(Adf(5,3)+iBdf(5,3))0Adf(1,1)+iBdf(1,1)35+22105(Adf(3,1)+iBdf(3,1))5(Adf(5,1)+iBdf(5,1))1121037(Adf(1,1)+iBdf(1,1))+1327(Adf(3,1)+iBdf(3,1))13357(Adf(5,1)+iBdf(5,1))
Y(3)3Asf(3,3)+iBsf(3,3)73(Apf(2,2)iBpf(2,2))35Apf(4,2)iBpf(4,2)32102(Apf(4,4)iBpf(4,4))3337(Adf(1,1)+iBdf(1,1))1327(Adf(3,1)+iBdf(3,1))+13357(Adf(5,1)+iBdf(5,1))02335(Adf(5,3)+iBdf(5,3))1357(Adf(3,3)+iBdf(3,3))051123(Adf(5,5)+iBdf(5,5))Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)01325(Aff(2,2)iBff(2,2))+1116(Aff(4,2)iBff(4,2))104297(Aff(6,2)iBff(6,2))0111143(Aff(4,4)iBff(4,4))5143703(Aff(6,4)iBff(6,4))01013733(Aff(6,6)iBff(6,6))
Y(3)200335(Apf(2,2)iBpf(2,2))+2(Apf(4,2)iBpf(4,2))370027(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)212111021(Adf(5,1)+iBdf(5,1))01357(Adf(3,3)+iBdf(3,3))4335(Adf(5,3)+iBdf(5,3))00Aff(0,0)733Aff(4,0)+10143Aff(6,0)02(Aff(2,2)iBff(2,2))35Aff(4,2)iBff(4,2)113+2042914(Aff(6,2)iBff(6,2))013370(Aff(4,4)iBff(4,4))+1014314(Aff(6,4)iBff(6,4))0
Y(3)1Asf(3,1)+iBsf(3,1)73527Apf(2,0)1327Apf(4,0)01537(Apf(2,2)iBpf(2,2))1357(Apf(4,2)iBpf(4,2))Adf(1,1)+iBdf(1,1)3522105(Adf(3,1)+iBdf(3,1))+5(Adf(5,1)+iBdf(5,1))11210635(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)35+51127(Adf(5,1)+iBdf(5,1))05332(Adf(5,3)+iBdf(5,3))1327(Adf(3,3)+iBdf(3,3))1325(Aff(2,2)+iBff(2,2))+1116(Aff(4,2)+iBff(4,2))104297(Aff(6,2)+iBff(6,2))0Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)02523(Aff(2,2)iBff(2,2))23310(Aff(4,2)iBff(4,2))10143353(Aff(6,2)iBff(6,2))0111143(Aff(4,4)iBff(4,4))5143703(Aff(6,4)iBff(6,4))
Y(3)0003537Apf(2,0)+4Apf(4,0)32100335(Adf(1,1)+iBdf(1,1))13235(Adf(3,1)+iBdf(3,1))20(Adf(5,1)+iBdf(5,1))3370335(Adf(1,1)+iBdf(1,1))13235(Adf(3,1)+iBdf(3,1))20(Adf(5,1)+iBdf(5,1))337002(Aff(2,2)+iBff(2,2))35Aff(4,2)+iBff(4,2)113+2042914(Aff(6,2)+iBff(6,2))0Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)02(Aff(2,2)iBff(2,2))35Aff(4,2)iBff(4,2)113+2042914(Aff(6,2)iBff(6,2))0
Y(3)1Asf(3,1)+iBsf(3,1)71537(Apf(2,2)+iBpf(2,2))1357(Apf(4,2)+iBpf(4,2))03527Apf(2,0)1327Apf(4,0)5332(Adf(5,3)+iBdf(5,3))1327(Adf(3,3)+iBdf(3,3))0635(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)35+51127(Adf(5,1)+iBdf(5,1))0Adf(1,1)+iBdf(1,1)3522105(Adf(3,1)+iBdf(3,1))+5(Adf(5,1)+iBdf(5,1))1121111143(Aff(4,4)+iBff(4,4))5143703(Aff(6,4)+iBff(6,4))02523(Aff(2,2)+iBff(2,2))23310(Aff(4,2)+iBff(4,2))10143353(Aff(6,2)+iBff(6,2))0Aff(0,0)+15Aff(2,0)+133Aff(4,0)25143Aff(6,0)01325(Aff(2,2)iBff(2,2))+1116(Aff(4,2)iBff(4,2))104297(Aff(6,2)iBff(6,2))
Y(3)200335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))37001357(Adf(3,3)+iBdf(3,3))4335(Adf(5,3)+iBdf(5,3))027(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)212111021(Adf(5,1)+iBdf(5,1))0013370(Aff(4,4)+iBff(4,4))+1014314(Aff(6,4)+iBff(6,4))02(Aff(2,2)+iBff(2,2))35Aff(4,2)+iBff(4,2)113+2042914(Aff(6,2)+iBff(6,2))0Aff(0,0)733Aff(4,0)+10143Aff(6,0)0
Y(3)3Asf(3,3)+iBsf(3,3)72(Apf(4,4)+iBpf(4,4))3303(Apf(2,2)+iBpf(2,2))35Apf(4,2)+iBpf(4,2)32151123(Adf(5,5)+iBdf(5,5))02335(Adf(5,3)+iBdf(5,3))1357(Adf(3,3)+iBdf(3,3))037(Adf(1,1)+iBdf(1,1))1327(Adf(3,1)+iBdf(3,1))+13357(Adf(5,1)+iBdf(5,1))1013733(Aff(6,6)+iBff(6,6))0111143(Aff(4,4)+iBff(4,4))5143703(Aff(6,4)+iBff(6,4))01325(Aff(2,2)+iBff(2,2))+1116(Aff(4,2)+iBff(4,2))104297(Aff(6,2)+iBff(6,2))0Aff(0,0)13Aff(2,0)+111Aff(4,0)5429Aff(6,0)

Rotation matrix to symmetry adapted functions (choice is not unique)

Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field

Y(0)0 Y(1)1 Y(1)0 Y(1)1 Y(2)2 Y(2)1 Y(2)0 Y(2)1 Y(2)2 Y(3)3 Y(3)2 Y(3)1 Y(3)0 Y(3)1 Y(3)2 Y(3)3
s1000000000000000
px012012000000000000
py0i20i2000000000000
pz0010000000000000
dx2y2000012000120000000
d3z2r20000001000000000
dyz00000i20i200000000
dxz000001201200000000
dxy0000i2000i20000000
fxyz0000000000i2000i20
fx(5x2r2)00000000054034034054
fy(5y2r2)000000000i540i340i340i54
fx(5z2r2)0000000000001000
fx(y2z2)00000000034054054034
fy(z2x2)000000000i340i540i540i34
fz(x2y2)000000000012000120

One particle coupling on a basis of symmetry adapted functions

After rotation we find

s px py pz dx2y2 d3z2r2 dyz dxz dxy fxyz fx(5x2r2) fy(5y2r2) fx(5z2r2) fx(y2z2) fy(z2x2) fz(x2y2)
sAss(0,0)23Asp(1,1)23Bsp(1,1)025Asd(2,2)Asd(2,0)50025Bsd(2,2)01237Asf(3,1)1257Asf(3,3)1237Bsf(3,1)1257Bsf(3,3)01257Asf(3,1)+1237Asf(3,3)1257Bsf(3,1)1237Bsf(3,3)0
px23Asp(1,1)App(0,0)15App(2,0)+156App(2,2)156Bpp(2,2)025Apd(1,1)+1735Apd(3,1)37Apd(3,3)215Apd(1,1)6Apd(3,1)750025Bpd(1,1)1735Bpd(3,1)+37Bpd(3,3)031037Apf(2,0)+9Apf(2,2)514+Apf(4,0)221131021Apf(4,2)+1356Apf(4,4) \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) 0 -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} \sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} 0
p_y \color{darkred}{ \sqrt{\frac{2}{3}} \text{Bsp}(1,1) } -\frac{1}{5} \sqrt{6} \text{Bpp}(2,2) \text{App}(0,0)-\frac{1}{5} \text{App}(2,0)-\frac{1}{5} \sqrt{6} \text{App}(2,2) 0 \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Bpd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Bpd}(3,1)+\frac{3}{7} \text{Bpd}(3,3) }\color{darkred}{ \frac{6 \text{Bpd}(3,1)}{7 \sqrt{5}}-\sqrt{\frac{2}{15}} \text{Bpd}(1,1) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{7} \text{Apd}(3,3) } 0 \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)-\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)-\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) 0 -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)+\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} 0
p_z \color{darkred}{ 0 } 0 0 \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) \color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{2}{5}} \text{Bpd}(1,1)+\frac{4}{7} \sqrt{\frac{3}{5}} \text{Bpd}(3,1) }\color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{4}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1) }\color{darkred}{ 0 } -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} \text{Bpf}(4,2) 0 0 \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} 0 0 \sqrt{\frac{6}{35}} \text{Apf}(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)
d_{x^2-y^2} \sqrt{\frac{2}{5}} \text{Asd}(2,2) \color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1)-\frac{3}{7} \text{Apd}(3,3) }\color{darkred}{ -\sqrt{\frac{2}{5}} \text{Bpd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Bpd}(3,1)+\frac{3}{7} \text{Bpd}(3,3) }\color{darkred}{ 0 } \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)+\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) \frac{1}{7} \sqrt{\frac{10}{3}} \text{Add}(4,2)-\frac{2}{7} \sqrt{2} \text{Add}(2,2) 0 0 -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) \color{darkred}{ 0 }\color{darkred}{ -3 \sqrt{\frac{3}{70}} \text{Adf}(1,1)+\frac{11 \text{Adf}(3,1)}{6 \sqrt{35}}-\frac{\text{Adf}(3,3)}{2 \sqrt{21}}-\frac{5}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1)+\frac{5 \text{Adf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Adf}(5,5) }\color{darkred}{ -3 \sqrt{\frac{3}{70}} \text{Bdf}(1,1)+\frac{11 \text{Bdf}(3,1)}{6 \sqrt{35}}+\frac{\text{Bdf}(3,3)}{2 \sqrt{21}}-\frac{5}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1)-\frac{5 \text{Bdf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Bdf}(5,5) }\color{darkred}{ 0 }\color{darkred}{ \frac{\text{Adf}(1,1)}{\sqrt{14}}+\frac{\text{Adf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{1}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)+\frac{5}{22} \text{Adf}(5,5) }\color{darkred}{ -\frac{\text{Bdf}(1,1)}{\sqrt{14}}-\frac{\text{Bdf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) }\color{darkred}{ 0 }
d_{3z^2-r^2} \frac{\text{Asd}(2,0)}{\sqrt{5}} \color{darkred}{ \sqrt{\frac{2}{15}} \text{Apd}(1,1)-\frac{6 \text{Apd}(3,1)}{7 \sqrt{5}} }\color{darkred}{ \frac{6 \text{Bpd}(3,1)}{7 \sqrt{5}}-\sqrt{\frac{2}{15}} \text{Bpd}(1,1) }\color{darkred}{ 0 } \frac{1}{7} \sqrt{\frac{10}{3}} \text{Add}(4,2)-\frac{2}{7} \sqrt{2} \text{Add}(2,2) \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) 0 0 \frac{2}{7} \sqrt{2} \text{Bdd}(2,2)-\frac{1}{7} \sqrt{\frac{10}{3}} \text{Bdd}(4,2) \color{darkred}{ 0 }\color{darkred}{ \frac{3 \text{Adf}(1,1)}{\sqrt{70}}+\frac{1}{2} \sqrt{\frac{3}{35}} \text{Adf}(3,1)+\frac{5 \text{Adf}(3,3)}{6 \sqrt{7}}+\frac{5}{11} \sqrt{\frac{3}{14}} \text{Adf}(5,1)-\frac{5}{33} \text{Adf}(5,3) }\color{darkred}{ -\frac{3 \text{Bdf}(1,1)}{\sqrt{70}}-\frac{1}{2} \sqrt{\frac{3}{35}} \text{Bdf}(3,1)+\frac{5 \text{Bdf}(3,3)}{6 \sqrt{7}}-\frac{5}{11} \sqrt{\frac{3}{14}} \text{Bdf}(5,1)-\frac{5}{33} \text{Bdf}(5,3) }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{3}{14}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{2 \sqrt{7}}-\frac{1}{2} \sqrt{\frac{5}{21}} \text{Adf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Adf}(5,1)+\frac{1}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,3) }\color{darkred}{ \sqrt{\frac{3}{14}} \text{Bdf}(1,1)+\frac{\text{Bdf}(3,1)}{2 \sqrt{7}}+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bdf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Bdf}(5,1)-\frac{1}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,3) }\color{darkred}{ 0 }
d_{\text{yz}} 0 \color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{2}{5}} \text{Bpd}(1,1)+\frac{4}{7} \sqrt{\frac{3}{5}} \text{Bpd}(3,1) } 0 0 \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)-\frac{2}{21} \sqrt{10} \text{Add}(4,2) -\frac{1}{7} \sqrt{6} \text{Bdd}(2,2)-\frac{2}{21} \sqrt{10} \text{Bdd}(4,2) 0 \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) }
d_{\text{xz}} 0 \color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)-\frac{4}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1) } 0 0 -\frac{1}{7} \sqrt{6} \text{Bdd}(2,2)-\frac{2}{21} \sqrt{10} \text{Bdd}(4,2) \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,2)-\frac{4}{21} \text{Add}(4,0)+\frac{2}{21} \sqrt{10} \text{Add}(4,2) 0 \color{darkred}{ \sqrt{\frac{2}{7}} \text{Bdf}(1,1)+\frac{\text{Bdf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)-\frac{2}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }
d_{\text{xy}} -\sqrt{\frac{2}{5}} \text{Bsd}(2,2) \color{darkred}{ \sqrt{\frac{2}{5}} \text{Bpd}(1,1)-\frac{1}{7} \sqrt{\frac{3}{5}} \text{Bpd}(3,1)+\frac{3}{7} \text{Bpd}(3,3) }\color{darkred}{ -\sqrt{\frac{2}{5}} \text{Apd}(1,1)+\frac{1}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,1)+\frac{3}{7} \text{Apd}(3,3) }\color{darkred}{ 0 } -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) \frac{2}{7} \sqrt{2} \text{Bdd}(2,2)-\frac{1}{7} \sqrt{\frac{10}{3}} \text{Bdd}(4,2) 0 0 \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) \color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{6 \sqrt{35}}+\frac{\text{Bdf}(3,3)}{2 \sqrt{21}}+\frac{5 \text{Bdf}(5,1)}{33 \sqrt{14}}-\frac{5 \text{Bdf}(5,3)}{22 \sqrt{3}}+\frac{5}{22} \sqrt{\frac{5}{3}} \text{Bdf}(5,5) }\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{6 \sqrt{35}}+\frac{\text{Adf}(3,3)}{2 \sqrt{21}}-\frac{5 \text{Adf}(5,1)}{33 \sqrt{14}}-\frac{5 \text{Adf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Adf}(5,5) }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bdf}(3,1)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Bdf}(5,1)-\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) }\color{darkred}{ \sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)-\frac{5}{22} \text{Adf}(5,5) }\color{darkred}{ 0 }
f_{\text{xyz}} \color{darkred}{ 0 } 0 0 -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} \text{Bpf}(4,2) \color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }\color{darkred}{ \sqrt{\frac{2}{7}} \text{Bdf}(1,1)+\frac{\text{Bdf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)-\frac{2}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) }\color{darkred}{ 0 } \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)-\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)-\frac{10}{143} \sqrt{14} \text{Aff}(6,4) 0 0 \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) 0 0 -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4)
f_{x\left(5x^2-r^2\right)} \color{darkred}{ \frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,1)-\frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,3) } -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}-\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)-\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) 0 \color{darkred}{ -3 \sqrt{\frac{3}{70}} \text{Adf}(1,1)+\frac{11 \text{Adf}(3,1)}{6 \sqrt{35}}-\frac{\text{Adf}(3,3)}{2 \sqrt{21}}-\frac{5}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1)+\frac{5 \text{Adf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Adf}(5,5) }\color{darkred}{ \frac{3 \text{Adf}(1,1)}{\sqrt{70}}+\frac{1}{2} \sqrt{\frac{3}{35}} \text{Adf}(3,1)+\frac{5 \text{Adf}(3,3)}{6 \sqrt{7}}+\frac{5}{11} \sqrt{\frac{3}{14}} \text{Adf}(5,1)-\frac{5}{33} \text{Adf}(5,3) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{6 \sqrt{35}}+\frac{\text{Bdf}(3,3)}{2 \sqrt{21}}+\frac{5 \text{Bdf}(5,1)}{33 \sqrt{14}}-\frac{5 \text{Bdf}(5,3)}{22 \sqrt{3}}+\frac{5}{22} \sqrt{\frac{5}{3}} \text{Bdf}(5,5) } 0 \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)+\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)-\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}+\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) \frac{\text{Bff}(2,2)}{5 \sqrt{6}}-\frac{1}{11} \sqrt{10} \text{Bff}(4,2)-\frac{5}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Bff}(6,6) 0 \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) 0
f_{y\left(5y^2-r^2\right)} \color{darkred}{ -\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bsf}(3,1)-\frac{1}{2} \sqrt{\frac{5}{7}} \text{Bsf}(3,3) } \frac{3}{5} \sqrt{\frac{2}{7}} \text{Bpf}(2,2)+\frac{1}{3} \sqrt{\frac{5}{42}} \text{Bpf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Bpf}(4,4) -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2,0)-\frac{9 \text{Apf}(2,2)}{5 \sqrt{14}}+\frac{\text{Apf}(4,0)}{2 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,2)+\frac{1}{3} \sqrt{\frac{5}{6}} \text{Apf}(4,4) 0 \color{darkred}{ -3 \sqrt{\frac{3}{70}} \text{Bdf}(1,1)+\frac{11 \text{Bdf}(3,1)}{6 \sqrt{35}}+\frac{\text{Bdf}(3,3)}{2 \sqrt{21}}-\frac{5}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1)-\frac{5 \text{Bdf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Bdf}(5,5) }\color{darkred}{ -\frac{3 \text{Bdf}(1,1)}{\sqrt{70}}-\frac{1}{2} \sqrt{\frac{3}{35}} \text{Bdf}(3,1)+\frac{5 \text{Bdf}(3,3)}{6 \sqrt{7}}-\frac{5}{11} \sqrt{\frac{3}{14}} \text{Bdf}(5,1)-\frac{5}{33} \text{Bdf}(5,3) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{6 \sqrt{35}}+\frac{\text{Adf}(3,3)}{2 \sqrt{21}}-\frac{5 \text{Adf}(5,1)}{33 \sqrt{14}}-\frac{5 \text{Adf}(5,3)}{22 \sqrt{3}}-\frac{5}{22} \sqrt{\frac{5}{3}} \text{Adf}(5,5) } 0 \frac{\text{Bff}(2,2)}{5 \sqrt{6}}-\frac{1}{11} \sqrt{10} \text{Bff}(4,2)-\frac{5}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)+\frac{25}{52} \sqrt{\frac{7}{33}} \text{Bff}(6,6) \text{Aff}(0,0)-\frac{2}{15} \text{Aff}(2,0)-\frac{2}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,2)+\frac{3}{44} \text{Aff}(4,0)+\frac{1}{11} \sqrt{\frac{5}{2}} \text{Aff}(4,2)+\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{125 \text{Aff}(6,0)}{1716}-\frac{25}{572} \sqrt{\frac{35}{3}} \text{Aff}(6,2)-\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{25}{52} \sqrt{\frac{7}{33}} \text{Aff}(6,6) 0 -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) 0
f_{x\left(5z^2-r^2\right)} \color{darkred}{ 0 } 0 0 \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} \color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{6}{35}} \text{Bdf}(1,1)+\frac{2 \text{Bdf}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Bdf}(5,1) }\color{darkred}{ \sqrt{\frac{6}{35}} \text{Adf}(1,1)-\frac{2 \text{Adf}(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} \text{Adf}(5,1) }\color{darkred}{ 0 } \frac{2}{3} \sqrt{\frac{2}{5}} \text{Bff}(2,2)+\frac{1}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)-\frac{40}{429} \sqrt{7} \text{Bff}(6,2) 0 0 \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) 0 0 -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2)
f_{x\left(y^2-z^2\right)} \color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Asf}(3,1)+\frac{1}{2} \sqrt{\frac{3}{7}} \text{Asf}(3,3) } -\frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)-\frac{\text{Apf}(4,4)}{3 \sqrt{2}} -\sqrt{\frac{6}{35}} \text{Bpf}(2,2)+\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} 0 \color{darkred}{ \frac{\text{Adf}(1,1)}{\sqrt{14}}+\frac{\text{Adf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{1}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)+\frac{5}{22} \text{Adf}(5,5) }\color{darkred}{ \sqrt{\frac{3}{14}} \text{Adf}(1,1)+\frac{\text{Adf}(3,1)}{2 \sqrt{7}}-\frac{1}{2} \sqrt{\frac{5}{21}} \text{Adf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Adf}(5,1)+\frac{1}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,3) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bdf}(3,1)+\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Bdf}(5,1)-\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) } 0 \frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}+\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)-\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}-\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) -\frac{\text{Bff}(2,2)}{3 \sqrt{10}}-\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) 0 \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)+\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)+\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)+\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) 0
f_{y\left(z^2-x^2\right)} \color{darkred}{ \frac{1}{2} \sqrt{\frac{5}{7}} \text{Bsf}(3,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Bsf}(3,3) } \sqrt{\frac{6}{35}} \text{Bpf}(2,2)-\frac{\text{Bpf}(4,2)}{\sqrt{14}}+\frac{\text{Bpf}(4,4)}{3 \sqrt{2}} \frac{3 \text{Apf}(2,0)}{2 \sqrt{35}}-\sqrt{\frac{3}{70}} \text{Apf}(2,2)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Apf}(4,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2)+\frac{\text{Apf}(4,4)}{3 \sqrt{2}} 0 \color{darkred}{ -\frac{\text{Bdf}(1,1)}{\sqrt{14}}-\frac{\text{Bdf}(3,1)}{2 \sqrt{21}}-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{1}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{5}{66} \sqrt{5} \text{Bdf}(5,3)-\frac{5}{22} \text{Bdf}(5,5) }\color{darkred}{ \sqrt{\frac{3}{14}} \text{Bdf}(1,1)+\frac{\text{Bdf}(3,1)}{2 \sqrt{7}}+\frac{1}{2} \sqrt{\frac{5}{21}} \text{Bdf}(3,3)+\frac{5}{11} \sqrt{\frac{5}{14}} \text{Bdf}(5,1)-\frac{1}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,3) }\color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ \sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{1}{2} \sqrt{\frac{3}{7}} \text{Adf}(3,1)-\frac{1}{6} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{1}{11} \sqrt{\frac{15}{14}} \text{Adf}(5,1)+\frac{5}{66} \sqrt{5} \text{Adf}(5,3)-\frac{5}{22} \text{Adf}(5,5) } 0 \frac{\text{Bff}(2,2)}{3 \sqrt{10}}+\frac{2}{11} \sqrt{\frac{2}{3}} \text{Bff}(4,2)+\frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)+\frac{5}{132} \sqrt{7} \text{Bff}(6,2)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4)+\frac{5}{52} \sqrt{\frac{35}{11}} \text{Bff}(6,6) -\frac{\text{Aff}(2,0)}{\sqrt{15}}+\frac{1}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)+\frac{1}{44} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{\text{Aff}(4,2)}{11 \sqrt{6}}-\frac{1}{22} \sqrt{\frac{7}{6}} \text{Aff}(4,4)+\frac{35}{572} \sqrt{\frac{5}{3}} \text{Aff}(6,0)+\frac{85 \sqrt{7} \text{Aff}(6,2)}{1716}+\frac{5}{286} \sqrt{\frac{35}{6}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{35}{11}} \text{Aff}(6,6) 0 \frac{\text{Bff}(2,2)}{\sqrt{6}}-\frac{1}{33} \sqrt{10} \text{Bff}(4,2)+\frac{35}{572} \sqrt{\frac{35}{3}} \text{Bff}(6,2)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Bff}(6,6) \text{Aff}(0,0)+\frac{7}{132} \text{Aff}(4,0)-\frac{7}{33} \sqrt{\frac{5}{2}} \text{Aff}(4,2)-\frac{1}{22} \sqrt{\frac{35}{2}} \text{Aff}(4,4)-\frac{5}{44} \text{Aff}(6,0)-\frac{5}{572} \sqrt{105} \text{Aff}(6,2)+\frac{25}{286} \sqrt{\frac{7}{2}} \text{Aff}(6,4)-\frac{5}{52} \sqrt{\frac{21}{11}} \text{Aff}(6,6) 0
f_{z\left(x^2-y^2\right)} \color{darkred}{ 0 } 0 0 \sqrt{\frac{6}{35}} \text{Apf}(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,2) \color{darkred}{ 0 }\color{darkred}{ 0 }\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) }\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }\color{darkred}{ 0 } -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) 0 0 -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) 0 0 \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4)

Coupling for a single shell

Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.

Potential for s orbitals

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} \text{Eag} & k=0\land m=0 \\ 0 & \text{True} \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, Eag} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{0}^{(0)}}
{Y_{0}^{(0)}} \text{Eag}

The Hamiltonian on a basis of symmetric functions

\text{s}
\text{s} \text{Eag}

Potential for p orbitals

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} \frac{1}{3} (\text{Epxpx}+\text{Epypy}+\text{Epzpz}) & k=0\land m=0 \\ \frac{5 (\text{Epxpx}+2 i \text{Epypx}-\text{Epypy})}{2 \sqrt{6}} & k=2\land m=-2 \\ \frac{5 (\text{Epzpx}+i \text{Epypz})}{\sqrt{6}} & k=2\land m=-1 \\ -\frac{5}{6} (\text{Epxpx}+\text{Epypy}-2 \text{Epzpz}) & k=2\land m=0 \\ \frac{5 i (\text{Epypz}+i \text{Epzpx})}{\sqrt{6}} & k=2\land m=1 \\ \frac{5 (\text{Epxpx}-2 i \text{Epypx}-\text{Epypy})}{2 \sqrt{6}} & k=2\land m=2 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, (1/3)*(Epxpx + Epypy + Epzpz)} , 
       {2, 0, (-5/6)*(Epxpx + Epypy + (-2)*(Epzpz))} , 
       {2,-1, (5)*((1/(sqrt(6)))*((I)*(Epypz) + Epzpx))} , 
       {2, 1, (5*I)*((1/(sqrt(6)))*(Epypz + (I)*(Epzpx)))} , 
       {2, 2, (5/2)*((1/(sqrt(6)))*(Epxpx + (-2*I)*(Epypx) + (-1)*(Epypy)))} , 
       {2,-2, (5/2)*((1/(sqrt(6)))*(Epxpx + (2*I)*(Epypx) + (-1)*(Epypy)))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-1}^{(1)}} {Y_{0}^{(1)}} {Y_{1}^{(1)}}
{Y_{-1}^{(1)}} \frac{\text{Epxpx}+\text{Epypy}}{2} \frac{\text{Epzpx}+i \text{Epypz}}{\sqrt{2}} \frac{1}{2} (-\text{Epxpx}-2 i \text{Epypx}+\text{Epypy})
{Y_{0}^{(1)}} \frac{\text{Epzpx}-i \text{Epypz}}{\sqrt{2}} \text{Epzpz} -\frac{\text{Epzpx}+i \text{Epypz}}{\sqrt{2}}
{Y_{1}^{(1)}} \frac{1}{2} (-\text{Epxpx}+2 i \text{Epypx}+\text{Epypy}) \frac{i (\text{Epypz}+i \text{Epzpx})}{\sqrt{2}} \frac{\text{Epxpx}+\text{Epypy}}{2}

The Hamiltonian on a basis of symmetric functions

p_x p_y p_z
p_x \text{Epxpx} \text{Epypx} \text{Epzpx}
p_y \text{Epypx} \text{Epypy} \text{Epypz}
p_z \text{Epzpx} \text{Epypz} \text{Epzpz}

Potential for d orbitals

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} \frac{1}{5} (\text{Edx2y2dx2y2}+\text{Edxydxy}+\text{Edxzdxz}+\text{Edyzdyz}+\text{Edz2dz2}) & k=0\land m=0 \\ \frac{-4 i \text{Edxydz2}+\sqrt{3} \text{Edxzdxz}+2 i \sqrt{3} \text{Edyzdxz}-\sqrt{3} \text{Edyzdyz}-4 \text{Edz2dx2y2}}{2 \sqrt{2}} & k=2\land m=-2 \\ \frac{i \sqrt{3} \text{Edxydxz}+\sqrt{3} \text{Edxydyz}+\sqrt{3} \text{Edxzdx2y2}-i \sqrt{3} \text{Edyzdx2y2}+i \text{Edyzdz2}+\text{Edz2dxz}}{\sqrt{2}} & k=2\land m=-1 \\ -\text{Edx2y2dx2y2}-\text{Edxydxy}+\frac{\text{Edxzdxz}+\text{Edyzdyz}}{2}+\text{Edz2dz2} & k=2\land m=0 \\ \frac{i \left(\sqrt{3} \text{Edxydxz}+i \sqrt{3} \text{Edxydyz}+i \sqrt{3} \text{Edxzdx2y2}-\sqrt{3} \text{Edyzdx2y2}+\text{Edyzdz2}+i \text{Edz2dxz}\right)}{\sqrt{2}} & k=2\land m=1 \\ \frac{4 i \text{Edxydz2}+\sqrt{3} \text{Edxzdxz}-2 i \sqrt{3} \text{Edyzdxz}-\sqrt{3} \text{Edyzdyz}-4 \text{Edz2dx2y2}}{2 \sqrt{2}} & k=2\land m=2 \\ \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Edx2y2dx2y2}+2 i \text{Edxydx2y2}-\text{Edxydxy}) & k=4\land m=-4 \\ \frac{3}{2} \sqrt{\frac{7}{5}} (i \text{Edxydxz}-\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}) & k=4\land m=-3 \\ \frac{3 \left(i \sqrt{3} \text{Edxydz2}+\text{Edxzdxz}+2 i \text{Edyzdxz}-\text{Edyzdyz}+\sqrt{3} \text{Edz2dx2y2}\right)}{\sqrt{10}} & k=4\land m=-2 \\ \frac{3 \left(-i \text{Edxydxz}-\text{Edxydyz}-\text{Edxzdx2y2}+i \text{Edyzdx2y2}+2 i \sqrt{3} \text{Edyzdz2}+2 \sqrt{3} \text{Edz2dxz}\right)}{2 \sqrt{5}} & k=4\land m=-1 \\ \frac{3}{10} (\text{Edx2y2dx2y2}+\text{Edxydxy}-4 (\text{Edxzdxz}+\text{Edyzdyz})+6 \text{Edz2dz2}) & k=4\land m=0 \\ \frac{3 \left(-i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}+2 i \sqrt{3} \text{Edyzdz2}-2 \sqrt{3} \text{Edz2dxz}\right)}{2 \sqrt{5}} & k=4\land m=1 \\ \frac{3 \left(-i \sqrt{3} \text{Edxydz2}+\text{Edxzdxz}-2 i \text{Edyzdxz}-\text{Edyzdyz}+\sqrt{3} \text{Edz2dx2y2}\right)}{\sqrt{10}} & k=4\land m=2 \\ \frac{3}{2} \sqrt{\frac{7}{5}} (i \text{Edxydxz}+\text{Edxydyz}-\text{Edxzdx2y2}+i \text{Edyzdx2y2}) & k=4\land m=3 \\ \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Edx2y2dx2y2}-2 i \text{Edxydx2y2}-\text{Edxydxy}) & k=4\land m=4 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, (1/5)*(Edx2y2dx2y2 + Edxydxy + Edxzdxz + Edyzdyz + Edz2dz2)} , 
       {2, 0, (-1)*(Edx2y2dx2y2) + (-1)*(Edxydxy) + (1/2)*(Edxzdxz + Edyzdyz) + Edz2dz2} , 
       {2,-1, (1/(sqrt(2)))*((I)*((sqrt(3))*(Edxydxz)) + (sqrt(3))*(Edxydyz) + (sqrt(3))*(Edxzdx2y2) + (-I)*((sqrt(3))*(Edyzdx2y2)) + (I)*(Edyzdz2) + Edz2dxz)} , 
       {2, 1, (I)*((1/(sqrt(2)))*((sqrt(3))*(Edxydxz) + (I)*((sqrt(3))*(Edxydyz)) + (I)*((sqrt(3))*(Edxzdx2y2)) + (-1)*((sqrt(3))*(Edyzdx2y2)) + Edyzdz2 + (I)*(Edz2dxz)))} , 
       {2,-2, (1/2)*((1/(sqrt(2)))*((-4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} , 
       {2, 2, (1/2)*((1/(sqrt(2)))*((4*I)*(Edxydz2) + (sqrt(3))*(Edxzdxz) + (-2*I)*((sqrt(3))*(Edyzdxz)) + (-1)*((sqrt(3))*(Edyzdyz)) + (-4)*(Edz2dx2y2)))} , 
       {4, 0, (3/10)*(Edx2y2dx2y2 + Edxydxy + (-4)*(Edxzdxz + Edyzdyz) + (6)*(Edz2dz2))} , 
       {4,-1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz) + (-1)*(Edxydyz) + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (2)*((sqrt(3))*(Edz2dxz))))} , 
       {4, 1, (3/2)*((1/(sqrt(5)))*((-I)*(Edxydxz) + Edxydyz + Edxzdx2y2 + (I)*(Edyzdx2y2) + (2*I)*((sqrt(3))*(Edyzdz2)) + (-2)*((sqrt(3))*(Edz2dxz))))} , 
       {4, 2, (3)*((1/(sqrt(10)))*((-I)*((sqrt(3))*(Edxydz2)) + Edxzdxz + (-2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} , 
       {4,-2, (3)*((1/(sqrt(10)))*((I)*((sqrt(3))*(Edxydz2)) + Edxzdxz + (2*I)*(Edyzdxz) + (-1)*(Edyzdyz) + (sqrt(3))*(Edz2dx2y2)))} , 
       {4,-3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + (-1)*(Edxydyz) + Edxzdx2y2 + (I)*(Edyzdx2y2)))} , 
       {4, 3, (3/2)*((sqrt(7/5))*((I)*(Edxydxz) + Edxydyz + (-1)*(Edxzdx2y2) + (I)*(Edyzdx2y2)))} , 
       {4, 4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (-2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} , 
       {4,-4, (3/2)*((sqrt(7/10))*(Edx2y2dx2y2 + (2*I)*(Edxydx2y2) + (-1)*(Edxydxy)))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{-2}^{(2)}} \frac{\text{Edx2y2dx2y2}+\text{Edxydxy}}{2} \frac{1}{2} (i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}-i \text{Edyzdx2y2}) \frac{\text{Edz2dx2y2}+i \text{Edxydz2}}{\sqrt{2}} -\frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}-\text{Edxzdx2y2})+\text{Edyzdx2y2}) \frac{1}{2} (\text{Edx2y2dx2y2}+2 i \text{Edxydx2y2}-\text{Edxydxy})
{Y_{-1}^{(2)}} \frac{1}{2} (-i \text{Edxydxz}+\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2}) \frac{\text{Edxzdxz}+\text{Edyzdyz}}{2} \frac{\text{Edz2dxz}+i \text{Edyzdz2}}{\sqrt{2}} \frac{1}{2} (-\text{Edxzdxz}-2 i \text{Edyzdxz}+\text{Edyzdyz}) \frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}-\text{Edxzdx2y2})+\text{Edyzdx2y2})
{Y_{0}^{(2)}} \frac{\text{Edz2dx2y2}-i \text{Edxydz2}}{\sqrt{2}} \frac{\text{Edz2dxz}-i \text{Edyzdz2}}{\sqrt{2}} \text{Edz2dz2} \frac{-\text{Edz2dxz}-i \text{Edyzdz2}}{\sqrt{2}} \frac{\text{Edz2dx2y2}+i \text{Edxydz2}}{\sqrt{2}}
{Y_{1}^{(2)}} \frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) \frac{1}{2} (-\text{Edxzdxz}+2 i \text{Edyzdxz}+\text{Edyzdyz}) \frac{i (\text{Edyzdz2}+i \text{Edz2dxz})}{\sqrt{2}} \frac{\text{Edxzdxz}+\text{Edyzdyz}}{2} -\frac{1}{2} i (\text{Edxydxz}-i (\text{Edxydyz}+\text{Edxzdx2y2})-\text{Edyzdx2y2})
{Y_{2}^{(2)}} \frac{1}{2} (\text{Edx2y2dx2y2}-2 i \text{Edxydx2y2}-\text{Edxydxy}) -\frac{1}{2} i (\text{Edxydxz}-i \text{Edxydyz}+i \text{Edxzdx2y2}+\text{Edyzdx2y2}) \frac{\text{Edz2dx2y2}-i \text{Edxydz2}}{\sqrt{2}} \frac{1}{2} i (\text{Edxydxz}+i (\text{Edxydyz}+\text{Edxzdx2y2}+i \text{Edyzdx2y2})) \frac{\text{Edx2y2dx2y2}+\text{Edxydxy}}{2}

The Hamiltonian on a basis of symmetric functions

d_{x^2-y^2} d_{3z^2-r^2} d_{\text{yz}} d_{\text{xz}} d_{\text{xy}}
d_{x^2-y^2} \text{Edx2y2dx2y2} \text{Edz2dx2y2} \text{Edyzdx2y2} \text{Edxzdx2y2} \text{Edxydx2y2}
d_{3z^2-r^2} \text{Edz2dx2y2} \text{Edz2dz2} \text{Edyzdz2} \text{Edz2dxz} \text{Edxydz2}
d_{\text{yz}} \text{Edyzdx2y2} \text{Edyzdz2} \text{Edyzdyz} \text{Edyzdxz} \text{Edxydyz}
d_{\text{xz}} \text{Edxzdx2y2} \text{Edz2dxz} \text{Edyzdxz} \text{Edxzdxz} \text{Edxydxz}
d_{\text{xy}} \text{Edxydx2y2} \text{Edxydz2} \text{Edxydyz} \text{Edxydxz} \text{Edxydxy}

Potential for f orbitals

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-3}^{(3)}} A(0,0)-\frac{1}{3} A(2,0)+\frac{1}{11} A(4,0)-\frac{5}{429} A(6,0) 0 -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)-i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)-i \text{Ap}(6,2)) 0 \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)-i \text{Ap}(6,4))\right) 0 -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)-i \text{Ap}(6,6))
{Y_{-2}^{(3)}} 0 A(0,0)-\frac{7}{33} A(4,0)+\frac{10}{143} A(6,0) 0 -\frac{2 (A(2,2)-i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)-i \text{Ap}(6,2)) 0 \frac{1}{429} \sqrt{14} \left(13 \sqrt{5} (A(4,4)-i \text{Ap}(4,4))+30 (A(6,4)-i \text{Ap}(6,4))\right) 0
{Y_{-1}^{(3)}} -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)+i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)+i \text{Ap}(6,2)) 0 A(0,0)+\frac{1}{5} A(2,0)+\frac{1}{33} A(4,0)-\frac{25}{143} A(6,0) 0 \frac{2 \left(-143 \sqrt{6} (A(2,2)-i \text{Ap}(2,2))-65 \sqrt{10} (A(4,2)-i \text{Ap}(4,2))-25 \sqrt{105} (A(6,2)-i \text{Ap}(6,2))\right)}{2145} 0 \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)-i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)-i \text{Ap}(6,4))\right)
{Y_{0}^{(3)}} 0 -\frac{2 (A(2,2)+i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)+i \text{Ap}(6,2)) 0 A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) 0 -\frac{2 (A(2,2)-i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)-i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)-i \text{Ap}(6,2)) 0
{Y_{1}^{(3)}} \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)+i \text{Ap}(6,4))\right) 0 \frac{2 \left(-143 \sqrt{6} (A(2,2)+i \text{Ap}(2,2))-65 \sqrt{10} (A(4,2)+i \text{Ap}(4,2))-25 \sqrt{105} (A(6,2)+i \text{Ap}(6,2))\right)}{2145} 0 A(0,0)+\frac{1}{5} A(2,0)+\frac{1}{33} A(4,0)-\frac{25}{143} A(6,0) 0 -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)-i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)-i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)-i \text{Ap}(6,2))
{Y_{2}^{(3)}} 0 \frac{1}{429} \sqrt{14} \left(13 \sqrt{5} (A(4,4)+i \text{Ap}(4,4))+30 (A(6,4)+i \text{Ap}(6,4))\right) 0 -\frac{2 (A(2,2)+i \text{Ap}(2,2))}{3 \sqrt{5}}-\frac{A(4,2)+i \text{Ap}(4,2)}{11 \sqrt{3}}+\frac{20}{429} \sqrt{14} (A(6,2)+i \text{Ap}(6,2)) 0 A(0,0)-\frac{7}{33} A(4,0)+\frac{10}{143} A(6,0) 0
{Y_{3}^{(3)}} -\frac{10}{13} \sqrt{\frac{7}{33}} (A(6,6)+i \text{Ap}(6,6)) 0 \frac{1}{143} \sqrt{\frac{14}{3}} \left(13 (A(4,4)+i \text{Ap}(4,4))-5 \sqrt{5} (A(6,4)+i \text{Ap}(6,4))\right) 0 -\frac{1}{3} \sqrt{\frac{2}{5}} (A(2,2)+i \text{Ap}(2,2))+\frac{1}{11} \sqrt{6} (A(4,2)+i \text{Ap}(4,2))-\frac{10}{429} \sqrt{7} (A(6,2)+i \text{Ap}(6,2)) 0 A(0,0)-\frac{1}{3} A(2,0)+\frac{1}{11} A(4,0)-\frac{5}{429} A(6,0)

The Hamiltonian on a basis of symmetric functions

f_{\text{xyz}} f_{x\left(5x^2-r^2\right)} f_{y\left(5y^2-r^2\right)} f_{x\left(5z^2-r^2\right)} f_{x\left(y^2-z^2\right)} f_{y\left(z^2-x^2\right)} f_{z\left(x^2-y^2\right)}
f_{\text{xyz}} \frac{1}{429} \left(429 A(0,0)-91 A(4,0)-13 \sqrt{70} A(4,4)+30 A(6,0)-30 \sqrt{14} A(6,4)\right) 0 0 \frac{286 \sqrt{10} \text{Ap}(2,2)+65 \sqrt{6} \text{Ap}(4,2)-200 \sqrt{7} \text{Ap}(6,2)}{2145} 0 0 -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} \text{Ap}(4,4)+30 \text{Ap}(6,4)\right)
f_{x\left(5x^2-r^2\right)} 0 \frac{8580 A(0,0)-1144 A(2,0)+1144 \sqrt{6} A(2,2)+585 A(4,0)-390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)+125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)+125 \sqrt{231} A(6,6)}{8580} \frac{286 \sqrt{6} \text{Ap}(2,2)-780 \sqrt{10} \text{Ap}(4,2)-25 \sqrt{105} \text{Ap}(6,2)+125 \sqrt{231} \text{Ap}(6,6)}{8580} 0 \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} \frac{286 \sqrt{10} \text{Ap}(2,2)+5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)-20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} 0
f_{y\left(5y^2-r^2\right)} 0 \frac{286 \sqrt{6} \text{Ap}(2,2)-780 \sqrt{10} \text{Ap}(4,2)-25 \sqrt{105} \text{Ap}(6,2)+125 \sqrt{231} \text{Ap}(6,6)}{8580} \frac{8580 A(0,0)-1144 A(2,0)-1144 \sqrt{6} A(2,2)+585 A(4,0)+390 \sqrt{10} A(4,2)+195 \sqrt{70} A(4,4)-625 A(6,0)-125 \sqrt{105} A(6,2)-375 \sqrt{14} A(6,4)-125 \sqrt{231} A(6,6)}{8580} 0 \frac{-286 \sqrt{10} \text{Ap}(2,2)-5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(-52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)+20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} 0
f_{x\left(5z^2-r^2\right)} \frac{286 \sqrt{10} \text{Ap}(2,2)+65 \sqrt{6} \text{Ap}(4,2)-200 \sqrt{7} \text{Ap}(6,2)}{2145} 0 0 A(0,0)+\frac{4}{15} A(2,0)+\frac{2}{429} (39 A(4,0)+50 A(6,0)) 0 0 \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145}
f_{x\left(y^2-z^2\right)} 0 \frac{572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)-5 \left(13 \sqrt{15} A(4,0)-26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)-85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)+15 \sqrt{385} A(6,6)\right)}{8580} \frac{-286 \sqrt{10} \text{Ap}(2,2)-5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(-52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)+20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} 0 \frac{1716 A(0,0)+91 A(4,0)+182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)+15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)+15 \sqrt{231} A(6,6)}{1716} \frac{286 \sqrt{6} \text{Ap}(2,2)-52 \sqrt{10} \text{Ap}(4,2)+35 \sqrt{105} \text{Ap}(6,2)-15 \sqrt{231} \text{Ap}(6,6)}{1716} 0
f_{y\left(z^2-x^2\right)} 0 \frac{286 \sqrt{10} \text{Ap}(2,2)+5 \left(104 \sqrt{6} \text{Ap}(4,2)+\sqrt{7} \left(52 \sqrt{6} \text{Ap}(4,4)+65 \text{Ap}(6,2)-20 \sqrt{30} \text{Ap}(6,4)+15 \sqrt{55} \text{Ap}(6,6)\right)\right)}{8580} \frac{-572 \sqrt{15} A(2,0)+572 \sqrt{10} A(2,2)+5 \left(13 \sqrt{15} A(4,0)+26 \sqrt{6} A(4,2)-13 \sqrt{42} A(4,4)+35 \sqrt{15} A(6,0)+85 \sqrt{7} A(6,2)+5 \sqrt{210} A(6,4)-15 \sqrt{385} A(6,6)\right)}{8580} 0 \frac{286 \sqrt{6} \text{Ap}(2,2)-52 \sqrt{10} \text{Ap}(4,2)+35 \sqrt{105} \text{Ap}(6,2)-15 \sqrt{231} \text{Ap}(6,6)}{1716} \frac{1716 A(0,0)+91 A(4,0)-182 \sqrt{10} A(4,2)-39 \sqrt{70} A(4,4)-195 A(6,0)-15 \sqrt{105} A(6,2)+75 \sqrt{14} A(6,4)-15 \sqrt{231} A(6,6)}{1716} 0
f_{z\left(x^2-y^2\right)} -\frac{1}{429} \sqrt{14} \left(13 \sqrt{5} \text{Ap}(4,4)+30 \text{Ap}(6,4)\right) 0 0 \frac{-286 \sqrt{10} A(2,2)-65 \sqrt{6} A(4,2)+200 \sqrt{7} A(6,2)}{2145} 0 0 \frac{1}{429} \left(429 A(0,0)-91 A(4,0)+13 \sqrt{70} A(4,4)+30 A(6,0)+30 \sqrt{14} A(6,4)\right)

Coupling between two shells

Potential for s-p orbital mixing

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-1}^{(1)}} {Y_{0}^{(1)}} {Y_{1}^{(1)}}
{Y_{0}^{(0)}} -\frac{A(1,1)+i \text{Ap}(1,1)}{\sqrt{3}} 0 \frac{A(1,1)-i \text{Ap}(1,1)}{\sqrt{3}}

The Hamiltonian on a basis of symmetric functions

p_x p_y p_z
\text{s} -\sqrt{\frac{2}{3}} A(1,1) \sqrt{\frac{2}{3}} \text{Ap}(1,1) 0

Potential for s-d orbital mixing

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{0}^{(0)}} \frac{A(2,2)+i \text{Ap}(2,2)}{\sqrt{5}} 0 \frac{A(2,0)}{\sqrt{5}} 0 \frac{A(2,2)-i \text{Ap}(2,2)}{\sqrt{5}}

The Hamiltonian on a basis of symmetric functions

d_{x^2-y^2} d_{3z^2-r^2} d_{\text{yz}} d_{\text{xz}} d_{\text{xy}}
\text{s} \sqrt{\frac{2}{5}} A(2,2) \frac{A(2,0)}{\sqrt{5}} 0 0 -\sqrt{\frac{2}{5}} \text{Ap}(2,2)

Potential for s-f orbital mixing

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{0}^{(0)}} -\frac{A(3,3)+i \text{Ap}(3,3)}{\sqrt{7}} 0 -\frac{A(3,1)+i \text{Ap}(3,1)}{\sqrt{7}} 0 \frac{A(3,1)-i \text{Ap}(3,1)}{\sqrt{7}} 0 \frac{A(3,3)-i \text{Ap}(3,3)}{\sqrt{7}}

The Hamiltonian on a basis of symmetric functions

f_{\text{xyz}} f_{x\left(5x^2-r^2\right)} f_{y\left(5y^2-r^2\right)} f_{x\left(5z^2-r^2\right)} f_{x\left(y^2-z^2\right)} f_{y\left(z^2-x^2\right)} f_{z\left(x^2-y^2\right)}
\text{s} 0 \frac{1}{14} \left(\sqrt{21} A(3,1)-\sqrt{35} A(3,3)\right) -\frac{\sqrt{3} \text{Ap}(3,1)+\sqrt{5} \text{Ap}(3,3)}{2 \sqrt{7}} 0 \frac{\sqrt{5} A(3,1)+\sqrt{3} A(3,3)}{2 \sqrt{7}} \frac{1}{14} \left(\sqrt{35} \text{Ap}(3,1)-\sqrt{21} \text{Ap}(3,3)\right) 0

Potential for p-d orbital mixing

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-2}^{(2)}} {Y_{-1}^{(2)}} {Y_{0}^{(2)}} {Y_{1}^{(2)}} {Y_{2}^{(2)}}
{Y_{-1}^{(1)}} \frac{1}{7} \sqrt{\frac{3}{5}} (A(3,1)+i \text{Ap}(3,1))-\sqrt{\frac{2}{5}} (A(1,1)+i \text{Ap}(1,1)) 0 \frac{1}{105} \left(7 \sqrt{15} (A(1,1)-i \text{Ap}(1,1))-9 \sqrt{10} (A(3,1)-i \text{Ap}(3,1))\right) 0 -\frac{3}{7} (A(3,3)-i \text{Ap}(3,3))
{Y_{0}^{(1)}} 0 -\frac{A(1,1)+i \text{Ap}(1,1)}{\sqrt{5}}-\frac{2}{7} \sqrt{\frac{6}{5}} (A(3,1)+i \text{Ap}(3,1)) 0 \frac{7 A(1,1)+2 \sqrt{6} A(3,1)-i \left(7 \text{Ap}(1,1)+2 \sqrt{6} \text{Ap}(3,1)\right)}{7 \sqrt{5}} 0
{Y_{1}^{(1)}} \frac{3}{7} (A(3,3)+i \text{Ap}(3,3)) 0 \frac{3}{7} \sqrt{\frac{2}{5}} (A(3,1)+i \text{Ap}(3,1))-\frac{A(1,1)+i \text{Ap}(1,1)}{\sqrt{15}} 0 \sqrt{\frac{2}{5}} (A(1,1)-i \text{Ap}(1,1))-\frac{1}{7} \sqrt{\frac{3}{5}} (A(3,1)-i \text{Ap}(3,1))

The Hamiltonian on a basis of symmetric functions

d_{x^2-y^2} d_{3z^2-r^2} d_{\text{yz}} d_{\text{xz}} d_{\text{xy}}
p_x \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)-15 A(3,3)\right) \sqrt{\frac{2}{15}} A(1,1)-\frac{6 A(3,1)}{7 \sqrt{5}} 0 0 \sqrt{\frac{2}{5}} \text{Ap}(1,1)-\frac{1}{7} \sqrt{\frac{3}{5}} \text{Ap}(3,1)+\frac{3}{7} \text{Ap}(3,3)
p_y \frac{1}{35} \left(-7 \sqrt{10} \text{Ap}(1,1)+\sqrt{15} \text{Ap}(3,1)+15 \text{Ap}(3,3)\right) \frac{6 \text{Ap}(3,1)}{7 \sqrt{5}}-\sqrt{\frac{2}{15}} \text{Ap}(1,1) 0 0 \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)+15 A(3,3)\right)
p_z 0 0 \sqrt{\frac{2}{5}} \text{Ap}(1,1)+\frac{4}{7} \sqrt{\frac{3}{5}} \text{Ap}(3,1) -\frac{1}{7} \sqrt{\frac{2}{5}} \left(7 A(1,1)+2 \sqrt{6} A(3,1)\right) 0

Potential for p-f orbital mixing

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-1}^{(1)}} \frac{3 (A(2,2)+i \text{Ap}(2,2))}{\sqrt{35}}-\frac{A(4,2)+i \text{Ap}(4,2)}{3 \sqrt{21}} 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)-i \text{Ap}(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)-i \text{Ap}(4,2)) 0 -\frac{2 (A(4,4)-i \text{Ap}(4,4))}{3 \sqrt{3}}
{Y_{0}^{(1)}} 0 \sqrt{\frac{3}{35}} (A(2,2)+i \text{Ap}(2,2))+\frac{2 (A(4,2)+i \text{Ap}(4,2))}{3 \sqrt{7}} 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 \sqrt{\frac{3}{35}} (A(2,2)-i \text{Ap}(2,2))+\frac{2 (A(4,2)-i \text{Ap}(4,2))}{3 \sqrt{7}} 0
{Y_{1}^{(1)}} -\frac{2 (A(4,4)+i \text{Ap}(4,4))}{3 \sqrt{3}} 0 \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)+i \text{Ap}(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)+i \text{Ap}(4,2)) 0 \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) 0 \frac{3 (A(2,2)-i \text{Ap}(2,2))}{\sqrt{35}}-\frac{A(4,2)-i \text{Ap}(4,2)}{3 \sqrt{21}}

The Hamiltonian on a basis of symmetric functions

f_{\text{xyz}} f_{x\left(5x^2-r^2\right)} f_{y\left(5y^2-r^2\right)} f_{x\left(5z^2-r^2\right)} f_{x\left(y^2-z^2\right)} f_{y\left(z^2-x^2\right)} f_{z\left(x^2-y^2\right)}
p_x 0 \frac{1}{630} \left(-27 \sqrt{21} A(2,0)+81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)-2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) \frac{1}{630} \left(54 \sqrt{14} \text{Ap}(2,2)+5 \sqrt{30} \left(\sqrt{7} \text{Ap}(4,2)+7 \text{Ap}(4,4)\right)\right) 0 \frac{1}{210} \left(-9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)+5 \left(\sqrt{35} A(4,0)-2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) \sqrt{\frac{6}{35}} \text{Ap}(2,2)-\frac{\text{Ap}(4,2)}{\sqrt{14}}+\frac{\text{Ap}(4,4)}{3 \sqrt{2}} 0
p_y 0 \frac{1}{630} \left(54 \sqrt{14} \text{Ap}(2,2)+5 \sqrt{30} \left(\sqrt{7} \text{Ap}(4,2)-7 \text{Ap}(4,4)\right)\right) \frac{1}{630} \left(-27 \sqrt{21} A(2,0)-81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)+2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) 0 -\sqrt{\frac{6}{35}} \text{Ap}(2,2)+\frac{\text{Ap}(4,2)}{\sqrt{14}}+\frac{\text{Ap}(4,4)}{3 \sqrt{2}} \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) 0
p_z -\sqrt{\frac{6}{35}} \text{Ap}(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} \text{Ap}(4,2) 0 0 \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} 0 0 \sqrt{\frac{6}{35}} A(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} A(4,2)

Potential for d-f orbital mixing

Input format suitable for Mathematica (Quanty.nb)

A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}

Input format suitable for Quanty

Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , 
       {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , 
       {1, 1, A(1,1) + (I)*(Ap(1,1))} , 
       {2, 0, A(2,0)} , 
       {2,-2, A(2,2) + (-I)*(Ap(2,2))} , 
       {2, 2, A(2,2) + (I)*(Ap(2,2))} , 
       {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , 
       {3, 1, A(3,1) + (I)*(Ap(3,1))} , 
       {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , 
       {3, 3, A(3,3) + (I)*(Ap(3,3))} , 
       {4, 0, A(4,0)} , 
       {4,-2, A(4,2) + (-I)*(Ap(4,2))} , 
       {4, 2, A(4,2) + (I)*(Ap(4,2))} , 
       {4,-4, A(4,4) + (-I)*(Ap(4,4))} , 
       {4, 4, A(4,4) + (I)*(Ap(4,4))} , 
       {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , 
       {5, 1, A(5,1) + (I)*(Ap(5,1))} , 
       {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , 
       {5, 3, A(5,3) + (I)*(Ap(5,3))} , 
       {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , 
       {5, 5, A(5,5) + (I)*(Ap(5,5))} , 
       {6, 0, A(6,0)} , 
       {6,-2, A(6,2) + (-I)*(Ap(6,2))} , 
       {6, 2, A(6,2) + (I)*(Ap(6,2))} , 
       {6,-4, A(6,4) + (-I)*(Ap(6,4))} , 
       {6, 4, A(6,4) + (I)*(Ap(6,4))} , 
       {6,-6, A(6,6) + (-I)*(Ap(6,6))} , 
       {6, 6, A(6,6) + (I)*(Ap(6,6))} }

The Hamiltonian on a basis of spherical Harmonics

{Y_{-3}^{(3)}} {Y_{-2}^{(3)}} {Y_{-1}^{(3)}} {Y_{0}^{(3)}} {Y_{1}^{(3)}} {Y_{2}^{(3)}} {Y_{3}^{(3)}}
{Y_{-2}^{(2)}} -\sqrt{\frac{3}{7}} (A(1,1)+i \text{Ap}(1,1))+\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)+i \text{Ap}(3,1))-\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)+i \text{Ap}(5,1)) 0 \frac{33 \sqrt{35} (A(1,1)-i \text{Ap}(1,1))-22 \sqrt{210} (A(3,1)-i \text{Ap}(3,1))+25 \sqrt{21} (A(5,1)-i \text{Ap}(5,1))}{1155} 0 \frac{5}{33} \sqrt{2} (A(5,3)-i \text{Ap}(5,3))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)-i \text{Ap}(3,3)) 0 \frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)-i \text{Ap}(5,5))
{Y_{-1}^{(2)}} 0 -\sqrt{\frac{2}{7}} (A(1,1)+i \text{Ap}(1,1))-\frac{A(3,1)+i \text{Ap}(3,1)}{\sqrt{21}}+\frac{2}{11} \sqrt{\frac{10}{21}} (A(5,1)+i \text{Ap}(5,1)) 0 \frac{33 \sqrt{105} (A(1,1)-i \text{Ap}(1,1))-11 \sqrt{70} (A(3,1)-i \text{Ap}(3,1))-100 \sqrt{7} (A(5,1)-i \text{Ap}(5,1))}{1155} 0 -\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i \text{Ap}(3,3))-\frac{4}{33} \sqrt{5} (A(5,3)-i \text{Ap}(5,3)) 0
{Y_{0}^{(2)}} \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i \text{Ap}(3,3))-\frac{2}{33} \sqrt{5} (A(5,3)+i \text{Ap}(5,3)) 0 -\sqrt{\frac{6}{35}} (A(1,1)+i \text{Ap}(1,1))-\frac{A(3,1)+i \text{Ap}(3,1)}{\sqrt{35}}-\frac{5}{11} \sqrt{\frac{2}{7}} (A(5,1)+i \text{Ap}(5,1)) 0 \frac{1}{385} \left(11 \sqrt{210} (A(1,1)-i \text{Ap}(1,1))+11 \sqrt{35} (A(3,1)-i \text{Ap}(3,1))+25 \sqrt{14} (A(5,1)-i \text{Ap}(5,1))\right) 0 \frac{2}{33} \sqrt{5} (A(5,3)-i \text{Ap}(5,3))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i \text{Ap}(3,3))
{Y_{1}^{(2)}} 0 \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i \text{Ap}(3,3))+\frac{4}{33} \sqrt{5} (A(5,3)+i \text{Ap}(5,3)) 0 -\sqrt{\frac{3}{35}} (A(1,1)+i \text{Ap}(1,1))+\frac{1}{3} \sqrt{\frac{2}{35}} (A(3,1)+i \text{Ap}(3,1))+\frac{20 (A(5,1)+i \text{Ap}(5,1))}{33 \sqrt{7}} 0 \frac{1}{231} \left(33 \sqrt{14} (A(1,1)-i \text{Ap}(1,1))+11 \sqrt{21} (A(3,1)-i \text{Ap}(3,1))-2 \sqrt{210} (A(5,1)-i \text{Ap}(5,1))\right) 0
{Y_{2}^{(2)}} -\frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)+i \text{Ap}(5,5)) 0 \frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)+i \text{Ap}(3,3))-\frac{5}{33} \sqrt{2} (A(5,3)+i \text{Ap}(5,3)) 0 -\frac{A(1,1)+i \text{Ap}(1,1)}{\sqrt{35}}+2 \sqrt{\frac{2}{105}} (A(3,1)+i \text{Ap}(3,1))-\frac{5 (A(5,1)+i \text{Ap}(5,1))}{11 \sqrt{21}} 0 \sqrt{\frac{3}{7}} (A(1,1)-i \text{Ap}(1,1))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)-i \text{Ap}(3,1))+\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)-i \text{Ap}(5,1))

The Hamiltonian on a basis of symmetric functions

f_{\text{xyz}} f_{x\left(5x^2-r^2\right)} f_{y\left(5y^2-r^2\right)} f_{x\left(5z^2-r^2\right)} f_{x\left(y^2-z^2\right)} f_{y\left(z^2-x^2\right)} f_{z\left(x^2-y^2\right)}
d_{x^2-y^2} 0 \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} \frac{-99 \sqrt{210} \text{Ap}(1,1)+121 \sqrt{35} \text{Ap}(3,1)+55 \sqrt{21} \text{Ap}(3,3)-50 \sqrt{14} \text{Ap}(5,1)-175 \sqrt{3} \text{Ap}(5,3)-175 \sqrt{15} \text{Ap}(5,5)}{2310} 0 \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) \frac{1}{462} \left(-33 \sqrt{14} \text{Ap}(1,1)-11 \sqrt{21} \text{Ap}(3,1)-11 \sqrt{35} \text{Ap}(3,3)+2 \sqrt{210} \text{Ap}(5,1)+35 \sqrt{5} \text{Ap}(5,3)-105 \text{Ap}(5,5)\right) 0
d_{3z^2-r^2} 0 \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} \frac{-99 \sqrt{70} \text{Ap}(1,1)-33 \sqrt{105} \text{Ap}(3,1)+275 \sqrt{7} \text{Ap}(3,3)-75 \sqrt{42} \text{Ap}(5,1)-350 \text{Ap}(5,3)}{2310} 0 \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) \frac{1}{462} \left(33 \sqrt{42} \text{Ap}(1,1)+33 \sqrt{7} \text{Ap}(3,1)+11 \sqrt{105} \text{Ap}(3,3)+15 \sqrt{70} \text{Ap}(5,1)-14 \sqrt{15} \text{Ap}(5,3)\right) 0
d_{\text{yz}} \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)+28 A(5,3)\right)\right) 0 0 -\sqrt{\frac{6}{35}} \text{Ap}(1,1)+\frac{2 \text{Ap}(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} \text{Ap}(5,1) 0 0 \frac{1}{231} \left(-33 \sqrt{14} \text{Ap}(1,1)-11 \sqrt{21} \text{Ap}(3,1)+\sqrt{5} \left(11 \sqrt{7} \text{Ap}(3,3)+2 \sqrt{42} \text{Ap}(5,1)+28 \text{Ap}(5,3)\right)\right)
d_{\text{xz}} \frac{1}{231} \left(33 \sqrt{14} \text{Ap}(1,1)+11 \sqrt{21} \text{Ap}(3,1)+\sqrt{5} \left(11 \sqrt{7} \text{Ap}(3,3)-2 \sqrt{42} \text{Ap}(5,1)+28 \text{Ap}(5,3)\right)\right) 0 0 \sqrt{\frac{6}{35}} A(1,1)-\frac{2 A(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} A(5,1) 0 0 \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(-11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)-28 A(5,3)\right)\right)
d_{\text{xy}} 0 \frac{-66 \sqrt{210} \text{Ap}(1,1)-11 \sqrt{35} \text{Ap}(3,1)+5 \left(11 \sqrt{21} \text{Ap}(3,3)+5 \sqrt{14} \text{Ap}(5,1)-35 \sqrt{3} \text{Ap}(5,3)+35 \sqrt{15} \text{Ap}(5,5)\right)}{2310} \frac{66 \sqrt{210} A(1,1)+11 \sqrt{35} A(3,1)+5 \left(11 \sqrt{21} A(3,3)-5 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)-35 \sqrt{15} A(5,5)\right)}{2310} 0 \frac{1}{462} \left(66 \sqrt{14} \text{Ap}(1,1)-33 \sqrt{21} \text{Ap}(3,1)+11 \sqrt{35} \text{Ap}(3,3)+3 \sqrt{210} \text{Ap}(5,1)-35 \sqrt{5} \text{Ap}(5,3)-105 \text{Ap}(5,5)\right) \frac{1}{462} \left(66 \sqrt{14} A(1,1)-33 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)+3 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)-105 A(5,5)\right) 0

Table of several point groups

Return to Main page on Point Groups

Nonaxial groups C1 Cs Ci
Cn groups C2 C3 C4 C5 C6 C7 C8
Dn groups D2 D3 D4 D5 D6 D7 D8
Cnv groups C2v C3v C4v C5v C6v C7v C8v
Cnh groups C2h C3h C4h C5h C6h
Dnh groups D2h D3h D4h D5h D6h D7h D8h
Dnd groups D2d D3d D4d D5d D6d D7d D8d
Sn groups S2 S4 S6 S8 S10 S12
Cubic groups T Th Td O Oh I Ih
Linear groups C\inftyv D\inftyh

Print/export